References Cited—U.S. Patents
This invention relates to a portable placer exploration and sampling apparatus designed for rapid and low-cost evaluation of valuable mineral content of alluvial, eluvial residual placers. Historically, placers have been one of the most important sources of precious minerals and gems such as gold, diamonds, platinum, emeralds, rubies and sapphires. Valuable minerals are not distributed uniformly through the typical placer deposit. Heavy minerals, in general, and gold, in particular, typically are confined to narrow, discontinuous pay streaks with little or no value between them and typically are concentrated at bedrock levels beneath a great amount of relatively barren overburden. Therefore, representative samples, although critical to exploration, selection and future development of placers are difficult to obtain.
Typically, land-based placer sampling methods have evolved into two categories—a large number of small samples or a lesser number of bulk samples. Small samples typically have been taken with gasoline powered churn drill, 6″ drive pipe casing and sample baler. Bulk samples typically are taken by several methods, including hand dug excavation, machine-dug shafts, backhoe pits or trenches and bulldozer trenches.
With the exception of hand excavation, all of the above sampling methods are expensive and difficult, if not impossible, to transport into inaccessible areas. As a result, most placer development has occurred in the relatively accessible placer deposits of the world. One of the primary limitations on opening up virgin placer areas has, therefore, been the high cost of evaluating the economic risk and feasibility of further development of relatively inaccessible sites. This invention addresses this limitation by providing features which have not previously been available in traditional placer sampling methods, including
The present invention comprises an apparatus which operates on a principle of power augering and water jetting a sampling pipe to bedrock while concurrently recovering ¾″ minus materials, including particles and nuggets of valuable minerals and gemstones, through a concentric center pipe, such recovery powered by a water ring jet venturi. Assuming the presence, and removal, of a reasonable percentage of ¾″ minus materials, the jetting point and the auger will displace larger materials into the voids created by the removed materials, allowing a relatively unobstructed penetration to bedrock. The recovered materials and transport water are discharged into the manifold of a sampling sluice, leading to final determination of values by panning or other hydraulic concentrating device.
The sampling unit consists of a number of individual elements, as shown on the attached drawings, including
The preferred embodiment of the present invention is shown in
The stationary water manifold assembly 12 is comprised of a high-pressure water intake 17 supplied from a commercially available water pump (not shown), typically referred to as a fire pump. The high pressure water is introduced into the annular space between the concentric outer sampling pipe 18 and the inner return pipe 19 to service the high-pressure water sprays 20, the high-pressure water jets 28 and the ring jet venturi 22, such venturi creating the vacuum to recover and transport water and classified materials to the center return pipe 19 and thence a connection 21 to the manifold of a commercially available sampling sluice (not shown), leading to final determination of mineral and gemstone values by panning or other hydraulic concentrating device.
Attached to the water manifold assembly 12 is a support for the hydraulic drive motor 15, a tripod arrangement 23 to assist in setup and retrieval of the unit and tie-downs 24, as required to oppose the torque transmitted to the stationary utility head assembly. This tie-down arrangement may be replaced by two telescoping torque bars at 180° displacement and/or manual handle bars to control torque and to guide the unit for vertical penetration.
The assembly to transmit rotary motion to the sampling pipe assembly 14, shown in plan view
The sampling pipe assembly 10 comprises concentric outer sampling pipe 18 and inner return pipe 19 with an annular space between as a means of supplying high pressure water to the spray jets 20, the jetting head 25 and the ring jet venturi 22; spray jets 20, shown in plan and elevation views in
The jetting head assembly 25, shown in elevation and partial section in
A sample hole plug 31 is also incorporated to seal off the flow of excess water out of the top of the sample hole, both as a means of controlling water runoff and increasing water pressure in the sample hole to assist in recovery of materials through the return pipe 19. The sample hole plug 31, as shown in
The method of operation basically involves transport of the disassembled unit to a candidate placer by means of manpower, pack animal, small boat, helicopter, or similar means; reassembly of the unit and tripod; and raising the unit into vertical position by means of the winch attached to the tripod. Connections are made to the high-pressure water source, the return line to the sluice box and the hydraulic supply from the hydraulic power unit. As the unit is lowered by means of the winch, high pressure water (typically 200 gpm @ 60 psi) enters the connection at the top of the sampling unit and continues into the annular space between the outer pipe and the inner pipe. At the lower extremity of the unit, the high pressure water is released through the spray nozzles, the jetting nozzles and through the ring jet venturi into the inner return pipe. The high pressure spray and jets dislodge the smaller materials in the sampling hole which, in turn, are transported and drawn into the inner return pipe through the suction port screen.
The suction created by the ring jet venturi is assisted by the pressure increase in the sampling hole resulting from restriction of water outflow past the sample hole plug assembly. The rotation of the sampling pipe provides a dual function of clearing oversize material from the suction port screen and developing a downward force by means of the auger helix to assist in penetration to bedrock.
As the smaller materials are removed, space is created such that the jetting point can displace larger materials as it continues to penetrate to bedrock. The smaller materials which enter the suction ports are transported by high velocity water up the inner return pipe and released via a hose connection to a sampling sluice. The higher density materials, i.e. magnetite, gold flakes, nuggets and/or other valuable minerals and gemstones are retained by the sluice while barren sands and gravels are carried over and rejected. The denser particles retained by the sluice may be concentrated and visually inspected in the field by panning or other hydraulic concentrating device or, as an alternative, transported to home base for further concentration and laboratory analysis. The water from the sluice can either be wasted or returned to a settling basin for recirculation by means of a closed water loop.
The unit can be extended in 5 ft. increments, employing screw couplings on the inner return pipe and the outer pipe. Removal of the sampling unit is accomplished by reversing the power auger and lifting by means of a portable tripod and cable hoist.
Number | Name | Date | Kind |
---|---|---|---|
656994 | Munn | Aug 1900 | A |
1071199 | Andrews | Aug 1913 | A |
1525235 | Hansen | Feb 1925 | A |
1533465 | Rowe | Apr 1925 | A |
1994884 | Chew | Mar 1935 | A |
2255167 | Hunn | Sep 1941 | A |
3486570 | Richardson | Dec 1969 | A |
3790213 | Grable | Feb 1974 | A |
3856355 | Grable | Dec 1974 | A |
3917326 | Grable | Nov 1975 | A |
3961671 | Adams et al. | Jun 1976 | A |
4140346 | Barthel | Feb 1979 | A |
4336849 | Hug | Jun 1982 | A |
4497519 | Grable | Feb 1985 | A |
Number | Date | Country | |
---|---|---|---|
20040113482 A1 | Jun 2004 | US |