The present application generally relates to a removable power assist for a manual wheelchair, and more particularly relates to a device for converting a manual wheelchair into an electric wheelchair.
In 2011, an estimated 2.7 million Americans used a wheelchair on a regular basis; up from 1.8 million in 1995. Based off the 2011 Census, 46,000,000 Americans are disabled and receiving income-based assistance. Of that group, 18.2% report ambulatory difficulty. There is also a population that needs a wheelchair temporarily e.g. 2-12 months and would prefer not to incur the expense of an electronic wheelchair even though it is preferred over a manual wheelchair.
Electronic wheelchairs and many of the innovations in the field are very expensive; and there is a significant price gap between the most expensive manual wheelchair and the cheapest electronic wheelchair, which often ranges in the thousands of dollars. Other limitations of electric wheelchairs, in addition to cost, include: portability (foldable); weight; and structural bulk. There are devices on the market for converting manual wheelchairs to electronic wheelchairs but they are flawed so that they cannot be installed by an end user sitting in the chair, are heavy, not portable, have poor surface contact for the propulsion system and/or cannot be disengaged without uninstalling the device from the chair.
What is needed is a device for converting a manual wheelchair into a power driven system in a cost effective, portable, easy to install and use, lightweight, alternately convertible from electric to manual without uninstalling the device. The device should be adaptable to existing manual wheelchairs without the need of professional installation.
Herein disclosed are apparatus and associated methods related to a wheelchair power assist device configured to switch a motorized friction roller between engaged and disengaged modes with a wheelchair wheel, based on an engagement actuator configured to move the friction roller relative to an attachment member removably secured to the wheelchair. The friction roller may be operably coupled with an engagement member configured to move relative to the attachment member. The engagement member may be moved by an extendable and retractable actuator shaft coupled with the attachment member. A manual wheelchair may be converted to a powered wheelchair using a motorized friction roller for each wheelchair wheel. A plurality of power assist devices may be configured to position a respective plurality of friction rollers to leave an open space behind the wheelchair seating area, advantageously permitting the power assist devices to remain attached to a foldable wheelchair in either folded or unfolded configurations.
An exemplary apparatus or method implementation in accordance with the teaching of the present disclosure may relate to a removable power assist for converting a manual wheelchair into an electronic wheelchair, based on configuring a friction roller to releasably engage with a wheelchair wheel, configuring the friction roller when engaged to drive the wheel through a contact surface with the wheel that may be positioned under the wheelchair seating area, or to the side of the wheelchair seating area, or to the underside of an armrest, or in front of a wheelchair wheel, configuring a motor to rotate the friction roller, and moving the wheelchair based on engaging the friction roller and activating the motor to turn the wheel through force by the friction roller against the contact surface with the wheel. Some designs include a lever configured to permit a user seated in the wheelchair to engage or disengage the friction roller. Configuring the friction roller under the wheelchair seating area, or to the side of the wheelchair seating area, or to the underside of an armrest, or in front of a wheelchair wheel may permit wheelchair folding or unfolding without uninstalling the power assist.
An exemplary apparatus or method implementation in accordance with the teaching of the present disclosure may relate to a removable power assist for converting a manual wheelchair into an electronic wheelchair, based on configuring a friction roller to releasably engage with a wheelchair wheel, configuring the friction roller when engaged to drive the wheel through a contact surface with the wheel above the wheel center and behind the wheelchair seating area, configuring a motor to rotate the friction roller, and moving the wheelchair based on engaging the friction roller and activating the motor to turn the wheel through force by the friction roller against the contact surface with the wheel. The power assist may include a user-operable lever configured to engage or disengage the friction roller without a user leaving their seated position in the wheelchair. Configuring the friction roller above the wheel center and behind the wheelchair seating area may permit collapsible wheelchair folding or unfolding without uninstalling the power assist.
Disclosed are a device and method to convert a manual wheelchair into an electronic wheelchair. In an implementation the device may include a joystick, a communication unit, a motor, a retractable friction roller, an engagement unit and a power source. The joystick may be operably connected to a communication unit. The communication unit may be operably connected to a motor. The motor may include an axle connected to a rotor. The retractable friction roller may be mounted on the axle. The roller may be placed in contact with a wheel of a manual wheelchair. The engagement unit may be attached to the manual wheelchair to detachably attach the friction roller and the wheel. The power source may be operably connected to the motor and the joystick.
In accordance with teachings of the present invention a device for converting a manual wheelchair into an electronic wheelchair is provided. Herein described is a manual wheelchair accessory device configured to attach to a manual wheelchair that will convert the manual wheelchair to an electric wheelchair, while still retaining the advantages that manual wheelchairs provide. The device may include an attachable power source affixed to a standard manual wheelchair.
In one embodiment, the present invention provides a device having a joystick, a communication unit, a motor, a retractable friction roller, an engagement unit and a power source. The joystick is operably connected to a communication unit. The communication unit is operably connected to a motor. The motor includes an axle connected to a rotor. A retractable friction roller is mounted on the axle. The roller is placed in contact with a wheel of a manual wheelchair. The engagement unit is attached to the manual wheelchair to detachably attach the friction roller to the wheel. The power source is operably connected to the motor and the joystick.
In one embodiment, the present invention provides a second motor that is operably connected to a second communication unit and the power source. The second communication unit is operably connected to the joystick. The second motor includes a second axle connected to a second rotor. This embodiment includes a second friction roller that is mounted on the second axle. The second roller is placed in contact with a second wheel of the manual wheelchair to facilitate powered motion. In another embodiment, the joystick may be operably connected to the rotors and is operably programmable to generate commands for the motors.
The present invention easily converts a manual wheelchair to a powered, smart wheelchair. Features of the present invention include 1) using the friction roller's contact to the wheel to generate directed movement; 2) the ability to engage and disengage the friction roller to the wheels of the wheelchair which allows the user to propel the wheelchair with manual propulsion while the device is still attached to the wheelchair—a feature essential if the battery or motor cease to function; 3) the ability to fold the wheelchair with device attached to it without altering the folding of or normal space occupied by a standard manual wheelchair; 4) unit portability. In one embodiment, the device includes a safety guard to prevent a user's fingers from becoming caught in the motor or the gears. In another embodiment, the motors are bi-directional and independent of one another so that the motor attached to each wheelchair wheel can turn the opposite direction and rotate the wheelchair in place. Using the present invention, both acute and long-term care wheelchair companies and individual users can affordably bring their equipment and standard of care to a higher, professional level.
While various embodiments of the present disclosure are disclosed, it should be understood that they are presented as examples only, and are not intended to be limiting. Similarly, the drawings and diagrams depict structural or architectural examples or alternate configurations of the invention, which are provided to aid in understanding the features and functionality of the various embodiments of the invention but are not intended to be limiting. The embodiments and features may be implemented and/or altered in a variety of ways known to those of ordinary skill the art.
The communication unit 110 is operably connected to a motor 112. The communication unit 110 is explained in detail in conjunction with
The retractable friction roller 104 is mounted on the axle 114. During operation of the device 100, the retractable friction roller 104 is put in contact with at least one wheel 206 (shown in
The engagement unit 106 is attached to the wheelchair 202 (shown in
In one embodiment, a user is able to control the direction, movement and speed of the device 100 using the joystick 102. More specifically, the movement and speed of the wheel 206 of the wheelchair 202 is controlled by user instructions using the joystick 102 and the communication unit 110 (shown in
In the example depicted by
In the example depicted by
In the example depicted by
In the example depicted by
In the example depicted by
In an embodiment the communication unit 110 (shown in
In one embodiment, the joystick 102 is programmable and enabled to store instructions for controlling the speed and direction of motor 112 (shown in
In one embodiment, the power source 108 is a battery. The batteries may be rechargeable such as but not limited to using an ordinary 110V or 220V charger. Sample batteries that may work with this device include but are not limited to a primary battery (non-chargeable) and secondary batteries such as Lithium-ion (Li-ion), Nickel Cadmium (Ni—Cd), Nickel-Metal Hydride (Ni-MH) and Lead-Acid.
In one embodiment, the device includes a motor with a friction surface. The motor may be an electric motor. The motor may be an Alternating Current (AC) motor. The motor may be a Direct Current (DC) motor. The DC motor may be a brushless DC motor. The motor may be a speed control motor. The motor may be a geared motor. The motor may be a brushed motor. The motor may be a hub motor. The motor may be a brushless hub motor. The motor may be a worm gear motor. In an illustrative example, the motor may be any other type of motor including, but not limited to, a geared hub motor, a brushed hub motor, a brushless geared hub motor, a brushed geared hub motor, a non-hub motor, or any other similar motor. Hub motors are very common in power wheelchairs but are typically used for separate wheels that contact the ground directly.
In the present invention, the retractable friction roller 104 is placed in contact with at least one wheel 206 of the manual wheelchair 202 to rotate the wheel 206 and move the wheelchair 202. The retractable friction roller 104 rotates the wheel 206 by friction force. This is a unique feature of the present invention. Other devices are commonly based on motor to ground movements, PAW uses a friction roller to the wheel to generate movement.
In one embodiment, the retractable friction roller 104 is shaped to have a centerless concave rim housing configured to provide high friction surface facing the wheel 206 of the wheelchair 202. The centerless concave rim housing acts as a wheel hub to yield a high percentage of surface contact. In one embodiment, the high friction surface of the retractable friction roller 104 faces the wheelchair wheel 206 and is customizable to fit the curve and or size of the wheel 206. The friction roller 104 may be configured with a rim that is not concave but may comprise a flat surface to engage a wheel.
In an embodiment, the material of high friction surface of the retractable friction roller 104 is rubber or polyurethane. However, it would be readily apparent to those skilled in the art that various types of material such as silicone, foam, sand paper, grit tape, sponge-rubber foam etc. may be envisioned without deviating from the scope of the present invention. In another embodiment, the wheels 206 of wheelchair 202 are made using a high friction surface, and the roller 104 is made of steel, aluminum or other similar hardened, textured surface. The friction roller 104 may be configured with a rim having a built-in friction surface. The friction surface may be knurled. The knurled friction surface may be machined. In an embodiment, the friction surface may be machined into the retractable friction roller 104 to provide high friction surface facing the wheel 206 of the wheelchair 202. The machined surface of the friction roller 104 may be knurled using a straight pattern. However, it would be readily apparent to those skilled in the art that various types of knurling, such as, for example, right hand knurl, left hand knurl, diamond knurl, or the like, of the friction roller 104 high friction surface may be envisioned without deviating from the scope of the present invention.
The motor 112 is configured to rotate the retractable friction roller 104. The retractable friction roller 104 is mounted on the axle 114 (shown in
In another embodiment, the device 100 further includes a second motor 302 operably connected to a second communication unit 304 and the power source 108 (shown in
The second motor 302 includes a second axle (not shown) connected to a second rotor (not shown). In this embodiment, the device 100 further includes a second friction roller 306 mounted on the second axle (not shown). The second roller 306 is placed in contact with a second wheel 308 of the manual wheelchair 202. Alternatively, the second roller 306 is mounted to the axle 114 and the motor 112 provides motor torque to rotate the second friction roller 306 and the friction roller 104 (not shown).
Similarly, to the retractable friction roller 104, the second retractable friction roller 306 includes a centerless concave rim housing configured to provide high friction surface facing the second wheel 308 of the wheelchair 202. The principle and function of the second motor 302 and second friction roller 306 is the same as the motor 112 and retractable friction roller 104 as previously described.
In another embodiment of the present invention, the device 100 further includes a second engagement unit 310 attached to the manual wheelchair 202 to detachably attach the second friction roller 306 and the second wheel 308 of the wheelchair 202. The engagement unit 106 detachably attaches the friction roller 104 and the wheel 206. The engagement unit 106 and the second engagement unit 310 is attached behind seating area 312 of wheelchair 202 and top of the wheel 206 and the second wheel 308, respectively.
The retractable friction roller (104, shown in
In
In one embodiment, the cover 509 is a protective barrier that shields the top and four sides of the protects the friction roller 104 and axle 114 from environmental exposure, debris and damage. In this regard, the fender 509 may improve the long-term use and function of the device 100 by protecting the friction roller 104 and axle 114 from environmental exposure and preventing environmental debris from impacting or entering into the inner functioning components of the device 100 motor through contact of the wheel 206 with the with the friction roller 104. The fender 509 is also a safety device. More specifically, the fender 509 improves the safety of the user by preventing clothing, hair, hands and fingers from being caught, snagged or trapped by the device especially as the wheel 206 rotates.
In
In the examples depicted by
In the illustrated examples, the lever mechanism unit 504 is attached to the motor 112 bracket to engage and disengage the friction roller 104 friction surface 1105 and the wheel 206. In the illustrated examples, the friction roller 104 includes the concave rim housing 1110 (depicted by
In the depicted examples, moving the lever 502 drives the lever mechanism unit 504, thereby raising or lowering the friction roller 104 to releasably engage the friction roller 104 and the wheel 206 via operation of the lever mechanism unit 504. In the example depicted by
In the illustrated examples, the exemplary engagement unit 106 includes a mechanical one button engage and disengage attached to the motor, to raise or lower the friction roller 104 and releasably engage the friction roller 104 and the wheel 206. The mechanical engage and disengage unit may comprise an engagement actuator 1200. Exemplary engagement actuator 1200 implementations may comprise, for example, an exemplary linear actuator 1205 (depicted by
With reference to
With reference to
Examples of the attachment unit 508 are simple mechanical devices such as but not limited to spring, screw clamp, mechanical coupling, latch, rod clamp, rail clamp, light, round center mount, mount bracket, pole clamp, pipe clamp, quick release clamp, rack clamp mount, bolt, screw, or handlebar clamp mount on the backrest frame of wheelchair 202 and provides contact between the friction roller 104 and the wheelchair wheel 206, respectively. Various exemplary attachment unit 508 implementations may include any fastener adaptable to mount the device to the wheelchair.
The total weight for the entire device 100 is approximately 20 pounds. It is expected that the speed is 0-5 MPH adjustable, maximum carrying capacity of up to 260 pounds, with a maximum incline up to 10 degrees. In one embodiment, the product is classified as a Class 1 device under FDA Code of Federal Regulations Title 21 Subpart D Section 890.3910. In another embodiment, the device 100 is exempt from needing direct FDA approval, but would require a 510(k) license. In another embodiment, the device 100 is not classified as a medical device and is exempt from needing FDA approval.
It would be readily apparent to those skilled in the art that second retractable friction roller; second engagement unit; and second motor performs exactly same functions as described in the description for retractable friction roller; engagement unit; and motor respectively.
In other embodiments one of ordinary skill in the art will be able and may make changes to the size and materials of the friction roller; the size and type of motor or battery used; and/or the type of controller or joystick; and the size and type of attachment devices used to fix the device to the manual wheelchair such as but not limited to a screw clamp. In one embodiment a casing for each of the two units may be added for safety, convenient travel and appearance. In another embodiment, the device may be used as a power assist to any object that is traditionally transported on wheels via manual propulsion, such as baggage carts.
Some wheelchair power assist device designs may be adapted with a sensor, and configured to automatically stop the wheelchair in an emergency situation detected based on information captured by the sensor. For example, an exemplary wheelchair may be configured to determine the speed of the wheelchair relative to the ground based on sensor data, compare the detected speed to a predetermined maximum safe speed, and automatically mitigate the unsafe speed based on stopping a motor, reducing the speed of a motor, or reversing a motor. The speed sensor may be, for example, a shaft encoder configured in a wheel. The speed sensor may be a Time of Flight (ToF) sensor pointed forward from the wheelchair passenger, in line with the direction the passenger would typically face.
Various wheelchair power assist device implementations may include an emergency kill switch configured to permit a user to manually stop the wheelchair in an emergency situation detected by the user. For example, the joystick may be configured with a button adapted to stop the motor to prevent serious injury or damage in an emergency situation. The switch may be configured as a dead-man switch, which would have to be actively engaged by a user seated in the chair for the wheelchair power assist to move the wheelchair. In some cases, the dead-man switch may be implemented with a key lock configured to prevent the motor from activating unless the key is present and turned to the activate position. The dead-man switch may be a weight sensor configured in the wheelchair seat, to prevent motor activation unless body weight of at least a predetermined threshold weight is detected in the wheelchair seat. The threshold weight may be configurable to a specific numeric weight, or to a weight selectable from a range of weights. The dead-man switch may be configured to stop the motor if the wheelchair passenger leaves the wheelchair seat.
Some wheelchair power assist device designs may include one or more handle configured to permit a user to grasp the one or more handle while carrying the device. The one or more handle may me rotatably secured with swivels to reduce the user's effort balancing the load while carrying the device. The one or more handle may be configured with a latch mechanism to secure the handle in the wheelchair power assist device when the handle is not in use.
In some wheelchair power assist device implementations, lights may be configured on the front or back of the device. The lights may be warning lights, configured to be visible to others not riding in the wheelchair. The lights may be headlights such as spotlights or floodlights, configured to improve the effective vision of the person riding in the wheelchair. Warning lights may be various colors and may be configured to blink or flash in various patterns to warn others or make the wheelchair more visible to others. Headlights or spotlights may be configured with a swivel mount permitting the wheelchair passenger to manually direct light in a direction of interest. In an illustrative example, the light swivel mount direction may be adjustable in pan and tilt modes under control of motors governed by the joystick.
Various wheelchair power assist device power source designs may include an interchangeable battery replacement system configured to adapt batteries of various diverse form factors and electrical connection geometries to a common form factor designed to electrically connect to and power the wheelchair.
In an illustrative example, some wheelchair power assist device designs may be adapted with an electronic engage and disengage (described with reference to at least
Potential limitations include the following: the device may not work if the maximum weight limit is exceeded; the maximum incline is exceeded; the friction roller is not engaged properly to the powertrain; operation on wet surfaces due to slippage, operation on ice, sand, or oily surfaces, if the battery, motor, or grip components are damaged, if the wheels are locked or do not freely rotate, or if operated in excessive heat.
In an aspect, a method to convert a manual wheelchair (202) to an electronic wheelchair is disclosed, the method comprising: operably connecting a joystick (102) to a communication unit (110); operably connecting the communication unit (110) to a motor (112); connecting an axle (114) to a rotor (116); connecting the motor (112) to the axle (114); mounting a retractable friction roller (104) on the axle (114); configuring the retractable friction roller (104) with a centerless concave rim housing (1110) designed to provide a high friction surface (1105) when the friction roller (104) is placed facing and in contact with a wheel (206); placing the retractable friction roller (104) in contact with a wheel (206) of a manual wheelchair (202); attaching to the wheelchair (202) an engagement unit (106) configured to detachably attach the retractable friction roller (104) and the wheel (206); and operably connecting a power source (108) to the motor (112) and the joystick (102).
The method may further comprise attaching the friction roller (104) to the motor (112) and attaching the motor (112) to a bracket (704) operably coupled via a lever mechanism (504) with a lever (502) to releasably engage the friction roller (104) and a wheel (206) in response to operation of the lever (502).
The method may further comprise configuring a safety fender (509) to detachably attach to the wheelchair (202), wherein the safety fender (509) fits over the retractable friction roller (104) when the safety fender (509) is attached to the wheelchair (202).
The method may further comprise attaching at least one set of brushes (510) to the safety fender (509), wherein the at least one set of brushes (510), when attached to the safety fender (509), are in contact with the wheel (206), and wherein the safety fender (509) comprises a top, an open bottom, a right side, a left side, a proximal side and a distal side, wherein each of the sides has a bottom edge and the at least one set of brushes (510) is attached to the bottom edge of the distal side of the safety fender (509).
The method may further comprise configuring the engagement unit (106) with a lever (502); operably connecting the lever (502) to a lever mechanism unit (504); and operably connecting the lever mechanism unit (504) to the motor (112) bracket.
The method may further comprise configuring the engagement unit (106) with a lever (502); operably connecting the lever (502) to a lever mechanism unit (504); operably connecting the lever mechanism unit (504) to a turnbuckle (506); and operably connecting the turnbuckle (506) to an attachment unit (508).
The method may further comprise configuring the attachment unit (508) with a spring loaded unit (404); operably connecting the spring loaded unit (404) to the retractable friction roller (104); and operably connecting a clamp (402) to the spring loaded unit (404).
The method may further comprise operably connecting a second motor (302) to a second communication unit (304) and the power source (108), and operably connecting the second communication unit (304) to the joystick (102).
The method may further comprise configuring the joystick (102) to be operably programmable to generate commands for operating the motor (112) and the second motor (302).
The method may further comprise connecting the second motor (302) to a second axle (114), and connecting the second axle (114) to a second rotor (116).
The method may further comprise mounting a second retractable friction roller (306) on the second axle (114), and placing the second roller (306) in contact with a second wheel (308) of the manual wheelchair (202).
The method may further comprise configuring the second retractable friction roller (306) with a centerless concave rim housing (1110) designed to provide a high friction surface (1105) facing the second wheel (308) of the manual wheelchair (202).
The method may further comprise attaching the second friction roller (306) to the top of the second wheel (308) behind the seating area (312).
The method may further comprise attaching the second friction roller (306) to the front of the second wheel (308) under the seating area (312).
The method may further comprise attaching the second friction roller (306) to the second wheel (308) using the arm (204) of the wheelchair (202).
The method may further comprise attaching a second engagement unit (310) to the manual wheelchair (202), wherein the second engagement unit (310) is configured to detachably attach the second friction roller (306) and the second wheel (308) of the wheelchair (202).
The method may further comprise configuring the second engagement unit (310) with a second lever (502); operably connecting the second lever (502) to a second lever mechanism unit (504); and operably connecting the second lever mechanism unit (504) to the second motor (302) bracket.
The method may further comprise configuring the second engagement unit (310) with a second lever (502); operably connecting the second lever (502) to a second lever mechanism unit (504); operably connecting the second lever mechanism unit (504) to a second turnbuckle (506); and operably connecting the second turnbuckle (506) to a second attachment unit (508).
The method may further comprise configuring the second attachment unit (508) with a second spring loaded unit (404); operably connecting the second spring loaded unit (404) to the second retractable friction roller (306); and operably connecting a second clamp (402) to the second spring loaded unit (404).
The method may further comprise attaching the friction roller (104) to a motor (112) and attaching the motor (112) to a bracket (704) operably coupled via a turnbuckle (506) with a lever (502) to releasably engage the friction roller (104) and a wheel (206) in response to operation of the lever (502).
The method may further comprise attaching the friction roller (104) to the top of the wheel (206) behind the wheelchair (202) seating area (312).
The method may further comprise attaching the friction roller (104) to the front of the wheel (206) under the wheelchair (202) seating area (312).
The method may further comprise attaching the friction roller (104) to the wheel (206) using the arm (204) of the wheelchair (202).
The method may further comprise attaching the friction roller (104) to an upper lateral wheelchair frame support (208).
The method may further comprise attaching the friction roller (104) to a lower lateral wheelchair frame support (210).
The method may further comprise attaching the friction roller (104) to a vertical wheelchair frame support (212).
In an aspect, a method to move a wheelchair (202) is disclosed, the method comprising: configuring a friction roller (104) to releasably engage with a wheel (206) of a wheelchair (202), based on attaching the friction roller (104) to the wheelchair (202); configuring the friction roller (104) to drive when engaged the wheel (206) through a contact surface (1115) with the wheel (206) above the wheel (206) center and behind the wheelchair (202) seating area (312); configuring a motor (112) to rotate the friction roller (104); and moving the wheelchair (202) based on engaging the friction roller (104) and activating the motor (112) to turn the wheel (206) through force by the friction roller (104) against the contact surface with the wheel (206).
The method may further comprise configuring a second motor (302) to rotate a second friction roller (306) configured to drive a second wheel (308) through a contact surface (1115) with the second wheel (308) above the second wheel (308) center and behind the wheelchair (202) seating area (312), based on attaching the second friction roller (306) to the wheelchair (202).
The method may further comprise folding the wheelchair (202) while the friction roller (104) remains attached to the wheelchair (202) and the second friction roller (306) remains attached to the wheelchair (202).
The method may further comprise disengaging, by a user remaining seated in the wheelchair (202) seating area (312), the friction roller (104).
In another aspect, a method to move a wheelchair (202) is disclosed, the method comprising: configuring a friction roller (104) to releasably engage with a wheel (206) of a wheelchair (202), based on attaching the friction roller (104) to the wheelchair (202); configuring the friction roller (104) to drive when engaged the wheel (206) through a contact surface (1115) with the wheel (206) in front of the wheel (206) under the wheelchair (202) seating area (312); configuring a motor (112) to rotate the friction roller (104); and moving the wheelchair (202) based on engaging the friction roller (104) and activating the motor (112) to turn the wheel (206) through force by the friction roller (104) against the contact surface (1115) with the wheel (206).
The method may further comprise configuring a second motor (302) to rotate a second friction roller (306) configured to drive a second wheel (308) through a contact surface (1115) with the second wheel (308) in front of the second wheel (308) under the wheelchair (202) seating area (312), based on attaching the second friction roller (306) to the wheelchair (202).
In another aspect, a method to move a wheelchair (202) is disclosed, the method comprising: configuring a friction roller (104) to releasably engage with a wheel (206) of a wheelchair (202), based on attaching the friction roller (104) to the wheelchair (202); configuring the friction roller (104) to drive when engaged the wheel (206) through a contact surface (1115) with the wheel (206) in front of the seating area (312) using the arm (204) of the wheelchair (202); configuring a motor (112) to rotate the friction roller (104); and moving the wheelchair (202) based on engaging the friction roller (104) and activating the motor (112) to turn the wheel (206) through force by the friction roller (104) against the contact surface (1115) with the wheel (206).
The method may further comprise configuring a second motor (302) to rotate a second friction roller (306) configured to drive a second wheel (308) through a contact surface (1115) with the second wheel (308) in front of the seating area (312) using the arm (204) of the wheelchair (202), based on attaching the second friction roller (306) to the wheelchair (202).
In another aspect, a method is disclosed to convert a manual wheelchair (202) to an electronic wheelchair, the method comprising: operably connecting a joystick (102) to a communication unit (110); operably connecting the communication unit (110) to a motor (112); connecting an axle (114) to a rotor (116); connecting the motor (112) to the axle (114); configuring a retractable friction roller (104) with a centerless concave rim housing (1110) designed to provide a high friction surface (1105) when the friction roller (104) is placed facing and in contact with a wheel (206); mounting the retractable friction roller (104) on the axle (114); attaching to the wheelchair (202) in front of the wheel (206) and below the seating area (312) an engagement unit (106) configured to detachably attach the retractable friction roller (104) and the wheel (206); and operably connecting a power source (108) to the motor (112) and the joystick (102).
The method may further comprise configuring the engagement unit (106) with a lever (502); operably connecting the lever (502) to a lever mechanism unit (504); and operably connecting the lever mechanism unit (504) to a motor (112) bracket (704).
The method may further comprise operably connecting a second motor (302) to a second communication unit (304) and the power source (108), and operably connecting the second communication unit (304) to the joystick (102).
The method may further comprise configuring the joystick (102) to be operably programmable to generate commands for operating the motor (112) and the second motor (302).
The method may further comprise connecting the second motor (302) to a second axle (114), and connecting the second axle (114) to a second rotor (116).
The method may further comprise mounting a second retractable friction roller (306) on the second axle (114), and placing the second retractable friction roller (306) in contact with a second wheel (308) of the manual wheelchair (202).
The method may further comprise configuring the second retractable friction roller (306) with a centerless concave rim housing (1110) designed to provide a high friction surface (1105) facing the second wheel (308) of the manual wheelchair (202).
The method may further comprise attaching the second retractable friction roller (306) in front of the second wheel (308) and below the seating area (312).
The method may further comprise attaching a second engagement unit (310) to the manual wheelchair (202), wherein the second engagement unit (310) is configured to detachably attach the second retractable friction roller (306) and the second wheel (308) of the manual wheelchair (202).
The method may further comprise configuring the second engagement unit (310) with a second lever (502); operably connecting the second lever (502) to a second lever mechanism unit (504); and operably connecting the second lever mechanism unit (504) to a second motor (302) bracket (704).
The method may further comprise attaching the retractable friction roller (104) to the motor (112) and attaching the motor (112) to a bracket (704) operably coupled via a lever mechanism (504) with a lever (502) to releasably engage the friction roller (104) and a wheel (206) in response to operation of the lever (502).
The method may further comprise attaching the retractable friction roller (104) to the top of the wheel (206) behind the wheelchair (202) seating area (312).
The method may further comprise placing the retractable friction roller (104) in contact with a wheel (206) of the manual wheelchair (202).
In another aspect is disclosed a method to move a wheelchair (202) comprising:
The method may further comprise configuring a second motor (302) to rotate a second retractable friction roller (306) configured to drive a second wheel (308) through a contact surface (1115) with the second wheel (308) above the second wheel (308) center and to the side of the wheelchair (202) seating area (312), based on attaching the second retractable friction roller (306) to the wheelchair (202).
Attaching the second retractable friction roller (306) to the wheelchair (202) may further comprise attaching the second retractable friction roller (306) to the front of the second wheel (308) under the wheelchair (202) seating area (312).
Attaching the second retractable friction roller (306) to the wheelchair (202) may further comprise attaching the second retractable friction roller (306) to the second wheel (308) using an arm (204) of the wheelchair (202).
The method may further comprise folding the wheelchair (202) while the retractable friction roller (104) remains attached to the wheelchair (202) and the second retractable friction roller (306) remains attached to the wheelchair (202).
Attaching the retractable friction roller (104) to the wheelchair (202) may further comprise attaching the retractable friction roller (104) to the front of the wheel (206) under the wheelchair (202) seating area (312).
Attaching the retractable friction roller (104) to the wheelchair (202) may further comprise attaching the retractable friction roller (104) to the wheel (206) using an arm (204) of the wheelchair (202).
Apparatus and associated methods relate to a removable power assist for converting a manual wheelchair into an electronic wheelchair, based on configuring a friction roller to releasably engage with a wheelchair wheel, configuring the friction roller when engaged to drive the wheel through a contact surface with the wheel that may be positioned under the wheelchair seating area, or to the side of the wheelchair seating area, or to the underside of an armrest, or in front of a wheelchair wheel, configuring a motor to rotate the friction roller, and moving the wheelchair based on engaging the friction roller and activating the motor to turn the wheel through force by the friction roller against the contact surface with the wheel. Some designs include a lever configured to permit a user seated in the wheelchair to engage or disengage the friction roller. Configuring the friction roller under the wheelchair seating area, or to the side of the wheelchair seating area, or behind the wheelchair seating area, or to the underside of an armrest, or in front of a wheelchair wheel may permit wheelchair folding or unfolding without uninstalling the power assist.
In an aspect, an exemplary apparatus kit may comprise: a first retractable friction roller configured to releasably engage with a wheelchair first wheel, wherein the first retractable friction roller includes a high friction surface configured on the first retractable friction roller to drive the wheelchair first wheel when the first retractable friction roller is engaged with the wheelchair first wheel through a contact surface with the wheelchair first wheel that is disposed behind a wheelchair seating area; a first engagement unit configured to be attached to a manual wheelchair, wherein the first engagement unit is configured to detachably attach the first retractable friction roller and the wheelchair first wheel; and a first motor configured to rotate the first retractable friction roller and move the manual wheelchair with force by the first retractable friction roller through the contact surface with the wheelchair first wheel.
The apparatus kit may further comprise a second retractable friction roller configured to releasably engage with a wheelchair second wheel, wherein the second retractable friction roller includes a high friction surface configured on the second retractable friction roller to drive the wheelchair second wheel when the second retractable friction roller is engaged with the wheelchair second wheel through a contact surface with the wheelchair second wheel that is disposed behind the wheelchair seating area; a second engagement unit configured to be attached to the manual wheelchair, wherein the second engagement unit is configured to detachably attach the second retractable friction roller and the wheelchair second wheel; and a second motor configured to rotate the second retractable friction roller and move the manual wheelchair with force by the second retractable friction roller through the contact surface with the wheelchair second wheel.
The apparatus kit may further comprise the contact surface with the wheelchair first wheel configured to be disposed above the wheelchair first wheel center.
The apparatus kit may further comprise the contact surface with the wheelchair second wheel configured to be disposed above the wheelchair second wheel center.
The apparatus kit may further comprise each of the first retractable friction roller and the second retractable friction roller configured with a centerless concave rim housing.
The apparatus kit may further comprise a joystick configured to be operably connected to at least one communication unit, wherein the at least one communication unit is configured to be operably connected to the first motor and the second motor, and wherein the joystick is configured to be operably programmable to generate commands for operating the first motor and the second motor; and a power source configured to be operably connected to the first motor, the second motor, and the joystick.
The apparatus kit may further comprise the contact surface with the wheelchair first wheel disposed above the wheelchair first wheel center, and wherein the contact surface with the wheelchair second wheel is disposed above the wheelchair second wheel center.
In another aspect, an exemplary apparatus kit may comprise: a joystick configured to operably connect to a communication unit, the communication unit configured to operably connect to a first motor; said first motor comprising a first axle configured to connect to a first rotor; a first retractable friction roller comprising a centerless concave rim housing configured to provide a high friction surface facing a wheelchair first wheel of a manual wheelchair; wherein said first retractable friction roller is configured to mount on the first axle and to contact the wheelchair first wheel of the manual wheelchair; a first engagement unit configured to attach to the manual wheelchair and to detachably attach the first retractable friction roller and the wheelchair first wheel; and a power source configured to operably connect to the first motor and the joystick.
The apparatus kit may further comprise a second motor configured to operably connect to the communication unit and the power source.
The apparatus kit may further comprise a second axle configured to connect to a second rotor.
The apparatus kit may further comprise a second retractable friction roller configured to mount on the second axle, and to contact a wheelchair second wheel of the manual wheelchair.
The apparatus kit may further comprise a second engagement unit configured to attach to the manual wheelchair to detachably attach the second friction roller and the wheelchair second wheel of the manual wheelchair.
The apparatus kit may further comprise a second centerless concave rim housing configured to provide a high friction surface facing the wheelchair second wheel of the manual wheelchair.
The joystick may be operably configured to generate commands for the first motor.
The joystick may be operably configured to generate commands for the second motor.
The first retractable friction roller may be configured to contact the wheelchair first wheel behind a seating area of the manual wheelchair.
The second retractable friction roller may be configured to contact the wheelchair second wheel behind a seating area of the manual wheelchair.
The apparatus kit may further comprise a first lever configured to operably connect to a first lever mechanism unit; said first lever mechanism unit configured to operably connect to a first turnbuckle; and said first turnbuckle is configured to operably connect to a first attachment unit.
The apparatus kit may further comprise a second lever configured to operably connect to a second lever mechanism unit; said second lever mechanism unit configured to operably connect to a second turnbuckle; and said second turnbuckle configured to operably connect to a second attachment unit.
The apparatus kit may further comprise a first spring-loaded unit configured to operably connect to the first retractable friction roller; and a first clamp configured to operably connect to the first spring-loaded unit.
The second attachment unit may further comprise: a second spring-loaded unit configured to operably connect to the second retractable friction roller; and a second clamp configured to operably connect to the second spring-loaded unit.
The apparatus kit may be configured with a plurality of friction rollers disposed to contact a single wheel. In such a design, the plurality of friction rollers may have respective contact surfaces configured to contact the single wheel at different respective contact surfaces with the single wheel. In an illustrative example, an implementation may comprise first, second, third or more apparatus kits providing multiple points of contact on a single wheel wherein each apparatus kit is configured with a respective friction roller disposed to contact the wheel at different respective contact points between the friction rollers and the wheel.
In another aspect, an exemplary apparatus may comprise: a first friction roller (104) operably coupled with a first engagement member (704), wherein the first friction roller (104) comprises a centerless concave rim housing (1110) comprising a friction surface (1105); a first motor (112) operably coupled with the first friction roller (104); and a first engagement actuator (1200) connected to a first attachment member (508), wherein the first engagement actuator (1200) comprises a movable shaft (1330) configured to move the first engagement member (704) relative to the first attachment member (508) between a disengaged position wherein the first friction roller (104) is not in contact with a wheelchair (202) first wheel (206) and an engaged position wherein the first friction roller (104) is in contact with the wheelchair (202) first wheel (206) at a point of contact (1115) between the first friction roller (104) friction surface (1105) and the wheelchair (202) first wheel (206), and wherein the point of contact (1115) is disposed behind a seating area (312) of the wheelchair (202).
The apparatus may further comprise the first attachment member (508) is removably secured to the wheelchair (202) to position the first friction roller (104) centerless concave rim housing (1110) friction surface (1105) to drive the wheelchair (202) first wheel (206) by force from the first motor (112) through the point of contact (1115) between the first friction roller (104) friction surface (1105) and the wheelchair (202) first wheel (206) when the first engagement member (704) is in the engaged position.
The apparatus may further comprise: a second friction roller (306) operably coupled with a second engagement member (704), wherein the second friction roller (306) comprises a centerless concave rim housing (1110) comprising a friction surface (1105); a second motor (302) operably coupled with the second friction roller (306); and a second engagement actuator (1200) connected to a second attachment member (508), wherein the second engagement actuator (1200) comprises a movable shaft (1330) configured to move the second engagement member (704) relative to the second attachment member (508) between a disengaged position wherein the second friction roller (306) is not in contact with the wheelchair (202) second wheel (308) and an engaged position wherein the second friction roller (306) is in contact with the wheelchair (202) second wheel (308) at a point of contact (1115) between the second friction roller (306) friction surface (1105) and the wheelchair (202) second wheel (308) and wherein the point of contact (1115) is disposed behind the seating area (312) of the wheelchair (202).
The apparatus may further comprise the second attachment member (508) is removably secured to the wheelchair (202) to position the second friction roller (306) centerless concave rim housing (1110) friction surface (1105) to drive the wheelchair (202) second wheel (308) by force from the second motor (302) through the point of contact (1115) between the second friction roller (306) friction surface (1105) and the wheelchair (202) second wheel (308) when the second engagement member (704) is in the engaged position.
The apparatus may further comprise the movable shaft (1330) connected to the first engagement member (704), wherein the movable shaft (1330) is extendable and retractable and configured to move the first engagement member (704) relative to the first attachment member (508) based on extending or retracting the movable shaft (1330).
The apparatus may further comprise the first motor (112) operably coupled by a first axle (114) with the first friction roller (104).
The apparatus may further comprise the first motor (112) operably coupled by a first rotor (116) with the first axle (114).
The first attachment member (508) may be a bracket having a first end (1335), a second end (1340), and a length between the first end (1335) and the second end (1340), and wherein the first attachment bracket (508) is removably secured to the wheelchair (202).
The first engagement member (704) may be a bracket having a first end (1345), a second end (1350), and a length between the first end (1345) and the second end (1350), and wherein the first engagement bracket (704) is operably coupled with the first attachment bracket (508).
The first attachment bracket (508) may be disposed substantially horizontally and parallel with respect to a surface on which the wheelchair (202) would rest.
The first attachment bracket (508) may be disposed substantially vertically and perpendicular with respect to a surface on which the wheelchair (202) would rest.
The first attachment bracket (508) first end (1335) may be removably secured by a clamp (1305) to the wheelchair (202).
The first attachment bracket (508) second end (1340) may be removably secured by a collar (1315) to the wheelchair (202).
The collar (1315) may be coupled by an adapter plate (1320) with the first engagement actuator (1200) and the movable shaft (1330) may be coupled with the first engagement bracket (704), wherein the adapter plate (1320) may have a planar surface disposed in a plane substantially parallel to the first attachment bracket (508) length.
The collar (1315) may comprise at least one half-collar (1315).
The collar (1315) may have a central opening having a central axis disposed substantially parallel with the first attachment bracket (508) length.
The collar (1315) may have a central opening with a central axis disposed substantially perpendicular with the first attachment bracket (508) length.
The collar (1315) may be connected to a structural member of the wheelchair (202) that is substantially horizontal and parallel with respect to a surface on which the wheelchair (202) would rest.
The collar (1315) may be connected to a structural member of the wheelchair (202) that is substantially vertical and perpendicular with respect to a surface on which the wheelchair (202) would rest.
The first engagement bracket (704) length may be approximately the first attachment bracket (508) length.
The first engagement bracket (704) length may be not more than half the first attachment bracket (508) length.
The first engagement bracket (704) length may be any length relative to the first attachment bracket (508) length.
The first engagement bracket (704) first end (1345) may be rotatably coupled with the first attachment bracket (508) to displace the first engagement bracket (704) second end (1350) away from the first attachment bracket (508) as the first engagement bracket (704) moves to the engaged position.
The first engagement bracket (704) first end (1345) may be rotatably coupled with the first attachment bracket (508) to rotate about the first attachment bracket (508) first end (1335).
The first engagement bracket (704) first end (1345) may be rotatably coupled with the first attachment bracket (508) at a point between the first attachment bracket (508) first end (1335) and the first attachment bracket (508) second end (1340) to rotate about said point.
The first engagement bracket (704) may be configured with a slot adapted to subsume a portion of the first attachment bracket (508) wherein the first engagement bracket (704) slides along the first attachment bracket (508) length as the first engagement bracket (704) moves relative to the first attachment bracket (508).
The first engagement actuator (1200) and the second engagement actuator (1200) may be linear actuators.
The apparatus may further comprise a second movable shaft (1330) connected to the second engagement member (704), wherein the second movable shaft (1330) is extendable and retractable and configured to move the second engagement member (704) relative to the second attachment member (508) based on extending or retracting the second movable shaft (1330).
The apparatus may further comprise the second motor (302) operably coupled by a second axle (114) with the second friction roller (306).
The apparatus may further comprise the second motor (302) operably coupled by a second rotor (116) with the second axle (114).
The second attachment member (508) may be a bracket having a first end (1335), a second end (1340), and a length between the first end (1335) and the second end (1340), and wherein the second attachment bracket (508) is removably secured to the wheelchair (202).
The second engagement member (704) may be a bracket having a first end (1345), a second end (1350), and a length between the first end (1345) and the second end (1350), and wherein the second engagement bracket (704) is operably coupled with the second attachment bracket (508).
The second attachment bracket (508) may be disposed substantially horizontally and parallel with respect to a surface on which the wheelchair (202) would rest.
The second attachment bracket (508) may be disposed substantially vertically and perpendicular with respect to a surface on which the wheelchair (202) would rest.
The second attachment bracket (508) first end (1335) may be removably secured by a clamp (1305) to the wheelchair (202).
The clamp (1305) may be a spring, screw clamp, mechanical coupling, latch, rod clamp, rail clamp, light, round center mount, mount bracket, pole clamp, pipe clamp, quick release clamp, rack clamp mount, bolt, screw, handlebar clamp mount, or other suitable fastener as may be known to one of skill in the art.
The second attachment bracket (508) second end (1340) may be removably secured by a collar (1315) to the wheelchair (202).
The collar (1315) may be coupled by a second adapter plate (1320) with the second engagement actuator (1200) and the second movable shaft (1330) may be coupled with the second engagement bracket (704), wherein the second adapter plate (1320) has a planar surface disposed in a plane substantially parallel to the second attachment bracket (508) length.
The collar (1315) may comprise at least one half-collar (1315).
The collar (1315) may further comprise a central opening having a central axis disposed substantially parallel with the second attachment bracket (508) length.
The collar (1315) may further comprise a central opening with a central axis disposed substantially perpendicular with the second attachment bracket (508) length.
The collar (1315) may be connected to a structural member of the wheelchair (202) that is substantially horizontal and parallel with respect to a surface on which the wheelchair (202) would rest.
The collar (1315) may be connected to a structural member of the wheelchair (202) that is substantially vertical and perpendicular with respect to a surface on which the wheelchair (202) would rest.
The second engagement bracket (704) length may be approximately the second attachment bracket (508) length.
The second engagement bracket (704) length may be not more than half the second attachment bracket (508) length.
The second engagement bracket (704) length may be any length relative to the second attachment bracket (508) length.
The second engagement bracket (704) first end (1345) may be rotatably coupled with the second attachment bracket (508) to displace the second engagement bracket (704) second end (1350) away from the second attachment bracket (508) as the second engagement bracket (704) moves to the engaged position.
The second engagement bracket (704) second end (1345) may be rotatably coupled with the second attachment bracket (508) to rotate about the second attachment bracket (508) first end (1335).
The second engagement bracket (704) second end (1345) may be rotatably coupled with the second attachment bracket (508) at a point between the second attachment bracket (508) first end (1335) and the second attachment bracket (508) second end (1340) to rotate about said point.
The second engagement bracket (704) may be configured with a slot adapted to subsume a portion of the second attachment bracket (508) wherein the second engagement bracket (704) slides along the second attachment bracket (508) length as the second engagement bracket (704) moves relative to the second attachment bracket (508).
The apparatus may further comprise a programmable joystick (102) configured to govern the operation of the first motor (112) and the second motor (302).
The apparatus may further comprise an engage button configured to activate the first engagement actuator (1200) and the second engagement actuator (1200) and thereby move the first engagement member (704) and the second engagement member (704).
The engage button may be configured on the wheelchair (202) in a location accessible to a user seated in the wheelchair 202 seating area (312).
The engage button may be configured in an arm (204) of the wheelchair (202).
The engage button may be configured with a wireless connection to an engagement actuator electrical connection (2210) designed to control one or more engagement actuator (1200).
The apparatus may further comprise an electrical power source configured to operably power the first engagement actuator (1200), the second engagement actuator (1200), the first motor (112), the second motor (302), and the engage button.
The apparatus may further comprise an electrical power source configured to operably power the first engagement actuator (1200), the second engagement actuator (1200), the first motor (112), the second motor (302), the engage button, and a programmable joystick (102).
The apparatus may further comprise an electrical power source configured to operably power the first engagement actuator (1200), the second engagement actuator (1200), the first motor (112), the second motor (302), the engage button, a programmable joystick (102), a communication unit 110, and a second communication unit 304.
The electrical power source may be a battery.
The battery may be rechargeable.
The rotational movement of the apparatus may charge the battery.
The rechargeable battery may be recharged using electric energy harvested by a generator powered by rotation of one or more wheelchair wheel.
The rechargeable battery may be recharged using electric energy from a generator powered by one or more wheelchair wheel rotating while the one or more wheelchair wheel is in contact with a surface supporting the wheelchair.
The rechargeable battery may be recharged using electric energy harvested from solar energy.
The solar energy may be supplied by one or more solar cell configured in the wheelchair.
The solar energy may be supplied by one or more solar panel not attached to the wheelchair.
The one or more solar panel may be a portable solar charging station.
The one or more solar panel may comprise a solar panel external to the wheelchair, said wheelchair configured to operably connect to the solar panel to charge the battery.
The solar panel may be operably connected to the wheelchair.
The wheelchair (202) may be a foldable wheelchair, and the apparatus may further comprise an open space (1005) located behind the seating area (312) of the foldable wheelchair (202), and wherein the first motor (112), the first attachment member (508), the first engagement member (704), the second motor (302), the second attachment member (508) and the second engagement member (704) remain attached to the foldable wheelchair (202) when the foldable wheelchair (202) is in a folded or unfolded configuration.
In the foregoing description, it will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed herein. Such modifications are to be considered as included in the following claims, unless the claims by their language expressly state otherwise.
Various changes may be made to the disclosed configuration, operation, and form without departing from the spirit and scope thereof. In particular, it is noted that the respective implementation features, even those disclosed solely in combination with other implementation features, may be combined in any configuration excepting those readily apparent to the person skilled in the art as nonsensical. Likewise, use of the singular and plural is solely for the sake of illustration and is not to be interpreted as limiting.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like; the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; the terms “a” or “an” should be read as meaning “at least one,” “one or more” or the like; and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future.
Likewise, where this document refers to technologies that would be apparent or known to one of ordinary skill in the art, such technologies encompass those apparent or known to the skilled artisan now or at any time in the future. Furthermore, the use of plurals can also refer to the singular, including without limitation when a term refers to one or more of a particular item; likewise, the use of a singular term can also include the plural, unless the context dictates otherwise.
The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent. Additionally, the various embodiments set forth herein are described in terms of exemplary block diagrams, flow charts and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives can be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration.
Although the disclosure is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the other embodiments of the disclosure, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments.
It is to be understood that the disclosure of particular features of various implementations in this specification is to be interpreted to include all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or implementation, or a particular claim, that feature can also be used—to the extent possible—in combination with and/or in the context of other particular aspects and implementations, and in an implementation generally.
In the present disclosure, various features may be described as being optional, for example, through the use of the verb “may;” or, through the use of any of the phrases: “in some implementations,” “in some designs,” “in various implementations,” “in various designs,” “in an illustrative example,” or, “for example.” For the sake of brevity and legibility, the present disclosure does not explicitly recite each and every permutation that may be obtained by choosing from the set of optional features. However, the present disclosure is to be interpreted as explicitly disclosing all such permutations. For example, a system described as having three optional features may be implemented in seven different ways, namely with just one of the three possible features, with any two of the three possible features or with all three of the three possible features.
In the present disclosure, any method or apparatus implementation may be devoid of one or more process steps or components. In the present disclosure, implementations employing negative limitations are expressly disclosed and considered a part of this disclosure.
Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).
Reference throughout this specification to “an implementation” or “the implementation” means that a particular feature, structure, or characteristic described in connection with that implementation is included in at least one implementation. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same implementation.
Similarly, it should be appreciated that in the above description, various features are sometimes grouped together in a single implementation, Figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim in this or any application claiming priority to this application require more features than those expressly recited in that claim. Rather, as the following claims may reflect, inventive aspects may lie in a combination of fewer than all features of any single foregoing disclosed implementation. Thus, the claims following this Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate implementation. This disclosure is intended to be interpreted as including all permutations of the independent claims with their dependent claims.
Elements described herein as coupled or connected may have an effectual relationship realizable by a direct connection or indirectly with one or more other intervening elements.
The phrases “connected to,” “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be functionally coupled to each other even though they are not in direct contact with each other. The terms “abutting” or “in mechanical union” refer to items that are in direct physical contact with each other, although the items may not necessarily be attached together.
Recitation in a claim of the term “first” with respect to a feature or element does not necessarily imply the existence of a second or additional such feature or element.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. For example, the steps of the disclosed techniques may be performed in a different sequence, components of the disclosed systems may be combined in a different manner, or the components may be supplemented with other components. Accordingly, other implementations are contemplated, within the scope of the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/478,873 filed Sep. 17, 2021, which is a continuation of U.S. patent application Ser. No. 17/221,196 filed Apr. 2, 2021, issued as U.S. Pat. No. 11,154,443 on Oct. 26, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 17/169,399 filed Feb. 5, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 16/689,931 filed Nov. 20, 2019, issued as U.S. Pat. No. 10,945,899 on Mar. 16, 2021, which is a continuation-in-part of U.S. patent application Ser. No. 16/395,391 filed Apr. 26, 2019, issued as U.S. Pat. No. 10,517,780 on Dec. 31, 2019, which claims priority to U.S. Provisional Application No. 62/663,289 filed on Apr. 27, 2018, the entire contents of which are incorporated herein by references in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1273684 | Small | Jul 1918 | A |
2798565 | Rosenthal et al. | Jul 1957 | A |
3100547 | Rosenthal | Aug 1963 | A |
3100860 | Rosenthal | Aug 1963 | A |
3786887 | Rosenthal | Jan 1974 | A |
3814199 | Jones | Jun 1974 | A |
3893529 | Karchak, Jr | Jul 1975 | A |
4050533 | Seamone | Sep 1977 | A |
4140192 | Sharpe | Feb 1979 | A |
4141094 | Ferguson et al. | Feb 1979 | A |
4296361 | Archer | Oct 1981 | A |
4418776 | Weirick | Dec 1983 | A |
4422515 | Loveless | Dec 1983 | A |
4641720 | Young | Feb 1987 | A |
4652026 | Byrge | Mar 1987 | A |
4805711 | Lautzenhiser | Feb 1989 | A |
4961473 | Jones | Oct 1990 | A |
5078227 | Becker | Jan 1992 | A |
5125468 | Coker | Jun 1992 | A |
5156226 | Boyer et al. | Oct 1992 | A |
5222567 | Broadhead | Jun 1993 | A |
5542690 | Kozicki | Aug 1996 | A |
5555949 | Stallard et al. | Sep 1996 | A |
5562174 | Chen | Oct 1996 | A |
5735363 | Horovitz | Apr 1998 | A |
5762154 | Hsu | Jun 1998 | A |
5938282 | Epple | Aug 1999 | A |
6050356 | Takeda et al. | Apr 2000 | A |
6145612 | Dickie | Nov 2000 | A |
6273212 | Husted | Aug 2001 | B1 |
6371228 | Husted | Apr 2002 | B1 |
6547018 | Choi | Apr 2003 | B1 |
7484746 | Mills | Feb 2009 | B2 |
7581604 | Torita | Sep 2009 | B2 |
9050226 | Husted et al. | Jun 2015 | B2 |
10124666 | Cunningham | Nov 2018 | B2 |
10335331 | Hancock | Jul 2019 | B2 |
10517780 | Peskin et al. | Dec 2019 | B2 |
10919602 | Chi-Hsueh | Feb 2021 | B2 |
10945899 | Peskin et al. | Mar 2021 | B2 |
11154443 | Peskin et al. | Oct 2021 | B2 |
20020019686 | Ulrich | Feb 2002 | A1 |
20040007401 | Chu | Jan 2004 | A1 |
20050269797 | Mitchel | Dec 2005 | A1 |
20060096792 | Usherovich | May 2006 | A1 |
20100193278 | Husted | Aug 2010 | A1 |
20110308880 | Chiu | Dec 2011 | A1 |
20120080243 | Mulhern | Apr 2012 | A1 |
20120279789 | Brill et al. | Nov 2012 | A1 |
20140183930 | Wei | Jul 2014 | A1 |
20140232085 | Hsiao-Wecksler | Aug 2014 | A1 |
20160136019 | Studebaker | May 2016 | A1 |
20180280213 | Hancock | Oct 2018 | A1 |
20190291815 | Viglione | Sep 2019 | A1 |
20190328592 | Peskin et al. | Oct 2019 | A1 |
20200085653 | Peskin et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
1992010157 | Jun 1992 | WO |
2004047707 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20220202633 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62663289 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17221196 | Apr 2021 | US |
Child | 17478873 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17478873 | Sep 2021 | US |
Child | 17696842 | US | |
Parent | 17169399 | Feb 2021 | US |
Child | 17221196 | US | |
Parent | 16689931 | Nov 2019 | US |
Child | 17169399 | US | |
Parent | 16395391 | Apr 2019 | US |
Child | 16689931 | US |