This application is a U.S. National Phase Application under 35 USC 371 of International Application PCT/SE02/01865filed Oct. 15, 2002.
The invention relates to a portable power tool of the type having a rotating output shaft with a mounting device for attachment of a working implement.
In power tools of this type there are incorporated manually operable lock means for arresting the output shaft against rotation for facilitating loosening and tightening the mounting device for the working implement. Usually a spanner or other type of tool has to be used for operating the mounting device, and very often a rather high torque has to be applied on the mounting device to accomplish the intended operation.
In most power tools, the motor is connected to the output shaft via a gearing, and in angle drive tools in particular, the output shaft arresting lock device, for practical reasons, has to be located somewhere between the motor and the angle gearing. This means that the high torque levels occasionally applied on the mounting device /output shaft has to be transferred to the lock device via the angle gearing. This causes an excessive strain on the angle gearing parts, a strain that is beyond what any calculated normal tool operation load would cause. Accordingly, loosening and/or tightening of the mounting device may expose the angle gearing to a damage risk.
Another overload situation for an angle gearing occurs from time to time at angle drill tools when the drill attached to the mounting device/output shaft gets jammed at break through of the work piece and the rotation motor is caused to stall. In such a situation, the operator has to apply a turning torque on the tool housing to make the drill fully penetrate the work piece. This extra torque may often result in an overload of the angle gearing and, hence, a damage risk for the angle gearing parts.
The main object of the invention is to provide a portable power tool having a rotating output shaft which is connected to a rotation motor via a gearing, and in which a drive line arresting lock device is located between the motor and the gearing to facilitate loosening and/or tightening of a working implement mounting device on the output shaft, wherein the gearing is protected by a releasable safety clutch from being damaged by excessive torque load occasionally applied on the output shaft at operation of the working implement mounting device.
A further object of the invention is to provide a portable power tool including an output shaft which is connected to the rotation motor via an angle gearing and a drive spindle, and in which a drive line arresting lock device is located between the angle gearing and the motor, and in which a releasable safety clutch is provided between the angle gearing and the lock device and arranged to release and disconnect the angle gearing from both the lock device and the rotation motor at excessive torque load applied on the output shaft.
Further objects and advantages of the invention will appear from the following specification and claims.
Preferred embodiments of the invention are described below with reference to the accompanying drawings.
In the drawings:
The tool illustrated in
In order to facilitate loosening and/or tightening of the chuck 15 there is used a spanner, and to prevent the output shaft from rotating when applying a torque with the spanner there is provided a drive line arresting lock device 17. This lock device 17 is located to the drive spindle 12 between the angle gearing 13 and the rotation motor 11, because in an angle type tool there is very little room for locating the lock device 17 to the output shaft 14.
The drive line arresting lock device 17 comprises a selectively shiftable latch element 18 movably supported on the tool housing, and an abutment means in the form of an aperture 19 on a tubular sleeve element 20 coupled to the drive spindle 12.
Due to the fact that the lock device 17 is located to a point where the angle gearing 13 would have to transfer the entire tightening and/or loosening torque applied on the mounting device 15 to the tool housing, there is provided an overload protecting means to avoid damage to the angle gearing 13 at occasionally applied excessive torque loads on the output shaft 14. This overload protecting means comprises a releasable safety clutch 23 coupling the sleeve element 20 to the drive spindle 12.
As illustrated in
When a working implement is to be attached or removed from the output shaft 14 a spanner or similar tool is applied on the chuck 15, and in order to prevent rotation of the drive line including the output shaft 14 the latch element 18 is pressed into engagement with the aperture 19 on the sleeve element 20. If an excessive torque is needed to loosen or tighten the chuck 15 the balls 28 will be forced out of their engagement with the apertures 26 against the bias action of the spring 30 and there will occur a relative rotation between the drive spindle 12 and the sleeve element 20. This means that the safety clutch 23 prevents a too high a torque magnitude be transferred to the housing via the angle gearing 13. Thereby, the angle gearing 13 is protected from detrimental overload.
In normal cases, though, the torque required to loosen and/or tighten the chuck 15 does not exceed the torque magnitude safely transferable by the angle gearing 13 and for which the angle gearing 13 is designed and dimensioned. This means that in the majority of cases the safety clutch 23 remains engaged and provides a high enough arresting torque on the drive spindle 12 to enable the chuck 15 to be properly operated by a spanner.
In the embodiment illustrated in
In order to protect the angle gearing 13 from excessive torque loads applied on the output shaft 14 even when the motor 11 has stalled, the drive spindle 112 is divided into a first part 102 which is connected to the motor 11 and a second part 103 which is connected to the angle gearing 13. The first part 102 of the drive spindle 112 is formed with a tubular sleeve element 120 which is provided with an external aperture 119 to be engaged by the latch element 18 to thereby form a drive line arresting lock device 117. The safety clutch 123 is located between the sleeve element 120 on the first drive spindle part 102 and the second drive spindle part 103 and comprises two opposite through openings 124 in the sleeve element 120 and two balls 128 movably supported in these openings 124. The second part 103 of the drive spindle 112 extends into the sleeve element 120 and is formed with two apertures 126 located opposite the openings 124. A circular leaf spring 130 is mounted on the outside of the sleeve element 120 and arranged to bias the balls 128 into engagement with the apertures 126.
As in the above described embodiment, the balls 128 will be forced out of engagement with the two apertures 126 as the external torque load on the output shaft 14 becomes too high and permit rotation between the sleeve element 120 and the second drive spindle part 103. However, by this alternative design the drive spindle parts 102, 103 are able rotate relative to each other, which means that an excessive torque manually applied on the output shaft 14 can not be transferred to the tool housing 10 via the stalled “locked up” rotation motor 11 instead of via the lock device 117. This means that the angle gearing 13 is protected from detrimental torque overload also in cases of a stalled motor.
The invention is suitable for use at pneumatically powered tools but may as well find its use at electric tools. Neither is the invention limited to the above described embodiments but includes all examples being defined by the claims. For instance, the safety clutch may be designed in a number of ways including a different number of ball elements, other types of ball biassing springs etc.
Number | Date | Country | Kind |
---|---|---|---|
0103426 | Oct 2001 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE02/01865 | 10/15/2002 | WO | 00 | 4/13/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/033203 | 4/24/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2881103 | Ewels et al. | Apr 1959 | A |
3872951 | Hastings, Jr. | Mar 1975 | A |
3942337 | Leonard et al. | Mar 1976 | A |
4400995 | Palm | Aug 1983 | A |
4610340 | Helmes et al. | Sep 1986 | A |
4834192 | Hansson | May 1989 | A |
4951756 | Everett et al. | Aug 1990 | A |
5346023 | Takagi et al. | Sep 1994 | A |
5577425 | Holmin et al. | Nov 1996 | A |
5672110 | Kurita et al. | Sep 1997 | A |
5857913 | Fujimura et al. | Jan 1999 | A |
6047616 | Ochiai | Apr 2000 | A |
6702090 | Nakamura et al. | Mar 2004 | B1 |
Number | Date | Country |
---|---|---|
3335729 | Apr 1985 | DE |
0559918 | Sep 1993 | EP |
0608083 | Jul 1994 | EP |
853226 | Aug 1981 | SU |
Number | Date | Country | |
---|---|---|---|
20040206524 A1 | Oct 2004 | US |