The present invention relates to a portable radio-controlled watch configured to receive a signal from a satellite or the like.
A portable radio-controlled watch configured to receive time information included in a signal transmitted from a satellite forming a global positioning system (GPS) or the like to correct the time has been put into practical use. An arrangement of an antenna for receiving radio waves and a method of feeding power to the antenna are determined so that required reception sensitivity can be obtained without impairing the function of the watch.
In FIGS. 3 of Patent Literature 1, there is disclosed a feed pin 44 configured to directly connect a feed part 402 mounted to an annular antenna body 40 to a circuit board 25 including a GPS reception unit 26. The feed pin passes through a main plate 38.
In FIG. 15 of Patent Literature 2, there is disclosed a coaxial pin configured to directly connect a circuit board 120 including a receiving portion to an antenna 110. The coaxial pin includes a power feeding pin 115 and a ground pin 117 surrounding the power feeding pin 115, and has a characteristic similar to that of a coaxial cable. The antenna 110 is created so as to operate with unbalanced feed.
[PTL 1] JP 2014-163666 A
[PTL 2] JP 2015-207855 A
When a pin is used to directly connect an antenna to aboard including a receiving circuit, and the antenna is mounted along an outer periphery of a watch glass, the pin is arranged right nearby a case body of the watch, and hence reception loss is increased. Meanwhile, when a coaxial pin is used to connect the antenna to the board in order to reduce the loss, the unbalanced feed is employed because of the coaxial pin, and hence it has been difficult to increase the reception sensitivity. For example, when the antenna is made compatible with the unbalanced feed, there is a problem in keeping the characteristic when a circularly polarized wave is received. Further, the coaxial pin has limitations on reducing its outer diameter in terms of its structure, and hence the design tends to be restricted.
The present invention has been made in view of the above-mentioned circumstances, and has an object to provide a portable radio-controlled watch having high reception sensitivity.
(1) According to one embodiment of the present invention, there is provided a portable radio-controlled watch including: an antenna electrode; a receiving circuit arranged on a circuit board; a pair of connection pins, each of which has one end contacting the antenna electrode, and which are arranged in parallel to each other; intermediate wiring, which is connected to another end of each of the pair of connection pins, and extends in a direction separating from a case body; and RF connection wiring configured to connect the intermediate wiring and the receiving circuit to each other.
(2) In the portable radio-controlled watch according to Item (1), the intermediate wiring includes a balun circuit, and the RF connection wiring includes a coaxial line or a coaxial pin.
(3) In the portable radio-controlled watch according to Item (2), the intermediate wiring is arranged on an intermediate board, which is different from the circuit board, and the balun circuit is arranged on a surface of the intermediate board on an opposite side of the antenna electrode.
(4) In the portable radio-controlled watch according to Item (2) or (3), a metal member is prevented from being arranged between the balun circuit and the circuit board.
(5) The portable radio-controlled watch according to Item (4) further includes a non-conductive spacer arranged between the balun circuit and the circuit board.
(6) In the portable radio-controlled watch according to any one of Items (1) to (5), the case body has a cutout in a part of the case body opposed to the intermediate wiring.
(7) The portable radio-controlled watch according to any one of Items (1) to (6) further includes: a watch glass, which has a back surface on which the antenna electrode is arranged; and a bezel, into which the watch glass is fitted, and which is connected to the case body, and the bezel has a cutout in an inner peripheral surface of the bezel at a position through which the pair of connection pins pass.
(8) The portable radio-controlled watch according to Item (7) further includes an annular packing, which is arranged between the watch glass and the bezel, and has a cutout at a position corresponding to the cutout of the bezel.
(9) The portable radio-controlled watch according to any one of Items (1) to (8) further includes a dial trim ring, which is arranged between the watch glass and the circuit board, and includes a fixing portion configured to fix the pair of connection pins.
(10) The portable radio-controlled watch according to Item (9) further includes a holding member configured to hold the pair of connection pins in parallel to each other, and the dial trim ring includes a fixing portion configured to fix the holding member.
According to one embodiment of the present invention, the portable radio-controlled watch having high reception sensitivity can be provided.
Now, an embodiment of the present invention is described in detail with reference to the drawings. In the following, a satellite radio-controlled wristwatch 1 according to the embodiment of the present invention is described. The satellite radio-controlled wristwatch 1 according to this embodiment is configured to receive satellite radio waves including time information, and measure its position or correct the time counted by itself with use of the time information included in the received satellite radio waves.
The case body 38 is made of metal, and has upper and lower holes. The bezel 32 is a ring-shaped ceramic corresponding with a shape of the upper hole of the case body 38, and the bezel 32 is fitted into the upper hole to be connected to the case body 38. Further, the back cover 39 is made of metal, and has a flat surface corresponding with a shape of the lower hole of the case body 38. The back cover 39 is fitted into the lower hole. The watch glass 31 has a planar shape corresponding with a shape of an upper opening of the bezel 32, and is fitted into the opening of the bezel 32. The watch glass 31 and the bezel 32 are in contact with each other through intermediation of a packing 33, and the watch glass 31 is fixed by the packing 33. Further, the bezel 32 and the case body 38 are in contact with each other through intermediation of a packing 37, and the bezel 32 is fixed by the packing 37.
Further, the satellite radio-controlled wristwatch 1 includes antennas 10a and 10b, two conductive pins 41, a ring-shaped dial trim ring 34, a dial plate 51, an hour hand 52a, a minute hand 52b, a second hand 52c, a solar cell 53, a base plate 54, a balun board 43, a coaxial pin 45, a circuit board 47, and a motor 49. Those components are arranged in a space surrounded by the watch glass 31, the bezel 32, the case body 38, and the back cover 39.
The antennas 10a and 10b are arranged on the lower side (back side) of the watch glass 31 so as to extend along a peripheral edge of the watch glass 31. In the example of
The two conductive pins 41 correspond to the antennas 10a and 10b on a one-by-one basis, and each of the antennas 10a and 10b is electrically connected to the balun board 43 by the corresponding conductive pin 41. Upper ends of the two conductive pins 41 contact the antennas 10a and 10b, respectively. Further, lower ends of the two conductive pins 41 are in contact with two connection terminals, respectively, which are formed on the balun board 43. The positions of the conductive pins 41 in plan view are fixed by the dial trim ring 34, and the two conductive pins 41 are arranged in parallel to each other. In the example of
The control circuit 26 is a circuit configured to control various circuits and mechanisms included in the satellite radio-controlled wristwatch 1, and includes, for example, a microcomputer, a motor drive circuit, and a real time clock (RTC). The control circuit 26 acquires the time based on the reception data or a clock output by the RTC to drive the motor 49 included in a drive mechanism 28 in accordance with the acquired time. The drive mechanism 28 includes the motor 49 being a stepper motor and a gear train. The motor 49 is mounted on a surface of the circuit board 47 on the dial plate 51 side. The gear train transmits the rotation of the motor 49 to rotate any one of the hour hand 52a, the minute hand 52b, and the second hand 52c, for example. The current time is indicated in this manner.
Next, the arrangement of the balun circuit 21, the receiving circuit 22, and the like is described.
A non-conductive spacer 46 made of, for example, resin is arranged between the balun board 43 and the circuit board 47, and an interval is maintained between the balun board 43 and the circuit board 47 by the spacer 46. The balun board 43 and the circuit board 47 are arranged in parallel to each other. The spacer 46 is present between the balun circuit 21 and the circuit board 47, but no metal member, for example, GND wiring, is arranged therebetween. The spacer 46 is fixed to the base plate 54. Further, an opening 73 of a movement is present so as to be adjacent to an end portion of the balun board 43 on the case body 38 side, and the spacer 46 is not present between the balun board 43 and the case body 38. The solar cell 53 is arranged right below the dial plate 51, and the base plate 54 and the like are arranged between the solar cell 53 and the balun board 43 or the circuit board 47.
The antennas 10a and 10b and the balun circuit 21 are connected to each other by the conductive pins 41 and intermediate wiring on the balun board 43. The intermediate wiring is wiring extending on the balun board 43 from connection terminals for the conductive pins 41. The intermediate wiring extends away from the case body 38 as viewed from the connection terminals. Further, the balun circuit 21 and the receiving circuit 22 are connected to each other by RF connection wiring. The RF connection wiring includes the coaxial pin 45, wiring on the balun board 43 connecting the coaxial pin 45 and the balun circuit 21 to each other, and wiring on the circuit board 47 connecting the coaxial pin 45 and the receiving circuit 22 to each other. The coaxial pin 45 electrically connects the wiring on the balun board 43 and the wiring on the circuit board 47 to each other. The coaxial pin 45 is closer to the center of the dial plate 51 as compared to the conductive pins 41 in plan view, and is further away from the case body 38 than the conductive pins 41. The conductive pins 41, the intermediate wiring, the balun circuit 21, and the RF connection wiring form a connection circuit configured to connect the antennas 10a and 10b and the receiving circuit 22 to each other. Further, the conductive pins 41 are a type of wiring connecting the antennas 10a and 10b and the balun circuit 21 to each other.
A coaxial line, for example, a coaxial cable, may be used instead of the coaxial pin 45. Further, without arranging the balun circuit 21 on the balun board 43, the conductive pins 41 and the coaxial pin 45 may be connected to each other by the intermediate wiring. Further, without providing the balun circuit 21, there may be provided intermediate wiring, which is separated from the circuit board 47, which is in contact with the conductive pins 41 at the position on the watch glass 31 side, and which extends to be away from the case body 38 to be connected to the circuit board 47.
A metal member is prevented from being arranged in the vicinity of the conductive pins 41 as much as possible, and the intermediate wiring on the balun board 43 extends so as to separate from the metal case body 38. Further, the coaxial pin 45 is arranged at a further inner position. In this manner, paths of the signals received by the antennas 10a and 10b are separated from the metal, to thereby reduce the influence on reception sensitivity by the metal. Further, in the example illustrated in
Further, as illustrated in
The spacer 46 between the balun board 43 and the circuit board 47 may be, for example, a dielectric having a high permittivity, for example, a ceramic. For example, a ceramic having a permittivity of from 10 to 90 can be employed as the spacer 46. Further, the permittivity of the spacer 46 is only required to be equivalent to or larger than that of the dielectric arranged around the spacer 46. As the spacer 46, a resin or other dielectrics having a permittivity of 10 or less, or another material having a permittivity of 90 or more may be employed. When a substance having a high permittivity is arranged between metal and a reception signal path, an adverse effect of metal or the like with respect to the high-frequency reception signal can be suppressed. Therefore, when the spacer 46 is a dielectric, the influence on the reception signal by the metal back cover 39 or the like can be further reduced. The spacer 46 may be an integrally-molded ceramic member. Further, the spacer 46 may include a ceramic member (high dielectric member) covering the balun circuit 21 and the wiring related to the balun circuit 21 from the lower side, and a resin member fixed to the base plate 54 or the like to hold the high dielectric member.
Further, the bezel 32 has a cutout 42 in an inner peripheral surface thereof at a position through which the conductive pins 41 pass.
The two conductive pins 41 may be held in parallel by a holding member fixed by the dial trim ring 34. In this case, as the structure for fixing the conductive pins 41, a structure (hole) for fixing the holding member is formed in the dial trim ring 34. Further, the holding member may be created by injecting resin in a mold in which the conductive pins 41 are arranged (insert molding). Further, the two conductive pins 41 may be fixed by a structure provided on the dial plate 51, the base plate 54, or other members.
When the holes for allowing passage of the conductive pins 41 are formed in the dielectric bezel 32, a certain thickness is required around the holes in order to ensure the strength, and hence there are restrictions on the size of the protruding portion 35 and the positions of the holes. Meanwhile, when the cutout 42 is formed in the bezel 32 and the conductive pins 41 are held by the resin dial trim ring 34, there are less restrictions on the positions of the holes as compared to the case described above, and the holes for holding the conductive pins 41 can be made closer to the outer peripheral edge (outer side) of the watch glass 31. As the conductive pins 41 are positioned further outward, the antennas 10a and 10b can also be mounted closer to the outer side of the watch glass 31, and thus the antennas 10a and 10b can be made inconspicuous easily.
Next, relationships between the antennas 10a and 10b and peripheral members are described in more detail.
The bezel 32 is made of a ceramic being a dielectric, and the protruding portion 35 covers at least a part of the antennas 10a and 10b present at the peripheral edge of the watch glass 31 in plan view. The protruding portion 35 is arranged right below at least a part of the antennas 10a and 10b, and has a shape of a ring with a cutout. In the example of this embodiment, the protruding portion 35 is arranged right below a part of the antennas 10a and 10b except for a part connected to the conductive pins 41. Further, the dial trim ring 34 is made of an insulating resin, and is arranged adjacent to the inner periphery of the bezel 32. Further, the dial trim ring 34 is also arranged below the protruding portion 35 so as to be adjacent thereto.
In this embodiment, the dielectric (bezel 32 in this case) below the antennas 10a and 10b provides a wavelength shortening effect, and the reduction in sensitivity by the dielectric is suppressed by directly connecting the conductive pins 41 to the antennas 10a and 10b. In this manner, as compared to the case in which those configurations are not included, the satellite radio-controlled wristwatch 1 can be more thinned and have higher sensitivity.
Now, the conductive pins 41, which contact the antennas 10a and 10b, are described in further detail.
The conductive pin 41 may have another shape.
In this case, the bezel 32 may include a part made of metal.
In the example of
The auxiliary member 84 is an annular member mounted so as to cover an inner peripheral surface of the protruding portion 85, and is present between the conductive pins 41 and the metal portion 83 of the bezel 32. The auxiliary member 84 is a dielectric, and can reduce the influence caused by the metal portion 83 on signals flowing through the conductive pins 41. The auxiliary member 84 may be separated from the dielectric portion 82. Further, the auxiliary member 84 may only cover a part of the inner peripheral surface of the protruding portion 85 that is opposed to the conductive pins 41.
When a part of the bezel 32 close to the antennas 10a and 10b is made of dielectrics such as a ceramic, resistance against impact of the satellite radio-controlled wristwatch 1 can be improved by the part of the bezel 32 made of metal while the satellite radio-controlled wristwatch 1 is increased in sensitivity and reduced in thickness. In particular, two characteristics of high sensitivity and impact resistance can coexist.
The balun board 43 extends to exceed the position corresponding to the opening 73 in
As illustrated in
A case, in which the present invention is applied to the satellite radio-controlled wristwatch 1, has been described so far, but the present invention is also applicable to, for example, a portable small-sized watch that is not a wristwatch.
Number | Date | Country | Kind |
---|---|---|---|
2016-066527 | Mar 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/010765 | 3/16/2017 | WO | 00 |