The present invention relates to a ride-on toy stylized as a friendly character. Such toys are also often styled in a saddle-type configuration including a saddle-type seat. The toy is typically connected to the supporting surface by a connector. The connector can include a motorized member that moves the seat automatically or a biasing member that manually reacts to the movement of the child. Whether the toy and connector are motorized or self-powered, children get excited about and spend endless hours enjoying such ride-on toys. Generally, the connector supports the seat, allowing the seat to move in various directions. Specifically, in addition to an up and down (vertical) riding (bouncing) motion, some connectors of ride-on toys enable rotation or spinning of the seat while the child is sitting on the seat. Although rotation of the seat is desirable after the child has been seated on the toy, the climbing onto or off of a rotating toy may be somewhat difficult.
Parents generally encourage children to play independently as early as possible. For a small child, however, the rotation and bouncing of the seat on a conventional ride-on device can make an unsupervised mounting of such toys an unstable and even potentially dangerous undertaking. There is therefore a need to develop a ride-on toy which allows relative rotation between the seat and connector, but which prevents rotation of the seat when the child is mounting the toy and then again allows rotation of the seat after the child has safely mounted the toy. In this way, the child can safely mount the toy and then safely enjoy the freedom of seat rotation and bouncing.
Generally, the present specification discloses a children's ride-on activity toy device. The ride-on toy device includes a seat, a connector and a base. The seat is stylized as a friendly character and includes a saddle/seating area (e.g., a saddle formed on the character's back). The connector supports the seat above a base, the base contacting and stabilizing the device on a supporting surface in a manner that allows multiple degrees of freedom between the seat and the connector.
Specifically, the present invention seat is stylized as an animal character (e.g., a horse, zebra, camel etc.). The back of the animal character may include a seating area stylized a saddle. A connector, in accordance with the present invention, may support the seat above a base (and thus also above the supporting surface) and may include a first connector portion and a second connector portion. The first connector portion being connected to the seat and the second connector portion being connected to the base.
A connector in accordance with the present invention may be connected to the seat at a connection portion located on the bottom of the seat. The connector may be in the form of a compressible column and includes an upper column portion or first connector portion that moves telescopically relative to a lower column portion or second connector portion. The upper end of the first connector portion may be connected to the seat and the lower end of the second connector portion may be connected to the base. When a child sits on the seating area of the seat, the force of the child's weight is transmitted through the first connector portion to a biasing member to compress the biasing member and force the first connector portion toward the second connector portion, thus reducing the overall length of the connector. Furthermore, a child who sits on the seat with their legs touching the ground can adjust the force applied to the biasing member to initiate a bouncing (up and down in the vertical direction) movement with the seat.
In order to provide a safe play experience, the present invention includes a safety mechanism that prevents the seat from rotating relative to the base when insufficient force is applied to the biasing member, but allows the seat portion to rotate relative to the base when sufficient compressive force (e.g., the weight of the child) is applied to the seat (and thus, the biasing member). The safety mechanism includes a first series of projections associated with the connector's first connector portion and a second series of projections that are associated with the connector's second connector portion.
When insufficient compressive force is applied to the biasing member, the biasing member forces the first series of projections toward the second series of projections such that the first and second series of projections are in rotational alignment (i.e., they are interlocked). When the first and second series of projections are in rotational alignment, rotation of the seat, and thus, rotation of the first connector portion, causes the first series projections to engage with the second series of projections to prevent rotation of the seat about a vertical axis. However, when sufficient compressive force (e.g., weight of a child) is applied to the seat and thus to the biasing member, the first series of projections separates from the second series of projections (the first and second series of projections are moved out of rotational alignment). As a result, when a relative rotational force is applied between the seat and the base, the first series of projections rotates freely about a vertical axis relative the second series of projections. In other words, when the seat along with the first connector portion is sufficiently compressed relative the second connector portion, the seat is allowed to rotate freely about a vertical axis relative to the second connector portion and the base.
In use, when a child attempts to mount the seat, because the seat is yet unloaded, the biasing member engages the safety mechanism to prevent the seat portion from rotating about a vertical axis relative to the base. However, when the child has mounted the seat, the weight of the child compresses the biasing member to disengage the safety mechanism allowing the seat portion to rotate about a vertical axis relative to the base (as well as bounce up and down on the vertical axis).
Along with a seat, the ride-on toy of the present invention may also include a hand grip for stability. A hand grip also helps to allow a child to transfer motion energy to this self-energized toy. In addition, the ride-on toy of the present invention may include an electronic entertainment device with sensors that are added to detect operation (motion energy) of the ride-on toy and trigger sensory stimulating output (e.g., lights, sounds etc.) to increase the entertainment experience of the child.
Like reference numerals have been used to identify like elements throughout this disclosure.
In accordance with the present invention, a ride-on activity device 100 is disclosed.
The seat 102 is stylized as a friendly character or other attractive object. Specifically, as illustrated, the toy 100 can be stylized as animal and the seating area 105 can be stylized as a saddle. The base 120 serves as a stabilizer for the device 100 on the supporting surface 101. Thus, the base 120 functions to prevent the device 100 from tipping over. The base 120 also serves as a foot rest for a child using the device 100. The base 120 could be eliminated if the connector 100 is otherwise secured to the supporting surface 101.
Furthermore, the electronic entertainment device 130 includes attractive entertainment characters that are mechanically connected to the electronic electronics unit 131 by resilient members 137A, 137B (e.g., springs etc.). In addition, the electronics unit 131 includes a mechanical roller 139 containing a switch for triggering electronic sensory stimulation (e.g., sounds and lights) to encourage a child to spin the roller 139.
As mentioned above, the connector 110 securely supports the seat 102 above the base 120 while allowing the seat 102 the freedom to bounce up and down (along a vertical axis) and to rotate relative to the base 120 (about a vertical axis). To this end, the first connector portion 420, moves telescopically up and down relative to second connector portion 430. In other words, as cover member 420A is compressed downward relative to column post 430B, cover member 420A, guide ring 420J, and the lower ring 420B slide downward relative to column post 430B. The relative telescopic movement between the first connector portion 420 and the second connector portion 430 is more clearly illustrated in the figures below. Furthermore, the rotational relationship between the first connector portion 420 and the second connector portion 430 will be discussed below in conjunction with the \rotation safety feature of the device 100.
As discussed above, in addition to the up and down bouncing motion, the connection between the connector 110 and the seat 102 allows the seat 102 to rotate about a vertical axis relative to the base 120. However, this rotational connection mechanism of the present invention includes a safety feature that prevents rotation in certain situations when rotation might be inconvenient or unsafe for a child. More specifically, the connector 110 includes a safety mechanism that enables a child to mount and dismount the seat 102 without fear that the rotating seat 102 will cause a potential instability.
The rotation safety feature of the device 100 in accordance with the present invention will now be discussed. In a non-compressed state (as illustrated in
It will be appreciated that the embodiments described above and illustrated in drawings represent only a few of the many ways of implementing the present invention. For example, the relative movement between the seat 102 and the base 120 or supporting surface 101 is due to the connections between the seat 102 and connector's first connector portion 420, between the connector's first connector portion 420 and the connector's second connector portion 430, or the connector's second connector portion 430 and the base 120. In other words, relative movement between the seat 102 and base 120 can be due to any of the foregoing connections. Specifically, the rotation between the seat 102 and the base 120 may be due to the connection between the second connector portion 430 and the base 120 rather than between the first connector portion 420 and the seat 102.
The connection between the seat 102 and the connector 110 can be located anywhere on the seat 102, but is shown on the bottom of the seat 102 in the drawings. The connection between the first connector portion 420 and the second connector portion 430 can be of any type, but is shown as a telescopic connection in the drawings. The connection between the second connector portion 430 and the base 120 can be any type of connection and can be similar to the connection between the first connector portion 420 and the seat 102.
The connection between the seat 102 and first connector portion 420 may be in an upper portion of the seat 102 when the connector 110 is an overhead support (not shown in the drawings). Alternatively, the connection between the seat 102 and first connector portion 420 may be in a lower portion of the seat 102 when the connector 110 is a column-type support.
The electronics assembly 130 in accordance with the present invention may include any combination of sensors, switches, lights, speakers, animated members, motors, and sensory output generating devices. The microprocessor unit 175 may produce any combination of audio and visual effects including, but not limited to, animation, lights, and sound (music, speech, and sound effects). The output pattern is not limited to that which is discussed herein and includes any pattern of music, lights, and/or sound effects. The electronics assembly 130 may also include additional switches or sensors to provide additional sensory output activation without departing from the scope of the present invention.
Thus, it is intended that the present invention cover the modifications and variations of this invention that come within the scope of the appended claims and their equivalents. For example, it is to be understood that terms such as “left”, “right” “top”, “bottom”, “front”, “rear”, “side”, “height”, “length”, “width”, “upper”, “lower”, “interior”, “exterior”, “inner”, “outer” and the like as may be used herein, merely describe points of reference and do not limit the present invention to any particular orientation or configuration.
The present application is a continuation of U.S. Nonprovisional application Ser. No. 11/549,153, filed 13 Oct. 2006 and entitled “Portable Ride-On Bouncing and Spinning Toy,” the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1518671 | Novinsky | Dec 1924 | A |
2704111 | Wunderlich | Mar 1955 | A |
D189456 | Hansen | Dec 1960 | S |
2971758 | Zimmers | Feb 1961 | A |
3049350 | Walker | Aug 1962 | A |
3180640 | Lawrence | Apr 1965 | A |
3578381 | Young | May 1971 | A |
3595569 | Holte | Jul 1971 | A |
3730587 | Bloxham et al. | May 1973 | A |
4160553 | Fleischer | Jul 1979 | A |
D265224 | Bollen et al. | Jun 1982 | S |
4379550 | Petersen | Apr 1983 | A |
5211607 | Fermaglish et al. | May 1993 | A |
5415590 | Steingraber et al. | May 1995 | A |
5451093 | Petrie et al. | Sep 1995 | A |
5688211 | Myers | Nov 1997 | A |
5934747 | Garland | Aug 1999 | A |
5935010 | Clarke | Aug 1999 | A |
6178978 | Rieber | Jan 2001 | B1 |
6203395 | McElhaney | Mar 2001 | B1 |
6299247 | Meeker et al. | Oct 2001 | B1 |
6332824 | Tell et al. | Dec 2001 | B2 |
6425842 | Stern et al. | Jul 2002 | B1 |
6533672 | Keller et al. | Mar 2003 | B1 |
6869368 | Clarke et al. | Mar 2005 | B1 |
7775893 | Blumenthal | Aug 2010 | B2 |
20040198501 | Henderson | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2781138 | Jan 2000 | FR |
Number | Date | Country | |
---|---|---|---|
20100279782 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11549153 | Oct 2006 | US |
Child | 12837713 | US |