This invention relates generally to a portable roadway warning device comprising any desired number of portable modular rumble strips for use in various roadway conditions to alert drivers of automotive vehicles including both passenger vehicles and trucks of an approaching condition.
It is generally known to use portable rumble strips in roadway applications to provide a perceptible noise and warning vibration when automotive vehicles including passenger vehicles and trucks drive over the rumble strips to warn the drivers of an approaching condition such as a work site, construction site, slow speed zone and so on, without alarming the drivers and without adversely affecting the stability of the vehicles. Portable rumble strips should be reusable and quick and easy to apply and remove. Also they should have the ability to remain in place under the desired level of performance, including for example heavy duty relatively high speed applications and/or lighter duty, lower speed applications.
The above and other benefits and advantages of portable rumble strips are accomplished in accordance with the present invention by providing one or more rumble strips each comprised of a plurality of modular strip sections each having a substantially greater length than width, and top and bottom surfaces, and end and side edges, and each fabricated of a suitable flexible polymeric material such as rubber or polyurethane or other polymeric material with similar properties.
In accordance with one aspect of the invention, each of the modular strip sections has alternating notches and tabs at opposite end edges sized and spaced for engagement with respective tabs and notches on opposite end edges of other strip sections to provide a releasable connected joint between the opposite end edges of the strip sections.
In accordance with another aspect of the invention, the notches at one of the end edges of the strip sections have axial inwardly angled inner end walls for overlapping engagement by axially outwardly angled outer ends of the tabs at the opposite end edge of other strip sections, and undersides of the tabs have transverse slots adjacent axial inner ends of the tabs for seated engagement by lower outer cross members extending transversely of the notches adjacent axial outer ends of the notches for releasably connecting the end edges of the strip sections together both laterally and orthogonally relative to the longitudinal axes of the strip sections.
In accordance with another aspect of the invention, the alternating notches and tabs in the opposite end edges of the strip sections are dovetailed for dovetailed engagement with one another to carry longitudinal loading of the interconnected strip sections when the interconnected strip sections are pulled by one of the end edges longitudinally along the ground.
Referring now more particularly to the drawings, wherein the same reference numbers are used to designate like parts, and initially to
Although the dimensions of each rumble strip section 12 may vary, each rumble strip section has a width that is preferably between approximately eight inches and approximately sixteen inches and more preferably approximately fourteen inches. Also the rumble strip sections are of sufficient thickness to create a noticeable audible and vibration warning to drivers of automotive vehicles including trucks and passenger vehicles when driven over the rumble strip sections, but not so severe as to alarm the drivers, and without causing adverse effects on the stability of the vehicles. To that end, the rumble strip sections desirably have a thickness of between approximately one-half inch and approximately one inch and more preferably approximately three-quarter inch.
To provide a better grip between the bottom surface 16 of the rumble strip sections 12 and the roadway and to reduce possible skidding of vehicle tires against the top surface 14 of the rumble strip sections when wet, both the top and bottom surfaces of the rumble strip sections may have texturing 30. Also the texturing may be in the form of an open diamond pattern as schematically shown in
Suitable hand grip slots 32 may be provided in each rumble strip section adjacent one or both ends for ease of picking the rumble strip sections up.
One or both side edges 18 and 20 of each rumble strip section may be beveled to help eliminate any possible movement of the rumble strip sections caused by initial contact of the vehicle tires with the rumble strip sections. The included beveled angle of one or both side edges of the rumble strip sections is preferably between approximately 10° and approximately 15° and more preferably approximately 12°. Alternatively, one or both side edges of each rumble strip section may have concave top surfaces to further help eliminate any possible movement of the rumble strip sections caused by initial contact of the vehicle tires with the side edges of the rumble strip sections.
As seen for example in
The alternating notches 34 and tabs 36 at the opposite end edges of each of the strip sections are sized and spaced for engagement with respective tabs 36 and notches 34 at opposite end edges of other strip sections to provide a releasable connected joint between the opposite end edges of the strip sections. As best seen in
The undersides 42 of the tabs 36 at the end edge 24 of the strip sections have transverse slots 44 adjacent the axial inner ends of the tabs for seated engagement by lower outer cross members 46 extending transversely of the notches 34 adjacent axial outer ends of the notches at the opposite end edge 22 of other strip sections for releasably retaining the joined end edges of the strip sections together both laterally and orthogonally relative to the longitudinal axes of each of the strip sections as further shown in
Insertion of the cross members 46 adjacent the axial outer ends of the notches 34 in the end edge 22 of other strip sections into the slots 44 in the undersides of the tabs 36 of one of the strip sections may be facilitated by placing the tabs 36 at the end edge 24 of one of the strip sections over the notches 34 in the opposite end edge 22 of another of the strip sections and stepping on the overlying tabs of the one strip section to cause the tabs to cam into the notches in the other strip section and press the slots 44 in the undersides of the tabs over the cross members 46 adjacent the axial outer ends of the notches in the other strip section to cause the overlapping end edges to snap into place as shown in
When two or more such modular strip sections are connected together and in place on the ground, the strip sections won't normally come apart. To prevent the strip sections from inadvertently separating from one another if the interconnected strip sections are dragged longitudinally along the ground by pulling one of the end edges of one of the strip sections, the alternating notches 34 and tabs 36 at the opposite end edges of the strip sections have matching dovetailed shapes 54 and 56 for dovetailed engagement with one another as shown in
If each rumble strip 10 comprised of two (or more) modular strip sections 12 interconnected together is found not to be heavy enough to remain in place under the desired level of performance, a desired number of laterally spaced, transversely extending ballast/stiffening plates or bars, made for example of steel or cast iron, may be completely or partially embedded in each of the strip sections. Alternatively a plurality of cavities may be provided in the top surface of the strip sections to accept any desired number of plates or bars, or the plates or bars may be mechanically fastened or adhesively affixed to the top surface of the strip sections as desired.
Each of the plates or bars 60 preferably has a width of between approximately one and one-half inch and approximately two and one-half inches and more preferably approximately two inches. Further, each of the plates or bars preferably has a thickness of between approximately one-quarter inch and approximately one-half inch and more preferably approximately three-eighths inch.
The length of the plates or bars 60 may vary depending on the width of the rumble strips. For example, if the rumble strips are approximately thirteen to fourteen inches wide, the plates or bars preferably have a length of between approximately ten inches and approximately eleven inches and more preferably approximately ten and three-eighths inches. If the width of the rumble strips is more or less than that, the length of the metal plates or bars may be proportionately reduced or increased as desired.
Although the invention has been shown and described with respect to certain embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of the specification. In particular, with regard to the various functions performed by the above-described components, the terms (including any reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed component which performs the function of the herein illustrated exemplary embodiments of the invention. In addition, while a particular feature of the invention may have been disclosed with respect to only one embodiment, such feature may be combined with one or more other features as may be desired or advantageous to any given or particular application.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/894,049, filed Oct. 22, 2013, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61894049 | Oct 2013 | US |