The present invention relates to portable safes. More particularly, this invention relates to a portable safe having a novel latching mechanism.
In contrast to large safes used in banks or other commercial facilities, small safes are often used by individuals in their homes. These small safes may store valuable items such as jewelry, or important papers. Some small safes are intended to limit access to items such as handguns that can be dangerous when used incorrectly.
Various types of latching mechanisms have been provided for small safes, both manual and motorized. Manual latching mechanisms may utilize a key lock or combination wheel in order to release the latch. Motorized latching mechanisms typically have a motor that releases the latch, which can be actuated by an electronic keypad or biometric sensor. Some latching mechanism designs are more secure than others. For example, some latching mechanisms of the prior art are prone to unintentional opening, such as when the safe is accidentally dropped.
Further room exists in the art for safes having novel latching mechanisms.
The present invention recognizes and addresses the foregoing considerations, and others, of prior art construction and methods.
One aspect of the present invention provides a safe comprising a housing having a first housing portion and a second housing defining an interior compartment for storage of items, the second housing portion being pivotal with respect to the first housing portion between closed and open positions. A latching mechanism, associated with one of the first housing portion and the second housing portion, cooperates with spaced apart first and second strikers associated with the other of the first housing portion and the second housing portion to maintain the second housing portion in the closed position. For example, the latching mechanism may be associated with the first housing portion.
According to this aspect, the latching mechanism includes movable first and second locking elements that engage respective of the first and second strikers when the second housing portion is being maintained in the closed position. The first and second locking elements are retracted away from the first and second strikers to release the second housing portion into the open position.
The latching mechanism according to this aspect further includes a motor having a rotatable output shaft carrying a drive dog. A rotating plate rotatable about an axis is also provided, the rotating plate having an engaging element that is driven by the drive dog. First and second levers are pivotally connected at their proximal ends to the rotating plate at substantially diametrically opposed locations, distal ends of the first and second levers being connected to the respective locking elements.
In some exemplary embodiments, the rotating plate's axis corresponds to an axis of the output shaft of the motor. Preferably, the drive dog may be located on a flywheel having predetermined mass. The rotating plate may interpose a housing of the motor and the flywheel to form a compact arrangement. The drive dog itself may comprise a radial protrusion on the flywheel, with the engaging element comprising a lateral tab on the rotating plate.
According to some exemplary embodiments, the distal ends of the first and second levers may be pivotally attached to respective first and second stopper plates which are themselves pivotal with respect to a corresponding support structure. For example, the first and second stopper plates may be connected to the first and second locking elements via respective springs. Moreover, the first and second locking elements may also be pivotally connected to the corresponding support structure.
In exemplary embodiments, an electronic controller is provided to control operation of the motor. At least one of a biometric sensor and a combination keypad is preferably in electrical communication with the electronic controller. A mechanical key lock may also be provided, which is operative to engage one of the first and second levers so as to cause the first and second locking elements to be retracted away from the first and second strikers.
According to another aspect, the present invention provides a latching mechanism for maintaining a container cover in a closed position. The latching mechanism comprises spaced apart first and second strikers attached to an inside of the container cover. Movable first and second locking elements engage respective of the first and second strikers when the container cover is being maintained in the closed position. The first and second locking elements are retracted away from the first and second strikers to release the container cover into an open position. A rotatable flywheel carrying a drive dog is also provided. A rotating plate, rotatable about an axis, has an engaging element that is driven by the drive dog. The latching mechanism further includes first and second levers pivotally connected at their proximal ends to the rotating plate at substantially diametrically opposed locations, distal ends of the first and second levers being connected to the respective locking elements.
A still further aspect of the present invention provides a latching mechanism for maintaining a container cover in a closed position. The latching mechanism comprises spaced apart first and second strikers attached to an inside of the container cover. Movable first and second locking elements engage respective of the first and second strikers when the container cover is being maintained in the closed position. The first and second locking elements are retracted away from the first and second strikers to release the container cover into an open position. A motor having a rotatable flywheel on an output shaft thereof is also provided, with the flywheel carrying a drive dog on its periphery. A rotating plate, rotatable about an axis, has an engaging element that is driven by the drive dog. The rotating plate in this embodiment interposes a housing of the motor and the flywheel. The latching mechanism further includes first and second levers pivotally connected at their proximal ends to the rotating plate, distal ends of the first and second levers being connected to the respective locking elements.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the present invention.
A full and enabling disclosure of the present invention, including the best mode thereof directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended drawings, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
Reference will now be made in detail to presently preferred embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As shown in
Referring now also to
Biometric sensor 22 detects known biometric characteristics of the user which, when confirmed, cause the latching mechanism to be released. In this case, biometric sensor 22 is configured as a fingerprint sensor which reads individualized data from the user's fingerprint. As shown, both keypad 20 and biometric sensor 22 are conveniently located on and substantially flush with an upper surface 24 of the housing's front portion 18. A program button 26, accessible only when cover 14 is open, is used to initiate the process by which an authorized user's fingerprint characteristics are stored. Program button 26 also allows a user to select a unique combination for keypad 20 other than the default combination set in the factory.
A mechanical key lock is also provided to release the latching mechanism using a key supplied with safe 10. For example, if there is a complete loss of power causing neither keypad 20 or biometric sensor 22 to be operative, then the key can always be used to open cover 14. In this embodiment, the key hole is located on the front panel of front portion 18, behind a flexible flap 28. Flap 28 protects the key hole, and obscures it from view for aesthetic reasons.
The structure and operation of the latching mechanism inside of front portion 18 will be described in greater detail below. In this regard, however,
Referring now to
Biometric sensor 22 operates in conjunction with a fingerprint matching digital signal processor (“DSP”) 38 to determine when a user's fingerprint is recognized. In this regard, controller 34 and DSP 38 communicate when a match is confirmed so that the latching mechanism is released via latch motor 40. Alternatively, controller 34 will cause latch motor 40 to be activated when the correct combination is entered via keypad 20.
DSP 38 and biometric sensor 22 are powered in this case by a switching power supply 42 which converts the voltage of power source 36 to the correct voltage level required by these components. In order to conserve battery power, controller 34 enters into a “sleep mode” during periods of inactivity. Toward this end, a switch 44 (typically an electronic switch) is opened when the sleep mode is in effect to inactivate power supply 42. The sleep mode will cease when biometric sensor 22 or one of the buttons of keypad 20 is touched.
Preferably, touching either biometric sensor 22 or one of the buttons of keypad 20 will be acknowledged by an associated visual indicator. In the case of biometric sensor 22, the visual indicator may be an adjacent LED which is red when the biometric sensor is first touched and turns green when a match is confirmed. The buttons of keypad 20 may be backlighted, such that they are illuminated when one of the buttons is first depressed. In addition, preferred embodiments provide an interior light, such as a bright white LED, which illuminates the interior of the safe's storage compartment when cover 14 is opened. These various lights are collectively indicated at 46 in
Latch motor 40 is secured to the housing of safe 10, such as via a suitable bracket 56. In this embodiment, a flywheel 58 is attached to the output shaft of motor 40 for rotation therewith. Flywheel 58 has a drive dog 60 that engages a lateral tab 62 on a rotating plate 64. In this case, drive dog 60 is configured as a protrusion on the periphery of flywheel 58. For example, the protrusion may be easily formed by a screw that is threaded into a radial hole defined in flywheel 58. Rotating plate 64 is coaxial with the output shaft of motor 40 but is not directly connected to the output shaft. Instead, rotating plate 64, which is in this case positioned so as to interpose the motor housing and flywheel 58, turns when drive dog 60 is engaged by tab 62. Alternatively, an arcuate slot may be formed in the rotating plate in which a drive dog travels between limits.
The proximal ends of a first drive lever 66 and a second drive lever 68 are pivotally connected to rotating plate 64. As can be most easily seen in
In stating that the connection points for drive levers 66 and 68 on rotating plate 64 are “approximately diametrically opposite,” it is meant that an imaginary line passing through these connection points may pass just outside of the motor's output shaft rather than through it. The opposed orientation of the connection points desirably makes the latching mechanism more drop tolerant than it might otherwise be. This is because an impact that tends to push drive lever 66 in an opening direction will push drive lever 68 in a closing direction (and vice versa).
Drive lever 66 carries a protrusion 70 at a predetermined location along its length. Protrusion 70 cooperates with a drive dog 72 of key lock 74 to push drive lever 66 in the direction of motor 40. Key lock 74 is manually operated by a key 76 that is inserted by a user into the key hole. As noted above, the key hole is normally covered in this case by a flap 28 that the user can easily move to expose the key hole when desired.
Opening of the latch mechanism using key lock 74 can be explained most easily with reference to
Opening of the latch mechanism using motor 40 can be explained most easily with reference to
Preferably, motor 40 may be a DC stepper motor that may move and stop in discrete increments as directed by controller 34. The mass of flywheel 58 provides inertia that can be used to facilitate opening of the latching mechanism. In the regard, motor 40 preferably rotates flywheel 58 in the direction opposite the opening direction for a predetermined arc, before changing to the opening direction. For example, as illustrated in
It can thus be seen that the present invention provides a small safe utilizing a novel latching mechanism. While one or more preferred embodiments of the invention have been described above, it should be understood that any and all equivalent realizations of the present invention are included within the scope and spirit thereof. The embodiments depicted are presented by way of example only and are not intended as limitations upon the present invention. Thus, it should be understood by those of ordinary skill in this art that the present invention is not limited to these embodiments since modifications can be made. Therefore, it is contemplated that any and all such embodiments are included in the present invention as may fall within the scope and spirit thereof.
This application is based upon and claims the benefit of U.S. provisional application Ser. No. 62/422,260, filed Nov. 15, 2016, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1118435 | Mosler et al. | Nov 1914 | A |
2819692 | Johnson | Jan 1958 | A |
3582169 | Koenig | Jun 1971 | A |
4309065 | Pappas | Jan 1982 | A |
4768021 | Ferraro | Aug 1988 | A |
5009088 | Cislo | Apr 1991 | A |
5161396 | Loeff | Nov 1992 | A |
5280755 | Batur | Jan 1994 | A |
5498040 | Silye | Mar 1996 | A |
5595076 | Weinerman et al. | Jan 1997 | A |
5701770 | Cook et al. | Dec 1997 | A |
5760703 | Becker | Jun 1998 | A |
5826715 | Thompson | Oct 1998 | A |
5881584 | Brunoski et al. | Mar 1999 | A |
5884948 | Weinerman et al. | Mar 1999 | A |
5946955 | Suggs | Sep 1999 | A |
5987941 | Zocco | Nov 1999 | A |
6065408 | Tillim | May 2000 | A |
6089168 | Dunlap | Jul 2000 | A |
6318134 | Mossberg et al. | Nov 2001 | B1 |
6570501 | Bushnell et al. | May 2003 | B2 |
6766040 | Catalano et al. | Jul 2004 | B1 |
6772612 | Carson | Aug 2004 | B2 |
6843081 | Painter | Jan 2005 | B1 |
6845640 | Loeff et al. | Jan 2005 | B2 |
7040675 | Ott | May 2006 | B1 |
7118483 | Beadell | Oct 2006 | B2 |
7178370 | Engel | Feb 2007 | B2 |
7546920 | Horn et al. | Jun 2009 | B1 |
7878035 | Yamaguchi | Feb 2011 | B2 |
8061514 | Necchi | Nov 2011 | B2 |
8074477 | Weiche | Dec 2011 | B1 |
8375752 | Chang | Feb 2013 | B2 |
8746024 | Baker | Jun 2014 | B2 |
8903605 | Bambenek | Dec 2014 | B2 |
9218699 | McIntyre et al. | Dec 2015 | B1 |
9423211 | Ho | Aug 2016 | B2 |
9530266 | Delattre | Dec 2016 | B2 |
20090071208 | Wang | Mar 2009 | A1 |
20090151410 | Hapke | Jun 2009 | A1 |
20110203328 | Vilkomirski et al. | Aug 2011 | A1 |
20130025511 | Maxwell | Jan 2013 | A1 |
20130055933 | Markman | Mar 2013 | A1 |
20130229098 | Pletcher | Sep 2013 | A1 |
20170231349 | McLean | Aug 2017 | A1 |
Entry |
---|
“Instruction Manual: VT20i/VT10i,” Vaulteksafe.com, downloaded Sep. 27, 2016, all enclosed pages cited. |
Design U.S. Appl. No. 29/579,182, filed Sep. 28, 2016, all enclosed pages cited. |
Number | Date | Country | |
---|---|---|---|
62422260 | Nov 2016 | US |