A. Field of the Invention
This invention pertains to self-defense devices, and more particularly to a device adapted to stun an assailant by projecting an electrically charged fluid.
B. Prior Art
Various non-lethal self-defense weapons exist in the prior art. For example, hand held devices capable of delivering an electric charge to an assailant are well known. However, such devices require the user to be in close proximity to the assailant for contacting the assailant with a high voltage element on the device. For obvious reasons, this is undesirable. U.S. Pat. No. 4,034,497 to Yanda discloses a self-defense device having a reservoir of liquid which is heated by detonation of a cartridge prior to projection at an assailant. While this device allows the user to maintain a safe distance from the assailant, heated liquid is not perceived as effective a deterrent as an electric shock.
U.S. Pat. No. 5,225,623 to Krasnow discloses a stun gun with one or two reservoirs having a filling port for introducing a fluid and a one-way vent for maintaining air pressure on the liquid as the reservoir level drops. A handle portion includes a battery power supply, a trigger-style on-off switch for accessing the power supply, and a trigger guard. Each of two barrels communicates at its proximal end with a reservoir and at its distal end with a nozzle, the reservoir, barrel and nozzle collectively defining a fluid path. While this devise appears to allow the user to incapacitate the target at a distance, the internal configuration/components of the described device do not allow for consistent or reliable use. Further, this device does not allow for a sufficient duration of charged liquid flow on the target.
Prior attempts to use electrically conductive fluid to deliver a shock to a biological target as a means of rendering it dysfunctional by causing muscle contraction have generally failed because these devices were designed in such a way as to cause only a very short period of flow (squirt) to the target, thus minimizing or eliminating contact with the electrical source and electrical current flow. In order to effectively disable the biological target, the conductive fluid must flow long enough to allow for the liquid to penetrate clothing and sustain an effective shock for a minimum of two seconds. If however, the conductive fluid and in the case of the device described herein, the pressurized gas that is pushing the fluid out, is not metered sufficiently, the fluid flow will end and disconnect the fluid from the conductive nozzles cutting current flow prematurely and consequently be totally ineffective.
The non-lethal defense system that has been accepted by law enforcement agencies across the nation “TASER” delivers an electrical shock via two wires with barbs at the end of them to a human target. After contact is made with the human target, the electric shock produced by the unit via the dart like barbs that are connected to the wires is meant to disable the human target. This approach has variety of disadvantages. First, the system is somewhat unreliable, and not easily reloaded.
Moreover, contact is recommended to be made in the back of the human body of an attacker, which means that you must have some sort of physical contact with the attacker to deliver an accurate shot. If the barbs miss or only one barb hits the human target the device will not work. If the attacker should pull one of the barbs out of his body the device is no longer useful. If any of these disadvantages should occur, the individual using the device will not have an opportunity to discharge a second shot because this device has only one shot and takes several seconds to reload the device. In such eventuality, the device becomes useless and the user must rely on another method of defense.
It is, therefore, an object of the present invention to provide a self-defense device which allows the user to electrically shock an assailant while maintaining a safe distance from the assailant and protecting the user from shock.
It is a further object of the invention to provide a reliable self-defense device which projects an electrically charged fluid at an assailant for stunning the assailant thereby repelling an attack.
A further object of the invention is to provide a self-defense device which employs a high voltage electrical source in combination with an electrically conductive fluid to provide a desired stun effect.
A still further object of the present invention is to provide a stun gun which is convenient to handle and which maximizes the electrical potential transferable to the target.
A still further object of the present invention is to provide a stun gun which appears to be a common flashlight.
Still another object of the invention is to provide a portable device which projects a fluid stream, or dual fluid streams, light emitting in transit to, or upon contact with, a target.
This invention relates generally to devices for use as self-defense- and particular, to non-lethal self-defense devices which are used to disable and or incapacitate an attacker at a specific distance by delivering an electrical charge to an attacker.
It is known that such a device is capable of being effective at a distance. The idea being to attempt to avoid a hand-to-hand confrontation. In the event of a hand-to-hand situation, the self-defense device would operate the same as a stung gun device. This device is also easily re-loadable in case the person needs to use this device upon multiple attackers. None of the prior art arrangements are able to satisfy these desires.
This invention provides a multi-use non-lethal device that can be used to overcome a hostile threat at a distance, or at a hand-to-hand range. This invention can be safely shot at or discharged on any surface of the body (including the face) without fear of causing permanent physical injury.
Another purpose of this invention to provide a less than lethal device which has greater range than other conventional devices and does not resemble a handgun. For instance, an embodiment of this invention resembles a flashlight. Thus, not appearing to be a lethal threat will not trigger a lethal response from the combatant.
Additionally, another purpose is to provide a less than lethal device which can be reloaded quickly after the two shots have been exhausted or if there are multiple attackers.
It is also a desire to provide a less than lethal device which is effective, highly portable, light weight and can be concealed at all times.
Further, it is also an objective of this invention to provide a device that limits a user's ability to shock a target for prolonged periods of time, as this has, with other electrically based devices, been a source of abuse, and serious health risks. The device is intended to incapacitate an attacker only, which can be accomplished quickly.
The invention herein described provides a non-lethal means to incapacitate a biological target. In accordance with the invention, first and second barrels each comprise two tubular reservoirs for holding electrically conductive fluid. Two pistons are located in the rear of the barrels and fully occupy the interior diameters of the tubular reservoirs. Pressurized gas pushes the pistons simultaneously along the interior of the tubular reservoirs. Both pistons are arranged in sliding and sealing harmony with the interior of a tubular reservoirs. A coupling arrangement encompasses the pistons to each of the expulsion pistons, displacement of the piston(s) in the tubular reservoirs in response to the pressurized gas causes the electrically conductive fluid to be dispersed in the form of a continuous stream from the nozzles of each of the pressurized reservoirs. The desired electrical potential is applied to the continuous stream of electrically conductive fluid being expelled via a conventional stun gun technology system that is attached to the nozzle portion of each tube.
A preferred embodiment comprises two tubular reservoirs for holding the electrically conductive fluid in each chamber or barrel. For example, two tubular reservoirs containing electrically conductive fluid would be located in each barrel. The fluid in the first tubular reservoir will be positively charged, while the fluid in the second tubular reservoir will be negatively charged. It is anticipated that only one of the barrels will be used at a time. This will allow the user to use the device twice without having to reload.
Each barrel includes a pressurized gas cartridge having compressed gas within. An electrically activated lance is provided for piercing the pressurized gas cartridge, whereby the compressed gas is released and directed into the back of the pistons, thus moving the pistons through the tubular reservoirs containing electrically conductive fluid, thereby expelling the fluid. There is also an electrical switch for activating the electrification system, laser sighting device and the flashlight component. The electrical switch is designed to activate the conventional stun gun like component along with the electrically conductive fluid.
The invention includes nozzles which are conductive and also can be used to touch an attacker in a hand to hand situation with the intent to incapacitate. In most situations, there will remain a supply of compressed gas after the electrically conductive fluid is completely expelled. The remaining pressurized gas can be used to create a very loud sound, which can be used to summon assistance.
An embodiment of the invention incorporates a flashlight system to identify the assailant, and a laser is used to assist in aiming the device, particularly in the dark. Additionally, the flashlight system serves to disguise the device as a flashlight, thereby allowing for the element of surprise. The methods used in this non-lethal device for sustaining the length of time that the electrically conductive fluid is making contact with both the device as well as the target is to control the release of the pressurized gas in such a way as to maintain sufficient pressure to adequately push the pistons, and thereby cause substantially straight and solid streams of electrically conductive fluid, for approximately 2-3 seconds before the gas supply is exhausted. The time that the two streams of charged fluid are in contact with the target are referred to herein as “time on target”.
When pressurized gas is released from it's container, the rapid expansion of that gas into a chamber with a lower atmospheric pressure will cause rapid cooling where the gas is being released. This cooling can cause ice to form, which can block the flow of the gas and thus disable the mechanism.
The invention described herein reduces this “icing-up” effect by equalizing the pressure difference between the inside of the gas cartridge and the atmosphere surrounding the cartridge. The invention places the gas cartridge in a chamber, which is also the holding container from which the released gas is metered into the piston chambers. When the gas cartridge is breached, the sudden build up of gas pressure causes heat production which helps to counter the cooling caused by gas expansion. Using this method causes an immediate slow down in the gas expansion rate thus minimizing ice production.
Existing electrically charged liquid stream devices have two major limitations, which include the short squirt effect caused by applying pressure to the pistons too quickly, and interruption in the flow of liquid (sputtering) caused by ice blockage (icing-up) at the point of gas emission. The invention described herein effectively eliminates these problems.
Each barrel on the device comprises a tubular reservoir 14, a piston, and a conductive nozzle 16. The nozzle 16 on each paired barrel will have different charges (one positive and one negative). For example, the barrel with the ‘first cartridge’ 2 has a positive nozzle 16 (shown with a “+”) and a negative nozzle (shown with a “−”). Therefore, as the fluid 15 is pushed through the positively charged nozzle 16+, the fluid becomes positively charged. And as the fluid 15 is pushed through the negatively charged nozzle 16−, the fluid becomes negatively charged. When the two fluid streams come into contact with each other on the target, the differential voltage from the oppositely charged streams is transferred through the target, causing incapacitation.
Immediately after the electronic firing mechanism 21 for the lance 20 is accelerated forward to puncture the gas container 2, the electronic firing mechanism 21 becomes disconnected, which then allows the full electrical power of the device to be used by the conductive nozzles 16. When the compressed gas is released into the chamber 19, the device maintains consistent and prolonged gas pressure in the chamber 19 and pistons 17 by exhausting some of the gas volume through a pressure regulated blow off valve 30. This allows the device to propel charged fluid in a controlled manner for an extended period of time. The balance of the excess gas in the chamber 19 flows into a pressure activated switch 32 which connects a second pressurized gas cartridge equal to those previously activated. The basic electrical energy supply to the “stun gun” type device 26 and accessories such as laser aiming device 27 flashlights or indicator lights 35 is a battery or batteries 25 equal to that required to energize the “stun gun” type device. The “stun gun” device includes a capacitor. An O ring 36 secures the compressed gas cartridge to the housing 37. The rear housing 38 comprises a blow off valve 30 and an electronic lance 33. When pressure from the gas chamber is exhausted, the air flow tube 29 causes the spring piston 47, the rod 48, and the rod piston to separate. This separation disconnects electrical flow between the battery and the first cartridge (two barrels and the housing).
The electronic lance 33 is a puncturing mechanism that comprises a small explosive device, such as a blast cap, that, when ignited, propels the lance 20 forward and into the compressed gas cartridge 2. Further, after the blast cap is ignited, electricity from the battery 25 is then shunted to the nozzles 16 to charge the fluid 15. The channel 34 allows high pressure gas to flow from the gas chamber 19 to the barrel. The typical compressed gas cartridge 2 will use pressures of 900 to 1200 psi, depending on ambient conditions. Upon discharge of the gas into the gas chamber 19, the pressure will preferably reach 100 to 110 psi. Higher pressures may create shorter time on target, while lower pressure may limit the straight line trajectory of the ejected fluid. The contact point 23 connects the battery 25 to the laser sighting device 27. The contact point 28 connects the battery 25 to the stun gun device. The contact point 22 connects the battery 25 to the flashlight 35.
When high pressure gas enters through inlet 39 and overcomes adjustable spring 40 tension thus moving the piston's 41 “O” ring 42 away from valve seat 43 thus allowing excess gas pressure to pass through blow-off valve housing 38 and exhaust through housing outlet orifice 44. Spring 40 and piston 41 are held in the housing 38 and against the piston seat 43 by an adjustable screw-in cap 45.
When the device is activated (gas cartridge 2 punctured) pressurized gas is allowed to enter the channel 34 forcing the piston 17 toward and against the fluid 15 forcing it through the conductive nozzle orifice 62. When this operation is complete, fluid stops flowing, and the nozzles 16 are sealed by the piston's ‘O’ ring 63 The ‘O’ ring 63 prevents gas leakage and fluid 15 leakage around the piston 17. Another ‘O’ ring 64 is located on the back end of the nozzle 16 to prevent fluid leakage past, and around the sides of, the nozzle 16. Excess gas pressure is then forced to exhaust through the adjustable blow off valve 30.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
Number | Name | Date | Kind |
---|---|---|---|
3374708 | Wall | Mar 1968 | A |
3971292 | Paniagua | Jul 1976 | A |
4034497 | Yanda | Jul 1977 | A |
4846044 | Lahr | Jul 1989 | A |
4852454 | Batchelder | Aug 1989 | A |
4930392 | Wilson | Jun 1990 | A |
5103366 | Battochi | Apr 1992 | A |
5225623 | Krasnow | Jul 1993 | A |
5409638 | Battochi | Apr 1995 | A |
5625525 | Coakley et al. | Apr 1997 | A |
Number | Date | Country | |
---|---|---|---|
20090183413 A1 | Jul 2009 | US |