In recent years, the cost of generating electricity has increased dramatically. In California, the monthly electric bill for many consumers has more than doubled in the past year. Rolling blackouts, a condition in which geographical sections of the community are alternately cut-off from receiving electricity during an electrical shortage crisis, are becoming increasingly commonplace. As our planet's natural resources are depleted and as population increases, the importance of effectively harnessing alternative methods of generating electricity has increased.
Photovoltaic panels (also called solar panels) are well known and are used to generate electricity from sunlight. Sunlight is “free” and so the cost of electricity generated by a photovoltaic panel is extremely low. However, solar energy is not widely used to generate electricity for residences because of the expense associated with installing a solar energy system onto a residence. Typically, photovoltaic panels are currently fixedly attached to the roof of a house and wired directly into the home's electrical system. Some disadvantages include the fact that the roof may not be the optimum location on the home owner's property to receive the best, most direct sunlight. Also, once the system is installed, it is permanent. In other words, if the homeowner moves to a new home, he cannot take the solar generating system with him. Also, it is extremely expensive to install a roof mounted solar generating system. Current estimates range from $20,000 to $30,000.
U.S. Pat. No. 6,201,181, issued to Azzam, discloses a portable modular solar cart. However, the cart disclosed by Azzam is inadequate for effectively supplying enough energy to satisfy the needs of a typical residence.
What is needed is a better portable solar generator.
The present invention provides a portable PV modular solar generator. A plurality of wheels are attached to the bottom of a rechargeable battery container. At least one rechargeable battery is contained inside the rechargeable battery container. A power conditioning panel is connected to the rechargeable battery container. At least one photovoltaic panel is pivotally connected. In a preferred embodiment, the rechargeable battery container is a waterproof battery enclosure having a knife switch connection. A mast having a rotation bar is supported by the waterproof battery enclosure. At least one solar panel support brace for supporting the photovoltaic panel is attached to the rotation bar. The power conditioning panel is waterproof, is attached to the mast and has a door. When the door is opened, at least one safety switch is opened, breaking an electric circuit. The waterproof power conditioning panel has a charge controller and an inverter. The charge controller is electrically connected to at least one rechargeable battery and at least one photovoltaic panel, and is capable or receiving auxiliary power inputs.
A top view of the interior of battery enclosure 4 is shown in
When erector arm support 60 is fully raised, solar panel support braces 64 will be in the erected position shown in
The electrical components of the preferred embodiment of the present invention are shown in
PV panels 10 and batteries 26 are connected to junction box 100. In a preferred embodiment each PV panel 10 is capable of generating approximately 120 watts of electricity when impacted by direct sunlight. In the preferred embodiment, junction box 100 can also receive DC electrical input from auxiliary power units. PV panels 10 are connected to junction box 100 through switch 114, batteries 26 are connected to junction box 100 through switch 110 and the auxiliary power units are connected to junction box 100 through switch 112. As a safety device, the preferred power conditioning panel 8 is configured to automatically open switches 114, 112 and 110 whenever the door of power conditioning panel 8 is opened, thereby preventing a potential mishap.
When sunlight strikes PV panels 10, electricity is generated and flows from PV panels 10 to junction box 100. Charge controller 102 monitors the condition of batteries 26 to ensure that they are not overcharged, or drained too much. If batteries 26 require further charging, electricity will be directed from junction box 100 to batteries 26 for charging. The current flow will pass through knife switch connection 33 (see also
DC electricity will flow from either PV panels 10 or batteries 26 through charge controller 102 where its level is preferably monitored by DC voltmeter 104. DC current can be routed to a DC load by closing switch 116. Electricity then flows through inverter 106 where the current is converted to AC. Preferably multimeter 108 monitors the level of AC current. AC current then flows through switch 118 (normally closed) to AC sub panel 120.
AC sub panel 120 is configured so that electricity coming from power conditioning panel 8 can be routed to specific areas within the AC load. For example, if the AC load is a residence the residence owner may decide that he wants to power his kitchen using electricity generated by PV modular platform 1. The owner can then close the breaker within AC sub panel 120 representing the kitchen. Electricity will then flow from AC sub panel 120 through safety switch 121 through AC sub panel 122 where it will be directed to the kitchen. To save money spent on purchasing electricity supplied through the utility grid, the owner can then open the breaker in AC main panel 122 from the utility grid for the kitchen. In this instance, the kitchen would be getting its entire electrical needs from PV modular platform 1 and not from the utility grid.
In the first preferred embodiment, PV panels 10 are wired in parallel (see
In the first preferred embodiment, PV modular platform was shown as a single power generation unit. In the second preferred embodiment, two auxiliary PV modular platforms are added to a main PV modular platform 1. The auxiliary PV modular platform is similar in design to PV modular platform 1 described above with the exception that the auxiliary PV modular platform preferably does not contain an inverter. The inverter is unnecessary because the DC current from the auxiliary unit will feed directly into the main PV modular platform 1 at via switch 112 (
By connecting two auxiliary PV modular platforms to PV modular platform 1, the entire system can provide approximately 1.2 kilowatts, this is enough to power a house. It is estimated that the total purchase price for two auxiliary PV modular platforms and a main PV modular platform is approximately $11,000. If the current monthly electric bill for a residential electricity user is $300/month, it will take slightly more than three years before a purchaser of the second preferred embodiment recovers his cost.
A third preferred embodiment is shown in
PLC 203 is programmed to monitor the utility grid. Multi-meter 201 reports the status of the utility grid to PLC 203. If the utility grid is not energized (i.e., no current is detectable from the utility grid), PLC 203 opens switch 202. Modular platform 1 (
Programmable circuit selection panel 200 includes PLC 203, actuator 204, and circuit activation switches 205. PLC 203 includes a programmable time select variable control parameter that is entered by the user as an input to PLC 203. The time select control parameter allows PLC 203 to automatically select and deselect circuit activation switches 205 based on the time of day. This, in turn, allows programmable circuit selection panel 200 to be programmed for maximum energy efficiency.
Based on inputs received from PLC 203, actuator 204 will open or close circuit activation switches 205. For example, as shown in
A fourth preferred embodiment of the present invention is shown in
Attached to the end of cable 206 are female connection prongs 209. Attached to the end of cable 207 is male connection prong 210. As shown in
In
A fifth preferred embodiment is shown in
As shown in
In the fifth preferred embodiment, the repositioning of modular platform 300 (
Modular platform 300 can be repositioned manually by hand. To manually reposition modular platform 300, the operator moves indicator 310 (
For example,
Remote control unit 301 can directly control the positioning of modular platform 300. To remotely control the positioning of modular platform 300, the operator moves indicator 310 (
To cause modular platform 300 to pivot in a counterclockwise direction, the operator presses button 311. This causes wheels 304 to rotate forward and wheels 305 to rotate backward.
To cause modular platform 300 to pivot in a clockwise direction, the operator presses button 312. This causes wheels 304 to rotate backward and wheels 305 to rotate forward.
To cause modular platform 300 to move forward, the operator moves toggle switch 313 downward. This causes wheels 304 and wheels 305 to move forward.
To cause modular platform 300 to move backward, the operator moves toggle switch 313 upward to the position shown in
For example,
Modular platform 300 can also be positioned automatically without any operator input. To place modular platform 300 in automatic mode, the operator moves indicator 310 (
For example, as shown in
A sixth preferred embodiment is shown in
A seventh preferred embodiment is shown in
Mast 6 serves as a raceway for wiring for modular platform 400. Consequently, if mast cap lid 451 is removed during operation of modular platform 400, serious injury could result. Therefore, in the seventh preferred embodiment, mast cap lid 451 has been configured with solenoids 452 to act as electromagnetic locks. When electrical current is generated by the PV panels, a current is sent to solenoids 452. This activates the cylinders of the solenoids and injects them into mast cap 450 affecting a locked state between mast cap 450 and mast cap lid 451.
Also, in the seventh preferred embodiment, ventilation fan 453 is mounted on the underside of mast cap lid 451. Ventilation fan 453 provides ventilation for the entire mast when the internal circuitry is energized.
The compact size, flexibility, mobility and modularity of the present invention provides an easy to install and maintain device. The present invention is a significant benefit to the community. It provides an independent distributed power source that can eliminate power blackouts or brownouts for users.
Although the above-preferred embodiments have been described with specificity, persons skilled in this art will recognize that many changes to the specific embodiments disclosed above could be made without departing from the spirit of the invention. For example, although the second preferred embodiment discusses connecting the main PV modular platform to two auxiliary PV modular platforms, it is also possible to connect it to just one auxiliary PV modular platforms or more than two auxiliary PV modular platforms. Also, it is possible to have other devices capable of generating electricity connected to a main PV modular platform, such as a windmill or a fuel-burning generator. Also, although
The present invention relates to solar electric generators, and in particular, to portable solar electric generators. This application is a continuation of U.S. Pat. No. 7,492,120, issue date Feb. 17, 2009; which is a continuation-in-part of U.S. Pat. No. 6,396,239, issue date May 28, 2002; both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10116857 | Apr 2002 | US |
Child | 12372434 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09828114 | Apr 2001 | US |
Child | 10116857 | US |