1. Field of the Invention
The present invention relates to portable panels for heating forced air with solar radiation.
2. Description of the Related Art
Solar energy is very effective for heating living and working spaces. Passive solar heating, such as sun falling on a roof or window, will heat the space inside. But to effectively heat the inside space, at selected times, apparatus is required.
Active solar heating systems use electrical or mechanical equipment to increase the amount of usable solar heat provided to the space to be heated (generally called living space, although it includes garages and offices and the like). For example, fans might deliver heated air to the living space.
Photovoltaic array may also be used for heating, but converting sunlight into electricity and then back to heat is inefficient. However, the ability to store the energy in a battery is an advantage.
A need remains in the art for improved active solar heating panels for providing heat to a living space.
An object of the present invention is to provide active solar heating panels for providing heat to a living space. Individual solar heating panels according to the present invention are generally portable, and are configurable into arrays.
Each solar panel includes a frame with a panel backing for retaining a collector sheet and glazing to allow the sun to reach the top surface of the collector. The collector sheet is generally parallel to the backing and the top layer, and spaced apart from each.
The frame includes side walls. An input side wall includes air holes for air to enter the panel, and an output side wall includes air holes for air to exit the panel. The collector plate bisects the input and output air holes such that air travels over both the top surface and the bottom surface of the collector plate.
As a feature, the collector plate may be textured to increase turbulent airflow. The collector plate is generally black and may comprise corrugated steel.
The glazing may include an acrylic glass (such as Plexiglas®) outer layer and a regular window glass inner layer (e.g. silicate glass). The acrylic glass protects the glass from the elements, while the window glass is cheaper and stands up to the high internal temperatures of the panel better. Alternatively, the outer layer could comprise safety glass or tempered glass or the like.
The frame may be composed of composite and include grooves for holding the collector sheet and glazing layers in place.
The solar panels are designed to be configured into arrays. Straight-through panels have air holes on opposing sides, while corner panels have air holes on adjacent sides.
Air is forced into air holes in an entrance panel on one side of the array, travels through each panel in turn, and exits through air holes in an exit panel.
Equipment for forcing air through the array may include a fan, input and output air manifolds, and tubing. A temperature sensor monitors air leaving a panel or array and provides data to a control unit, which controls the fan according to the data. Power to the fan might be provided via an electrical outlet, a battery, a photovoltaic cell, or the like.
The following reference numbers are used in the figures:
Corrugated sheet 110 is preferably generally centered with respect to air holes 104, so that air flows over and under sheet 110. The corrugations run perpendicular to the airflow to cause turbulent airflow and increase heat transfer.
In a preferred embodiment, each panel 100 is portable, i.e. compact and light enough to be carried and installed by a single person. For example, Panel 100 is two feet square and 3 inches thick. It weighs about 20 pounds. Frame 102 is formed of a light tough material such as the weatherproof composite used for decking. The frame is ¾ inch thick. Air holes 104 are 1¼ inch in diameter. Collector plate 110 is corrugated steel with 1¼ inch corrugations, and is painted black on the top surface (facing the glazing). Backing 112 is tempered masonite, ⅛ inch thick.
Panels 100 are tough and portable. Panels manufactured as described above have been tested to temperatures above real world conditions, intense rain and snow, and direct sunlight without failures. Panels dropped from heights of less than 6 feet generally have unharmed frames, though the window glass layer breaks around 25% of the time (the broken glass was contained within the panel structure in these cases).
Those skilled in the art will appreciate that panels 100, 140 may be connected in various combinations as heating requirements dictate and space allows. For example, several straight-through panels 100 may be connected in a row where a long narrow space is available. A heater may be formed of a single panel (see
The storage modules could be stacked in a basement, assembled outside along a wall, or even placed on the uneven ground under a mobile home.
Panel arrays may be mounted on any sunny wall or roof or on a rack. Panels may be arrayed around a window or along the skirting of a mobile home. Each array includes an input manifold 132, connected to blower 150, and an exit manifold 134 for providing heated air 160 to the space to be heated, for example via a flexible duct (not shown). Panels 100, 130 may be adjacent to each other as shown in
Blower 150 may be mounted in a box designed to insert into a window much like a standard window air conditioner. It could mount horizontally on the sill of a double or single hung window, or vertically in a slider. It could also be installed in an opening cut into the exterior wall if the user so desires. If the user wants to cut openings in the roof to run the ducts through, blower 150 could even be mounted on an interior wall anywhere in the building. Blower 150 might comprise a 120 volt squirrel cage model which plugs into any interior outlet. An optional 12 volt DC model is powered by a photovoltaic panel (not shown). This would allow use of the system anywhere in the world and when a power outage occurs as long as it is exposed to sunlight. The blower moves up to 250 CFM of air and is controlled by a variable speed switch. Sensor 172 near or within discharge manifold 134 of heater 100 prevents heated air 160 from entering the space to be heated when the temperature 174 in heater 100 is lower than the current temperature 176 of that space. In one embodiment, sensor 172 prevents fan 150 from running if the temperature of the air in heater 100 falls below 95° F. As a feature, a bypass switch may be provided so the owner can draw cooler air if desired.
It will be appreciated by one skilled in the art that there are many possible variations on these designs that fall within the scope of the present invention.
Number | Date | Country | |
---|---|---|---|
61330207 | Apr 2010 | US |