Not Applicable
Not Applicable
Infectious diseases may be acquired in public areas such as transportation terminals, shopping centers, schools, hospitals, restaurants and hotels. These areas are often disinfected by wiping surfaces with suitable fluids such disinfecting chemical solutions. However, such cleaning methods are labor intensive and require great effort to be effective.
An improved method for disinfecting a surface is for an operator to distribute the suitable fluid solution onto the surface using a spray system. A spray system converts a fluid into a fluid spray using one of at least four different methods; (1) a fluid nozzle, (2) a combination fluid-air nozzle, (3) a rotating disk, and (4) an electrospray nozzle.
In a spray system using a fluid nozzle, the fluid to be sprayed flows in a pipe or tube at a pressure higher than the pressure outside of the nozzle. The fluid at the higher pressure flows from the pipe or tube into the fluid nozzle. The fluid exiting the nozzle breaks into droplets that form the fluid spray exiting the nozzle.
In a spray system using a combination fluid-air nozzle, fluid flows in a pipe or tube into the combination fluid-air nozzle and exits through a fluid outlet within the combination nozzle. Compressed air at high pressure flows in an air tube or pipe into the combination fluid-air nozzle and exits through an air outlet within the combination nozzle. The air exiting the air outlet at high speed helps break the fluid exiting the fluid outlet into droplets that form the fluid spray exiting the combination fluid-air nozzle.
The performance of a spray system using a combination fluid-air nozzle is different from the performance of a spray system using a fluid nozzle in two ways. First, the droplets formed by a spray system using a combination fluid-air nozzle are smaller than droplets formed by a spray system using a fluid nozzle. Second, the air moving at high speeds moves the droplets in the fluid spray larger distances from the nozzle compared with a spray system using a fluid nozzle.
In a spray system using a rotating disk, the fluid flows in a pipe or tube onto the surface of a circular disk or cup that is rotating at a high speed. The fluid flows in a thin layer along the surface to the edge of the disk or cup. The fluid exiting the edge of the rotating disk or cup breaks into droplets that forms the fluid spray exiting the rotating disk or cup. This type of spray system is also known as a rotary atomizer. A rotary atomizer is able to form fluid spray without needing high pressure fluid or high pressure, compressed air.
The performance of a rotary atomizer is different from the performance of a spray system using a fluid nozzle or a spray system using a combination fluid-air nozzle in two ways. First, the droplets formed by a spray system using a rotating disk are smaller than droplets formed by a spray system using either a fluid nozzle or a combination fluid-air nozzle. Second, the droplets formed by a spray system using a rotating disk have a more uniform size distribution than the droplets formed by a spray system using either a fluid nozzle or a combination fluid-air nozzle.
Handheld spray guns have been known at least as early as 1951. U.S. Pat. No. 2,546,701 dated Mar. 27, 1951 discloses a hand held spray gun for coating articles in an electrostatic field. The handheld spray gun is connected to an external fluid reservoir by hoses and connected to a high voltage power supply by a high voltage cable.
A handheld electrostatic spray gun having a self-contained high voltage power pack was known at least as early as 1973. U.S. Pat. No. 3,731,145 dated May 1, 1973 discloses a hand held spray gun having a self-contained, miniaturized high voltage power pack producing a voltage of 6,000 volts. The hand held spray gun is connected to an external low voltage DC source by a wire and to a coating supply tank by a hose.
A handheld, corona charging electrostatic spray gun having a high voltage power source inside the handheld gun was known at least as early as 1981. U.S. Pat. No. 4,287,552 dated Sep. 1, 1981 discloses an electrostatic hand-held spray gun having a high voltage cascade multiplier module and a step-up transformer within the handheld device. The output of the high voltage multiplier circuitry that is in the range 70-90 kilovolts is connected to an electrode exposed to the atomized spray through a current limiting resistor.
A handheld, direct charging, electrostatic sprayer using rotary atomization has been known at least as early as 1986. U.S. Pat. No. 4,579,279 dated Apr. 1, 1986 discloses a handheld electrostatic sprayer using direct charging and a rotary atomizer.
A handheld electrostatic sprayer having a self-contained, battery powered high voltage source has been known at least since 1990. U.S. Pat. No. 4,971,257 dated Nov. 20, 1990 discloses a handheld electrostatic particle spraying apparatus with a self-contained source of high D.C. voltage powered by a rechargeable D.C. battery. The spray is produced by a pressurized, aerosol can.
A handheld, battery powered sprayer having a self-contained pump was disclosed in U.S. Pat. No. 7,032,841 dated Apr. 25, 2006. This battery powered handheld sprayer does not form droplets having electrostatic charges.
A handheld, induction charging, electrostatic sprayer having a fan inside the handheld sprayer was disclosed in U.S. Pat. No. 8,746,597 dated Jun. 10, 2014. The fan having an airflow in the range 3,000 to 5,200 cubic feet per minute controls the electrostatically charged mist exiting the sprayer. The electrostatic spray system having this handheld electrostatic sprayer also has a cart with a liquid reservoir, liquid pump, and sources of power. The handheld sprayer is connected to the cart with hoses and cables.
A handheld, direct charging, electrostatic sprayer is disclosed in US 2017/0291181 dated Oct. 12, 2017. The system atomized the fluid using a high-pressure fluid stream. Droplets of atomized fluid are charged by passing the fluid through an electrode in the nozzle assembly.
Existing spray systems capable of treating large areas are unwieldy and large because the system must store large quantity of fluid in a tank. Additionally, the existing spray systems commonly use compressed air or fans. Fans cause an airflow. The airflow is measured in units of cubic feet per minute or CFM. Spray systems have used fans having air flows exceeding 100 cfm. These high air flows are required to achieve high velocities that help form fluid spray and distribute this fluid spray over a large area.
Existing spray systems being unwieldy and large cause operator fatigue. Fluid storage tanks are large and heavy. Some spray systems have external tanks that provide fluid to the spray system using an external fluid hose. Some spray systems have an external air compressor to provide compress air to the spray system using an external air hose. And, some spray systems use external electrical power supplies that provide electrical power to the spray system using external electrical cables. These external hoses and cables must be attached to the spray system. The operator of the spray system while operating the system must move these external hoses and cable to spray a large surface area. Moving these external hoses and cables while operating the spray system causes operator fatigue.
For the foregoing reasons, there is a need for an improved portable spraying system that may be carried by a system operator and which minimizes operator fatigue. The improved system has a fluid tank, a pump, and a nozzle. The improved system has a fan having an airflow that does not exceed 100 CFM that helps to distribute the fluid spray over a large area. And, the improved system is powered by a battery.
The present invention is directed to an improved portable spraying system that may be carried by a system operator. The improved spraying system minimizes operator fatigue. The improved system has a tank, a pump, a nozzle, and a fan having an airflow that does not exceed 100 CFM. And, the improved system is powered by a battery.
The improved portable spray system has a housing with a grip. The tank, the pump, and the battery are arranged to minimize operator fatigue. A tank is located above the grip towards the back of the housing. The pump is located below the grip towards the back of the housing. And, the battery is located below the grip and in front of the grip to counterbalance the weight of the fluid tank.
Fluid must be introduced into a pump for the pump to work properly. Introducing fluid into the pump is called priming the pump. The improved portable spray system has a valve. With the valve set to the priming position, fluid moves from the tank, through the pump, and back into the tank. This recirculation of fluid primes the pump.
Once the pump is primed, the valve is turned to the spray position. In the spray position, fluid flows from the tank, through the pump, and into to the spray nozzle.
The spray nozzle produces the fluid spray. Air from the fan blows past the nozzle and helps distribute the fluid spray over a large area. The spray system is powered by a battery.
The improved portable spray system may also have a switch to control the spray system, a spray indicator that provides a visual indication of the fluid spray, and a lanyard connection so that a strap to be attached.
Another embodiment of the improved portable spray system has a quick connect so that a hose from outside the housing may provide fluid to the spray gun. A cutoff valve selects whether to spray fluid from the tank or from the quick connect.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
In the Summary above, in this Description, in the claims below, and in the accompanying drawings, reference is made to particular features of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used to the extent possible, in combination with and/or in the context of other particular aspects and embodiment of the invention, and in the invention generally.
The term “comprises” and grammatical equivalents thereof are used herein to mean that other components, ingredients, steps etc. are optionally present. For example, an article “comprising” (or “which comprises”) components A, B, and C can consist of (i.e., contain only) components A, B, and C, or can contain not only components A, B, and C but also one or more other components.
The term “at least” followed by a number is used herein to denote the start of a range beginning with that number (which may be a range having an upper limit or no upper limit, depending on the variable being defined). For example, “at least 1” means 1 or more than 1. The term “at most” followed by a number is used herein to denote the end of a range ending with that number (which may be a range having 1 or 0 as its lower limit, or a range having no lower limit, depending upon the variable being defined). For example, “at most 4” means 4 or less than 4, and “at most 40%” means 40% or less than 40%. When, in this specification, a range is given as “(a first number) to (a second number)” or “(a first number)-(a second number),” this means a range whose lower limit is the first number and whose upper limit is the second number. For example, 25 to 100 mm means a range whose lower limit is 25 mm and whose upper limit is 100 mm.
Referring to
The “back’ is the side of the housing opposite to the front.
Referring to
The “bottom” is the side of the housing opposite to the top.
Referring to
Referring to
When the valve handle 162 is in the priming position, fluid enters the valve inlet 156, flows through valve 154 and exits through the valve first outlet 158. The fluid flows out of the valve first outlet 158 into a third fluid hose 168 into tank 114 through tank inlet 118. This recirculation of fluid from the tank 114, through the pump 126, and back into the tank 114 primes the pump 126.
When the valve handle 162 is in the spray position, fluid enters the valve inlet 156, flows through valve 154 and exits through the valve second outlet 160. The fluid flows out of the valve second outlet 160 into a fourth fluid hose 169.
Referring to
Air exits a fan 250 through fan outlet 252 causing air flow 212 in air channel 210. The air flow 212 flows around nozzle 242 and exits the housing 202 through the housing air outlet 208. Air flow 212 that exits housing air outlet 208 helps disperse the fluid spray 248.
Referring to
As shown in
As shown in
An embodiment of the spray system in
Referring to
Referring to
Referring to
Referring to
Referring to
The pump 226 is located to minimize operator fatigue. The pump 226 has a pump center of mass 227. The pump center of mass 227 is also known as the pump CM. The location of pump center of mass 227 is between the grip 204 and the bottom of the housing 202. And, the location of pump center of mass 227 is between the grip 204 and the back of the housing 202. The pump center of mass 227 is located so that a pump CM to tank CM line 232 between the pump center of mass 227 and the tank center of mass 222 falls between the grip 204 and the back of the housing 202.
Fluid from the tank 214 must be introduced into the pump 226 for the pump 226 to work properly. Introducing fluid into the pump 226 is called priming the pump. Priming the pump is accomplished by a valve 254. The fluid exiting pump 226 through pump outlet 228 flows into a second fluid hose 266. The fluid flows through the second fluid hose 266 into the valve inlet 256. The valve 254 has a first valve outlet 258, a second valve outlet 260, and a valve handle 262. The valve 254 has a first mode and a second mode. When the valve 254 is in the first mode, fluid entering the valve inlet 256 exits the first valve outlet 258. When the valve 254 is in the second mode, fluid entering the valve inlet 256 exits the second valve outlet 260. Valve handle 262 has a first position and a second position. The position of the valve handle 262 may be selected by the operator by turning the valve handle 262. When the valve handle 262 is in the first position, the valve 254 is in the first mode. When the valve handle 262 is in the second position, the valve 254 is in the second mode.
When the valve 254 is in the first mode, fluid entering the valve inlet 256 exits the first valve outlet 258, flows through a third fluid hose 268 and enters tank 214 through tank inlet 218. This recirculation of fluid from tank 214, though the pump 226, and back into the tank 214 primes the pump. The first position of valve handle 262 is also known as the priming position.
When the valve 254 is in the second mode, fluid entering the valve inlet 256 exits the second valve outlet 260 and flow through a fourth fluid hose 269 to nozzle 242.
The nozzle 242 has a nozzle inlet 244 and a nozzle outlet 246. Fluid to be sprayed enters nozzle 242 through the nozzle inlet 244. The nozzle 242 produces a fluid spray 248 that exits the nozzle outlet 246. Many nozzles are commercially available that produce fluid sprays. In the preferred embodiment, the nozzle 242 is a PJ10 stainless steel nozzle from Bete manufacturing that has a hook design. This nozzle has a female brass connection that is mechanical strong so that the position of the nozzle is fixed.
The nozzle 242 is located so that the fluid spray 248 produced by the nozzle exits housing 202 through the housing air outlet 208. Air flow 212 flows around the nozzle 242 and also exits the housing 202 through the housing air outlet 208. The air flow 212 helps disperse the fluid spray 248 produced by the nozzle 242.
Air flow 212 is caused a fan 250. The fan 250 draws air into the housing. Referring to
Fan 250 is rated for volumetric flowrate measured in units of cubic feet per minute or CFM. The fan 250 that is small enough to be located inside the housing 202 has a volumetric flowrate in the range 1 to 100 CFM. In the preferred embodiment, the volumetric flowrate of fan 250 is 23 CFM.
Fan 250 is rated for pressure measured in units of millimeters of water or mm H2O. The fan 250 that is small enough to be located inside the housing 202 has a pressure rated in the range 1 to 50 mm H2O. In the preferred embodiment, the fan 250 has a pressure rated for 10 mm H2O.
A battery 234 provides electrical power for the pump 226 and the fan 250. The battery has a rated voltage measured in units of volts. The battery 234 that is small enough to be attached to the housing 202 and light enough to be used for handheld devices has a rated voltage in the range 3 to 500 volts. In the preferred embodiment, battery 234 has a voltage rating of 18 volts. The battery has a rated charge storage measured in units of ampere-hours or Ah. The battery 234 that is small enough to be attached to the housing 202 and light enough to be used for portable devices has a rated charge storage rating in the range 0.1 to 20 Ah. In the preferred embodiment, the battery 234 has a charge storage rating of 4.0 Ah.
The battery 234 is located to minimize operator fatigue. Battery 234 has a battery center of mass 236. The battery center of mass 236 is also known as the battery CM. The location of battery center of mass 236 is between the grip 204 and the bottom of the housing 202. And, the location of battery center of mass 236 is between the grip 204 and the front of the housing 202. The battery center of mass 236 is located so that a battery CM to tank CM line 238 between the battery center of mass 236 and the tank center of mass 222 passes through the grip 204.
A switch 253 control the spray system. Switch 253 has a switch input, a switch output, a first switch mode, and a second switch mode. A wire from the battery 234 is connected to the switch input. The wire carries electrical current from the battery 234 to the switch input. A wire from the switch output delivers electrical current to the pump 226 and the fan 250. When the switch 253 is in the first switch mode, electrical current does not flow through switch 253 from the switch input to the switch output. When the switch 253 is in the second switch mode, electrical power flows through switch 253 from the switch input to the switch output.
The switch 253 has a switch handle. The switch handle has a first position and a second position. The operator may move the switch handle from the first position to the second position. And, the operator may move the switch handle from the second position to the first position. When the switch handle is in the first position, the switch 253 is in the first mode. When the switch handle is in the second position, the switch 253 is in the second mode.
When the switch handle is in the first position, no electrical current may flow from the battery to the pump 226 or to the fan 250. The nozzle 242 does not produce the fluid spray 248. When the switch handle is in the second position, electrical current may flow from the battery to the pump 226 and to the fan 250. The nozzle 242 produces fluid spray 248.
A spray indicator 272 shines a light on fluid spray 248 giving a visual indication of the fluid spray 248. Spray indicator 272 emits light. Light sources that are small enough to be located in housing 202 include flash light bulbs and light emitting diodes also known as LEDs. In the preferred embodiment, spray indicator 272 is a directional LED.
An embodiment of the spray system in
When tank 414 provides fluid to the pump 426, fluid flows through tank outlet 420 into the first fluid hose 464 and into cutoff valve 424. Cutoff valve 424 has a cutoff valve inlet, a cutoff valve outlet, a first mode and a second mode. When cutoff valve 424 is in the first mode, fluid that enters the cutoff valve inlet flows through the cutoff valve 424 and exits the cutoff valve outlet. When the cutoff valve is in the second mode, fluid that enters the cutoff valve inlet is stopped from flowing through the cutoff valve 424 to the cutoff valve outlet. And, when the cutoff valve is in the second mode, fluid that enters the cutoff valve outlet is stopped from flowing through cutoff valve 424 to the cutoff valve inlet.
The cutoff valve 424 has a cutoff valve handle. The cutoff valve handle has a first position and a second position. Referring
Referring to
The improved handheld spray system carried by an operator minimizes operator fatigue. The spray system distributes a fluid spray to disinfect a large area. The battery powered spray system has a fluid tank, a pump, a nozzle, and a fan that helps distribute the fluid spray.
The tank, the pump, and the battery are arranged to minimize operator fatigue. The system has a valve to prime the pump. Once the pump is primed, the valve is turned to the spray position. In the spray position, fluid flows from the tank, through the pump, through the valve, and into to the spray nozzle.
The spray nozzle produces the fluid spray. Air from the fan blows past the nozzle and helps distribute the fluid spray over a large area.
Additional features include a switch to control the spray system, a spray indicator that shines a light on the fluid spray providing has a visual indication of the fluid spray, and a lanyard connection which is an opening in the housing so that a strap to be attached.
Another embodiment of our handheld spraying system has a quick connect so that a hose from outside the housing may provide fluid to the spray gun. A cutoff valve selects whether to spray fluid from the tank or from the quick connect.
As described in the BACKGROUND, conventional spray systems that can treat large areas require large fluid pumps. Some conventional spray systems require air compressors. The improved handheld spray system distributes a fluid spray to disinfect a large area. The battery powered spray system has a fluid tank, a pump, a nozzle, and a fan that helps distribute the fluid spray.
The tank, the pump, and the battery are arranged to minimize operator fatigue. A fluid tank is located over the wrist of the operator. The pump that is located below the wrist of the operator. And, the battery is located below and in front of the wrist of the operator to counterbalance the weight of the fluid tank.
Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
The reader's attention is directed to all papers and documents which are referenced in this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference. All features disclosed in this specification (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C § 112, ¶6. In particular, the use of “step of” in the claims herein is not intended to invoke the provisions of 35 U.S.C § 112, ¶6.
Number | Name | Date | Kind |
---|---|---|---|
9643199 | Petkus | May 2017 | B2 |
20010022324 | Evans | Sep 2001 | A1 |
20020073504 | Hall | Jun 2002 | A1 |
20180352800 | Franks | Dec 2018 | A1 |
20190283061 | Qiao | Sep 2019 | A1 |
20200121867 | Wright | Apr 2020 | A1 |
20210040940 | Zhu | Feb 2021 | A1 |