A natural gas distribution system can include a natural gas service line that branches off of a main line in order to serve one or more residential or commercial customers. When a service line is replaced or undergoes maintenance, a natural gas utility company traditionally interrupts the flow of gas to the customer for an extended period (for many hours in most cases). The current total cost to connect an interrupted natural gas supply is in the hundreds of dollars per customer (including relighting the pilots and other various associated tasks) for the typical natural gas utility. An uninterrupted supply of natural gas during a service line replacement or maintenance operation would eliminate some of the reconnection tasks, thereby potentially reducing the total service cost. Furthermore, an uninterrupted supply of natural gas would provide additional value to the utility by improving the customer's perception and overall satisfaction with the utility as a service provider.
Some embodiments comprise a method of providing substantially uninterrupted gas service during a temporary, primary gas service shutdown, comprising coupling at least one gas cylinder to a portable tanking assembly. The method can include a tanking assembly comprising a cart including a rear frame and a carrier frame coupled to and extending from the rear frame and supported on an axle with wheels, and a caged regulation assembly coupled to the cart. The caged regulation assembly can comprise a protective cage housing at least a portion of a regulation apparatus comprising an upstream supply end coupled to a downstream delivery end, and including a primary regulator coupled to at least one relief valve. The at least one relief valve can be coupled to at least one downstream regulator coupled to a water column gauge that can be coupled to at least one delivery valve. The method can include electrically coupling and grounding the tanking assembly to a customer's gas service line, fluidly coupling at least one downstream valve to a gas service line, coupling a high pressure hose to the gas cylinder, and controlling a downstream flow of gas from the gas cylinder to the gas service line using the regulation apparatus. Further, the method can include monitoring at least one of supply and flow of gas to ensure substantially uninterrupted gas service during the temporary shutdown of the primary gas service.
In some embodiments, the method can comprise a downstream flow of gas that is controlled and monitored using at least one of the high pressure hose coupled to the primary regulator, the relief valve, the downstream regulator, and the water column gauge. In some further embodiments, the regulator can include regulator gauges, and the downstream regulator can include a regulator vent. In some other embodiments, a first valve can be coupled between the relief valve and the downstream regulator.
In some embodiments, the at least one downstream valve can comprise the at least one delivery valve fluidly coupled to the gas service line. In some further embodiments, the at least one delivery valve comprises a distribution manifold assembly including a manifold and at least one distribution coupler coupled to the manifold. In some embodiments, the distribution manifold assembly comprises a plurality of couplers coupled to a plurality of gas service lines.
In some embodiments of the method, the rear frame can comprise a first vertical support and a second vertical support, and the carrier frame can comprise a first side and a second side. Further, the rear frame can be positioned substantially centered on the axle so that the first vertical support and the second vertical support are substantially equidistant from the axial center of the axle, and the carrier frame can be positioned on the axle substantially off-center so that the first side is positioned substantially further from the axial center of the axle than the second side.
Some embodiments of the invention include a portable gas delivery system comprising a cart including a rear frame comprising a first vertical support and a second vertical support and a carrier frame extending from the rear frame and supported on an axle with wheels. In some embodiments, the carrier frame is coupled to and extends from the rear frame and can comprise a first side comprising a plurality of first braces, and a second side comprising a plurality of second braces. Some embodiments include a caged regulation assembly coupled to the cart. The caged regulation assembly can comprise a protective cage housing at least a portion of a regulation apparatus comprising an upstream supply end coupled to a downstream delivery end. In some embodiments, the protective cage comprises at least one hinged door coupled to a main cage, and can comprise a mesh portion to allow air to flow through the protective cage.
In some embodiments, the regulation apparatus includes a primary regulator coupled to at least one relief valve. In some embodiments, the at least one relief valve is coupled to the at least one downstream regulator, which is coupled to a water column gauge.
In some embodiments, the rear frame is positioned substantially centered on the axle so that the first vertical support and the second vertical support are substantially equidistant from the axial center of the axle. The first side can comprise the first braces coupled to and extending substantially perpendicular from the first vertical support to couple with a first front support, and the second side can comprise the second braces coupled to and extending substantially perpendicular from the rear frame to couple with a second front support.
Some embodiments include a portable gas delivery system with a carrier frame that is positioned on the axle substantially off-center so that the first side is positioned substantially further from the axial center of the axle than the second side. In some embodiments, the caged regulation assembly is coupled to the second side. In some further embodiments, a majority of the caged regulation assembly is positioned over the axle.
In some embodiments, the cart further includes a flat base, and the first front support and the second front support are coupled to the flat base on substantially opposite sides. In some further embodiments, the first side further comprises a first thigh section coupled to the first front support and a second thigh section coupled to the second front support, and the first thigh section extends and couples with a first calf section, and the second thigh section extends and couples with a second calf section. The first calf section and the second calf section can be positioned are opposite corners of the flat base each extending substantially vertically from the flat base.
Some embodiments include at least one relief valve coupled to a primary regulator on the downstream delivery end side of the primary regulator. Further, the at least one relief valve can be coupled to the at least one downstream regulator on the upstream supply end side of the at least at least one downstream regulator. In some embodiments, the water column gauge is coupled to the downstream regulator on the downstream delivery end side of the downstream regulator.
In some embodiments, the regulation apparatus further comprises a downstream delivery end that includes at least one delivery valve coupled adjacent to the downstream delivery end side of the water column gauge. In some embodiments, the delivery valve comprises a distribution manifold assembly including a manifold and a plurality of distribution couplers coupled to the manifold, and the plurality of distribution couplers configured and arranged to delivery natural gas to a plurality of customers.
Some embodiments include a gas delivery system including a cart that comprises at least one deployable stabilizer foot. The stabilizer foot can be deployed to a deployed position or retracted to a retracted position. In some further embodiments, the cart further includes a toggle clamp coupled to a toggle mechanism. The toggle mechanism can be configured and arranged to be actuate the toggle clamp to hold and secure the caged regulation assembly. Some embodiments include a toggle mechanism that is configured and arranged to actuate the toggle clamp to release the caged regulation assembly from the second side of the carrier frame.
In some embodiments, the regulation apparatus further includes a high pressure hose coupled to the upstream supply side of the primary regulator. Some embodiments include the caged regulation assembly with a coupled grounding strap coupled to a grounding rod.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.
Some embodiments of the invention include a portable tanking system 10 capable of providing a substantially uninterrupted service to natural gas customers 15 when a natural gas service line 17 undergoes replacement, or maintenance. In this instance, the portable tanking system 10 can provide a substantially uninterrupted service to residential or commercial natural gas customers 15 located in a building or structure, such as a residence, a factory, an office building, a store or mall, a hospital, or a school. In some embodiments, the natural gas customer 15 can include a building or structure that is substantially fixed and non-mobile. In other embodiments, the building or structure can be substantially mobile, for example, a mobile home or office, or a recreational vehicle. Some embodiments of the invention provide a portable tanking system 10 capable of providing a substantially uninterrupted service to more than one natural gas customer 15 at substantially the same time. For example, in some embodiments, a portable tanking system 10 can be capable of providing a substantially uninterrupted service to two natural gas customers 15 at substantially the same time.
In some embodiments of the invention, a substantially uninterrupted service can include a briefly disrupted flow of natural gas that does not result in the need for pilot light re-ignition. In some further embodiments of the invention, a substantially uninterrupted service can include a change in the pressure and/or flow of natural gas that does not result in the need for pilot light re-ignition. In all other embodiments, the portable tanking system 10 can be capable of providing a substantially uninterrupted service to natural gas customers 15, eliminating the need for pilot light re-ignition during and after coupling of the assembly 10 with a natural gas service line 17.
In some embodiments, a gas service line 17 can be fluidly coupled with one or more natural gas meters (such as gas meters 601a, 601b, 601c, 601d, or gas meters 602a, 602b, 602c, 602d depicted in
Some embodiments provide a portable tanking system 10 that can be easily transferred from one location to another (i.e., it is substantially mobile for transport to a work location, and can also be moved while at the work location). Some embodiments of the invention include a portable tanking system 10 that comprises a regulation apparatus 100 that is portable. For example, in some embodiments, a regulation apparatus 100 can be coupled with a mobile natural gas supply (e.g., a natural gas cylinder 40) to form a portable tanking system 10. Further, in some embodiments, the regulation apparatus 100 can be made portable by installation within a protective cage 180 to form a caged regulation assembly 20 that can be coupled to a mobile transportation carrier. For example, as shown in
Referring to
Some embodiments of the invention include one or more features that can contribute to the safety, utility and ergonomics of the portable tanking system. For example, referring to
Some embodiments can include other safety, utility and ergonomic features. For example, as shown in
In some embodiments, when a user wishes to rotate the portable tanking system 10, the user can grasp the handle 50, and pivot the portable tanking system 10 using the wheels 34. In this instance, the user can tip the portable tanking system 10 to release weight from the wheels 34 and maneuver the system 10 by rotating the system 10 in a clockwise, or counter-clockwise direction. In some embodiments, when a user wishes to move the portable tanking system 10 to a new location, the user can grasp the handle 50, and pivot the portable tanking system 10 using the wheels 34 to move the system 10 forward or backward by applying a force to the handle 50 to move the system 10 to a desired location.
Some embodiments of the invention include one or more features that can contribute to the safety and utility of the portable tanking system 10. For example, the compressed natural gas cylinder 40 can be coupled to the cart 30 using at least one strap 32. In some embodiments, the cylinder 40 can be secured by two straps 32, one placed around the cylinder 40 at a substantially central location, and a further strap 32 securing the cylinder 40 at a substantially upper location. In some embodiments, the straps 32 can include conventional fasteners, or a conventional lock and release mechanism to allow swift coupling and release of the cylinder 40 (not shown). In some further embodiments, the cylinder 40 can be coupled to the cart 30 using a conventional gate and latching mechanism (not shown). In some embodiments, the gate can be pivoted open to allow removal of the compressed natural gas cylinder 40. In some other embodiments, the cylinder 40 can be coupled to the cart 30 using a conventional U-shaped bar or U-bolts (not shown). In some further embodiments, the cylinder 40 can be coupled to the cart 30 using a conventional pull-type toggle clamp (not shown).
As shown in at least
In some embodiments, the cart 30 shown carrying a natural gas cylinder 40 in
Some embodiments of the invention include the cart 30 comprising the rear frame 300 coupled to a carrier frame 306. In some embodiments, the carrier frame 306 can extend from the rear frame 300 and function to support and cradle at least one natural gas cylinder 40. Further, in some embodiments, the carrier frame 306 can include a first side 307a and a second side 307b, each of which can function to support a caged regulation assembly 20. For example, in some embodiments, the cart 30 can include a carrier frame 306 that can include a series of side braces extending from each vertical supports 305a, 305b of the rear frame 300. The side braces can be positioned generally equally spaced, and substantially perpendicular along the length of the vertical supports 305a, 305b, extending away from the rear frame 300. For example, in some embodiments, the first side 307a can comprise a first lower side brace 340a coupled to and extending from the first vertical support 305a, and a coupled first central side brace 350a coupled to and extending from the first vertical support 305a, and a coupled first upper side brace 360a coupled to and extending from the first vertical support 305a.
In some embodiments, the regulation apparatus 100 can be secured to the caged regulation assembly 20. For example, as illustrated in
In some further embodiments, the caged regulation assembly 20 can be secured to the cart 30. In some embodiments, the portable tanking system 10 includes a mount 60 to which the caged regulation assembly 20 can be slidably mounted. In some embodiments, the mount 60 can comprise a square frame including a substantially horizontal bar coupled to at least some portion of the cart 30 using two vertical bars. For example, in some embodiments, the mount 60 can be coupled to the upper side brace 360b of the second side 307b of the carrier frame 306 (see
In some embodiments of the invention, the caged regulation assembly 20 can be repeatedly mounted to or decoupled from the portable tanking system 10 to facilitate installation, transportation and storage. For example in some embodiments, the caged regulation assembly 20 can be repeatedly mounted to or decoupled from the mount 60 positioned on the second side 307b of the carrier frame 306. In other embodiments, alternative fastening mechanisms can be used. For example, the pull toggle clamp 25 can, in some embodiments, be a conventional toggle clamp. In some other embodiments, the caged regulation assembly 20 can be secured to the cart 30 using a system of conventional pins and sockets. For instance, some embodiments can include a cart 30 with conventional pins configured and arranged to engage conventional sockets on the caged regulation assembly 20 (not shown). In some other embodiments, the cart 30 can include a system of conventional slides or posts that can be used to reversibly mount the caged regulation assembly 20 (not shown).
In some embodiments, the first lower side brace 340a, the first central side brace 350a, and the first upper side brace 360 can each be coupled to a first front support 308a. Moreover, the first front support 308a can be positioned coupled to the flat base 30a at one end adjacent to one side of the flat base, and can be extend from the flat base 30a substantially parallel with the first and second vertical supports 305a, 305b, coupling with the first upper side brace 360 at an opposite end of the flat base 30a. In some embodiments, the second side 307b of the carrier frame 306 can include a further series of braces extending from the rear frame 300 and coupling with a second front support 308b of the carrier frame 306. For example, the second front support 308b can be positioned substantially parallel to the first front support 308a, and can be coupled to the flat base 30a on an opposite side to the first front support 308a. A coupled second lower side brace 340b can extend from the second vertical support 305b of the rear frame 300 and couple with the second front support 308b of the carrier frame 306. Further, a coupled second central side brace 350b, and a coupled second upper side brace 360b, can extend from the second vertical support 305b of the rear frame 300, and couple with the second front support 308b of the carrier frame 306 in some embodiments.
In some embodiments, the second side braces 340b, 350b, 360b of the second side 307b of the carrier frame 306 can be coupled to the rear braces 310, 320, 330 of the rear frame 300 at some inward distance from the second vertical support 305b (i.e., inwardly positioned along the rear braces 310, 320, 330 from the second vertical support 305b towards the first vertical support 305a). For example, in some embodiments, a coupled second lower side brace 340b can extend from the rear frame 300 substantially perpendicular from the lower rear brace 310, and couple with the second from support 308b, and the coupled second central side brace 350b can extend from the rear frame 300 substantially perpendicular from the middle rear brace 320, and couple with the second from support 308b. Further, the coupled second upper side brace 360b can extend from the rear frame 300 substantially perpendicular from the upper rear brace 330, and couple with the second from support 308b. In some embodiments, by positioning the braces 340b, 350b, 360b inward from the second vertical support 305b, carrier frame 306 is positioned on the axle 35 substantially off-center so that the first side 307a is positioned substantially further from the axial center of the axle 35 than the second side 307b, and a gap can be formed between the second front support 308b and the wheel 34. In this embodiment, a substantial portion of a coupled caged regulation assembly 20 can be positioned over the axle 35 when attached to the second side 307b of the carrier frame 306. This architecture can provide stability to the portable tanking system 10 by assuring a greater proportion of the weight of the portable tanking system 10 resides over the axle.
In some embodiments, the flat base 30a can provide further support to the front supports 308a, 308b. For example, as illustrated in
Some embodiments of the invention include additional features that can contribute to the safety and utility of the portable tanking system 10. In some embodiments, the portable tanking system 10 can utilize an integrated mechanical stabilizer assembly. For example,
In some embodiments, a user can actuate and extend the stabilizer foot 37 to a position 36a to provide stability and/or a braking action. For example, in some embodiments, a user can retract the release mount 38 to allow movement of the stabilizer foot 37, and extend the stabilizer foot 37 to a position 36a. Further, in some embodiments, the user can actuate the release mount 38 to allow movement of the stabilizer foot 37, and retract the stabilizer foot 37 to a position 36b. In some further embodiments, a user can actuate and retract the stabilizer foot 37 to a position 36a to allow the cart 30 to be maneuvered (i.e., to be rotated and/or to be moved to another position). For example,
In some embodiments, the stabilizer foot 37 can include an enlarged end (e.g., a ground pad 37c) to increase the surface area for contact with a surface. In some other embodiments, the end of the stabilizer foot 37 can include a coating or covering. For example, in some embodiments, the stabilizer foot 37 can include a zinc coating. In some other embodiments, the end of the stabilizer foot 37 can include other coatings or covers to increase wear resistance, and/or corrosion resistance. In some embodiments, the stabilizer foot 37 can include a coating or covering to further increase traction or stability (for example, a rubber-based coating or covering).
As shown in
As illustrated thus far in
In some embodiments, the gas cylinder 40 can include a safety cap 45 designed to protect the gas cylinder 40 valve during transportation, storage, or while in use. In some embodiments, the safety cap 45 includes a convention security or anti-tamper device such as a safety pin (not shown). In some embodiments, the safety pin can include a conventional wire, chain, lanyard or leash in order to prevent loss of the safety pin (not shown). Furthermore, in some embodiments, the safety cap 45 can include a conventional wire, chain, lanyard or leash in order to prevent loss of the safety cap 45 upon removal from the gas cylinder 40 (not shown).
In some embodiments, the safety cap 45 can be present during loading of the gas cylinder 40 into the cart 30, during storage of the portable tanking assembly 10, or during transporting of the assembly 10 to a natural gas customer 15. In some embodiments, just prior to use of the portable tanking assembly 10, the safety cap 45 can be removed. In some embodiments, following removal of the safety cap 45, the high pressure hose 110 can be fluidly coupled with the gas cylinder 40.
Some embodiments of the invention provide a caged regulation assembly 20 include a detachable safety cage with a lock. As shown in
In some alternate embodiments of the invention, the portable tanking system 10 can include more than one caged regulation assembly 20. For example, some embodiments of the invention include a portable tanking system 10 that can include a plurality of caged regulation assemblies 20 of different sizes. For instance, some embodiments can include an assembly 20 designed to contain a 0.5 lb regulation apparatus 100, and a further assembly 20 designed to contain a 2 lb regulation apparatus 100. In some embodiments, at least two caged regulation assemblies 20 can be mounted on one side of the cart 30 (either on of the sides 307a, 307b), whereas in some alternate embodiments, at least two caged regulation assemblies 20 can be mounted on opposite sides of the cart 30 (one assembly 20 on each of the sides 307a, 307b).
In some embodiments, the portable tanking system 10 can include at least one caged regulation assembly 20 with regulation apparatus 100 configured to deliver a supply of natural gas at different pressures. For example, in some embodiments, the portable tanking system 10 can include a single caged regulation assembly 20 housing at least two low pressure regulators capable of supplying natural gas under at least two different pressures. In some other embodiments, the regulation apparatus 100 can include a plurality of caged regulation assemblies 20 including at least two low pressure regulators capable of supplying natural gas to a customer 15 with at least two different pressures.
In some embodiments, each side of the cage 180 including the five sides of the main cage 103 and the door 105 can include a mesh portion 105a. The mesh portion 105a can enable ventilation of the cage 180, allowing flow of air past the enclosed regulation apparatus 100. The use of the mesh portion 105a allows visual inspection of the apparatus 100, while also allowing air to flow through the cage 180 to dilute leaked flammable gases (e.g., natural gas).
In some embodiments, at least one conventional lifting eyelet 90 can be including in the portable tanking system 10 in order to facilitate lifting by a crane or hoist (see
Referring to
In some embodiments, one or more of the fittings, valves or pipes, or other components of the portable tanking system 10 can comprise iron. For example, in some embodiments, one or more components of the regulation apparatus 100 may comprise iron, wherein at least one of the fittings, valves or pipes can comprise a schedule 40 metallic pipe (black or galvanized iron pipe).
In some embodiments, one or more components of the portable tanking system 10 can include a material that comprises steel, or a related iron composition. For example, in some embodiments, the caged regulation assembly 20 can comprise a steel frame. Moreover, in some embodiments, one or more components of the cart 30 can comprise steel. In some embodiments, one or more components of the portable tanking system 10, including the caged regulation assembly 20, can be assembled using welding. In some other embodiments, one or more components of the portable tanking system 10, including the caged regulation assembly 20 can be assembled and coupled using rivets, bolts, screws, press-fitting, or other fastening mechanisms known in the art.
Some embodiments of the invention can include alternative materials. For example, in some embodiments, at least one component of the portable tanking system 10 can include a metal other than steel. For example, in some embodiments, one or more aluminum components can be used to at least partially reduce weight. Some embodiments of the portable tanking system 10 can include non-metallic materials. For example, in some embodiments, one or more components of the caged regulation assembly 20 or the cart 30 can include a plastic or other polymeric material, and/or a fiberglass composite.
Some embodiments of the invention can include a material that is powder-coated. For example, some embodiments can include a coating that confers corrosion resistance to one or more iron-coating materials within the portable tanking system 10. Other embodiments can include a coating or covering that provides convenience or safety to a user. For example, in some embodiments, one or more components of the portable tanking system 10 can include a flexible and/or impact, and/or vibration absorbing material. For example, in some embodiments, either one or all of at least some portion of the pull toggle clamp 25, the stabilizer foot 37, or the handle 50 can be coated or otherwise covered with an elastomeric material or other polymer material. In some embodiments, the coated or otherwise covered component of the portable tanking system 10 can provide improved stability, wear and/or corrosion resistance, safety and/or user-comfort. In some other embodiments, the coating can include paint. For example, in some embodiments, the portable tanking system 10 can include a surface at least partially coated with high visibility paint, including, but not limited to an orange paint, a yellow paint and a red paint. In some further embodiments, the paint can include a substantially luminous material suitable for providing increased visibility in low light environments. In some other embodiments, the portable tanking system 10 can include a surface at least partially coated with an anti-corrosion coating or paint to protect against corrosion.
Referring to
In accordance with some embodiments of the invention, a portable tanking system 10 can be provided to facilitate uninterrupted service to natural gas customers 15 when a natural gas service line 17 undergoes replacement, or when a natural gas service line 17 undergoes maintenance. In some other embodiments, a portable tanking system 10 can be provided to facilitate uninterrupted service to natural gas customers 15 when a gas meter set undergoes maintenance.
As described earlier, in some embodiments, a regulation apparatus 100 can be fitted within a caged regulation assembly 20. As illustrated in
In some embodiments, the components can include at least a series of pressure regulators, pressure gauges, gas manifolds, valves, gas pipes and pipe connectors, and dust caps, and associated coupling and sealing apparatus. In some other embodiments, the components can include switches, gas sensors, gas alarms and other safety related devices. For example,
In some embodiments, the primary regulator 120 can be further coupled to a relief valve 140 via a pipe tee 145 coupling the downstream delivery end 102 side of the primary regulator 120 with the upstream supply end 101 side of the pipe tee 145. For example, in some embodiments, the pipe tee 145 can be coupled to the primary regulator 120 at the downstream delivery end 102 side of the primary regulator 120 using a pipe nipple 145a coupled to a pipe bushing 145b. In some embodiments, the relief valve 140, and pipe tee 145, can be coupled to a first valve 190, via a tee 193. For example, in some embodiments, the upstream supply end 101 side of the pipe nipple 145c can be coupled to the downstream delivery end 102 side of the pipe tee 145, and the downstream delivery end 102 side of the pipe nipple 145c can be coupled to the upstream supply end 101 side of the tee 193. In some embodiments, the relief valve 140 can include a FISHER® H-202 relief valve. FISHER® is a registered trademark of Fisher Controls International, Inc. In some embodiments, the first valve 190 can comprise metric fitting sizes. In some other embodiments, the first valve 190 can comprise non-metric fitting sizes.
In some further embodiments, the first valve 190 and tee 193 can be coupled to a downstream regulator 150. In some embodiments, the downstream regulator 150, can be coupled to a pipe tee 158. For example, in some embodiments, downstream delivery end 102 side of the tee 193 can couple with the upstream supply end 101 side of the pipe nipple 158a, and the pipe nipple 158a can couple with the downstream regulator 150. Further, in some embodiments, the pipe tee 158 can be further coupled to a pipe nipple 167 by coupling the downstream delivery end 102 side of the pipe nipple 158a with the upstream supply end 101 side of the pipe nipple 167.
In some embodiments, the pipe nipple 167 can couple to a pipe tee 165 that is further coupled to a water column gauge 160. For example, in some embodiments, the downstream delivery end 102 side of the pipe nipple 167 can couple with the upstream supply end 101 side of the pipe tee 165. Further, in some embodiments, the pipe tee 165 can be coupled to a pipe nipple 168. For example, in some embodiments, downstream delivery end 102 side of the pipe tee 165 can be coupled with the upstream supply end 101 side of the pipe nipple 168.
In some further embodiments, the nipple 168 can be coupled to at least one delivery valve 400. For example, in some embodiments, the delivery valve 400 can comprise at least one downstream valve 170. For example, in some embodiments, the downstream delivery end 102 side of the pipe nipple 168 can coupled to at least one street elbow 175 via a pipe tee 169. Further, the at least elbow 175 can be coupled to at least one downstream valve 170. In some embodiments, all pipe fittings downstream of the primary regulator 120 (i.e., the upstream supply end 101 side of the regulation apparatus 100) to the inlet of the downstream regulator 150 (the upstream supply end 101 side) are schedule 80 pipe fittings. In some embodiments, all pipe fittings downstream of pipe 158 are schedule 40 fittings.
As shown in
Referring to
In some further embodiments, one or more components of the regulation apparatus 100 can be configured by a semi-permanent screw thread. For example, one or more of the components 120, 140190, 150, 160 and 170 can be coupled using threaded fittings at their connection ends. In some further embodiments, one or more components of the regulation apparatus 100 can include a combination of welded or machined fittings. For example, some embodiments can include one or more components welded together. In other embodiments, one or more components can be machined into a single component (for example to form a machined manifold). In some embodiments, the use of welded and/or machined components can reduce the number of coupling junctions and reduce the size of the regulation apparatus 100.
In some embodiments, the portable tanking system 10 as described and illustrated in
In some alternative embodiments of the invention, the portable tanking system 10 can include an auxiliary compressed natural gas cylinder 40. In some embodiments, the cart 30 can be configured with dual bays to accommodate an auxiliary cylinder (not shown). In some other embodiments, one or more monitoring sensors or gauges can be including within the regulation apparatus 100 to enable a user to monitor a pressure of a primary natural gas supply (e.g provided by a compressed natural gas cylinder 40, to enable switching to an auxiliary natural gas supply when the primary supply is depleted). Some embodiments can include visual or audible alarms to warn a user of an approaching depletion of either a primary or auxiliary natural gas supply.
In some embodiments, wheels 34 can include a weight capacity of 250 lbs or more in order to accommodate a higher weight capacity when using an auxiliary cylinder 40. In some embodiments, the wheels 34 can be solid or non-pneumatic wheels. In some embodiments, the compressed natural gas cylinder 40 can comprise iron or steel. In some further embodiments, the cylinder 40 can comprise aluminum. In other embodiments, the cylinder 40 can comprise a composite material. For example, in some embodiments, the cylinder 40 can comprise a carbon fiber composite or a glass fiber composite material.
Some embodiments include a cart 30 with a conventional tool storage system (not shown). For example, in some embodiments, a conventional toolbox can be integrated with, or otherwise coupled to the cart 30 to serve as storage for tools, probes, grounding rods, bags, and other materials and components known in the art. In some embodiments, a conventional toolbox can be used to store at least one hose used in the hot tanking process. In some other embodiments, hoses can be at least partially accommodated within other portions of the cart 30.
In some other embodiments, the portable tanking system 10 can include more than one set of downstream valves 170. For example, the portable tanking system 10 can include more than one regulation apparatus 100 each including one set of downstream valves 170, and/or as described earlier the system 10 the portable tanking system 10 can include more than one caged regulation assembly 20.
Some embodiments of the invention provide a portable tanking system 10 capable of providing a substantially uninterrupted service to more than one natural gas customer 15 at substantially the same time. In this instance, the portable tanking system 10 is especially applicable to performing work on apartment buildings and the like. For example, in some embodiments the portable tanking system 10 can feed more than one customer 15 of the apartment 16a (shown in
In some embodiments, the portable tanking system 10 can include a distribution manifold assembly 700. For example,
In some embodiments, the manifold 710 can include at least one port 720 for distribution of natural gas to one or more outlets. For example, in some embodiments, a steel pipe 750 can be coupled to one or more of the ports 720, and can extend from each port 720 to couple to at least one hose assembly 780. Each steel pipe 750 can be coupled to a ball valve 760, and each ball valve 60 can include a steel pipe (close nipple) 770, and a union 775. In some embodiments, at least one hose assembly 780 can be coupled to a ball valve 760 by coupling connectors 783 to a union 775. Further, each hose assembly 780 can include at least one distribution coupler 785 that can be used to couple to a customer's gas supply inlet (e.g., such as gas meters 601a-601d). Some embodiments include a plurality of distribution couplers 385, where each coupler 785 can be coupled to a gas supply inlet. Some embodiments of the distribution manifold assembly 700 can be secured to a wall or structure using at least one pipe hanger 790 coupled to a threaded hook 795.
Some embodiments include methods of providing a substantially uninterrupted supply of natural gas to a building or structure using the portable tanking system 10 as described and illustrated in
In some embodiments, a method of providing a substantially uninterrupted supply of natural gas to a building or structure using the portable tanking system 10 as described and illustrated in
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.
This application claims the benefit of filing date of U.S. Provisional Application Ser. No. 61/784,456 titled “PORTABLE TANKING SYSTEM AND METHOD” filed on Mar. 14, 2013, the specification of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61784456 | Mar 2013 | US |