The present disclosure relates generally to the field of telepresence systems. More specifically, the present disclosure relates to portable telepresence systems that include an apparatus remotely controlled through a remote station, where the system includes cameras, monitors, microphones, and speakers to allow for two-way audio-visual communication.
The present embodiments will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments of the invention and are, therefore, not meant to limit the scope of the invention, the embodiments will be described and explained with specificity and detail through use of the accompanying drawings as listed below.
It will be readily understood that the components of the embodiments as generally described and illustrated in the Figures herein could be arranged and designed in a wide variety of different configurations. Thus the following more detailed description of various embodiments, as represented in the Figures, is not intended to limit the scope of the invention as claimed, but is merely representative of various embodiments of the invention. In addition, in some cases, well-known structures, materials, or operations are not shown or described in detail in order to avoid obscuring aspects of the invention. Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The word “exemplary” and the term “for example” are used herein to mean “serving as an example, for instance, or illustration.” Any embodiment described herein as “exemplary” or “for example” is not necessarily to be construed as preferred or advantageous over other embodiments. Although various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
Disclosed is a telepresence system that includes a portable telepresence apparatus coupled to a remote station. The telepresence apparatus includes a monitor, a camera, a speaker and a microphone. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The portable telepresence apparatus can be attached to a platform mounted to the ceiling of an ambulance. The portable telepresence apparatus can be used by a physician or healthcare worker at the remote station to provide remote medical consultation. When the patient is moved from the ambulance the portable telepresence apparatus can be detached from the platform and moved with the patient.
Also disclosed is a portable telepresence apparatus with a monitor, a camera, a speaker, a microphone and a viewfinder screen all coupled to a housing. The viewfinder screen allows the user to view the image being captured by camera. The portable telepresence apparatus is a hand held device that can be moved by a holder of the device in response to audio commands from the remote station. The telepresence apparatus can be used by medical personnel to remotely view a patient in a fast and efficient manner.
Referring to the drawings more particularly by reference numbers,
The remote control station 14 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. The control station 14 is typically located in a place that is remote from the telepresence apparatus 12. Although only one remote control station 14 is shown, the system 10 may include a plurality of remote stations 14. In general any number of telepresence apparatus 12 may be coupled to any number of remote stations 14 or other telepresence apparatus 12. For example, one remote station 14 may be coupled to a plurality of telepresence apparatus 12, or one telepresence apparatus 12 may be coupled to a plurality of remote stations 14, or a plurality of telepresence apparatus 12. The system may include an arbitrator (not shown) that controls access between the telepresence apparatus 12 and the remote stations 14.
As shown in
Each telepresence apparatus 12 includes a camera(s) 50, a monitor 52, a microphone(s) 54 and a speaker(s) 56 that are all attached to a housing 58. The camera 50 is coupled to the remote monitor 24, so that a user at the remote station 14 can view the patient and/or EMT. Likewise, the monitor 52 is coupled to the remote camera 26 so the patient and EMT may view the user of the remote station 14. The microphones 28 and 54, and speakers 30 and 56, allow for audible communication between the system operator and the patient and/or EMT.
The system 10 allows a system user such as a physician to view a patient in the ambulance and provide remote medical consultation through the remote station 14 and the telepresence apparatus 12. Personnel such as the EMT can transmit questions and responses through the system back to the physician. The camera 50 allows the physician to view the patient and enhance the medical consultation. The monitor 52 can display the physician to provide a feeling of presence, such as in an ambulance. The platform 34 allows the physician to pan and tilt the telepresence apparatus 12.
The telepresence apparatus 12 may include a wireless transceiver 60 that is coupled to the wireless network. The portable telepresence apparatus 12 also includes a battery 62.
The system 10 may have certain components and software that are the same or similar to a robotic system provided by InTouch Technologies, Inc. of Goleta, Calif. and embodies a system described in U.S. Pat. No. 6,925,357, which is hereby incorporated by reference.
As shown in
As shown in
As shown in
The telepresence apparatus 100 may include a viewfinder screen 116 and a second camera 118 attached to a second face 120 of the housing 112. The second camera 118 can capture images of a person holding the telepresence apparatus that are transmitted to the remote station, such that the remote user may switch to a view of the holder in order to give them instructions via 2-way audio video communication. Located within the housing 112 are electronic circuits and devices, including a processor(s), memory and hard disk drive (not shown) that can perform the various functions of the telepresence apparatus 100. One side of the telepresence apparatus 100 may include various ports 122, 124, 126, 128 and 130. Port 122 may provide a USB and/or Bluetooth, or other connection. The USB port can be used to attach a medical instrument, such as a stethoscope or a blood pulse oximeter to the telepresence apparatus 100. Port 124 may provide C video, S video auxiliary inputs. A battery of the telepresence apparatus may be charged through connector 126. A cell phone connection may be established through a transceiver 128 within the housing 112. Connector 130 may provide 801.11 WiFi connectivity. As shown in
The telepresence apparatus 100 may include a motion sensing device 134 such as an accelerometer, gyro and/or magnetometer. The motion sensing device 134 can be utilized, so that the person displayed by the monitor is right sized even if the user is holding the telepresence apparatus 100 in a tilted manner. In other words, the top of the head of the person displayed by the monitor will always be pointing upward and away from gravity, such that if the device is held at a 45 degree angle, the top of the head will appear in the upper-left corner of the screen. Likewise, the motion sensing device 134 can be used to provide a right sized version of an image captured on camera 104 to the remote station.
The viewfinder screen 116 may include touch features that allow the holder of the telepresence apparatus 100 to change the image being captured. For example, movement of the holder's fingers from an inward location in an outward manner may cause the captured image to be zoomed in. An opposite movement of the user's fingers may cause the image to zoom out. Alternatively, the holder may draw on the small touch screen which shows the patient's image, and the resultant telestration may be shared to the remote user. The remote user retains shared feature control, and may disable certain of these features from being available to the holder.
As shown in
The telepresence apparatus 100 may provide simultaneous access to wireless cellular carriers, WiFi and WiMAX local wireless and satellite connectivity using a number of onboard modems. One carrier may operate in accordance with the 2G standard, another on 3G, another on 4G, and so forth. These network connections may exist onboard the telepresence apparatus 100, or alternatively the telepresence apparatus may have a single local wireless connection to a nearby base communications unit, which in turn controls outgoing connectivity. The base communications unit may take the form of a mobile system, which may be mounted in a vehicle, or travel with the telepresence apparatus. The system may also be enhanced with additional amplification stages installed in a vehicle. The system may aggregate available connections and improve Quality of Service metrics in one of a variety of modes. The modes may include: a Redundancy mode that sends the same signal over multiple connections; a Balancing mode that sends parts of a signal over different connections; a Switching mode that sends all traffic over the best available connection; and a VPN switching mode which switches between the Redundancy, Balancing and Switching modes during a session.
The system may evaluate reliability and dynamic bandwidth on each of its wireless connections. Based on current networking statistics, the networking algorithm may choose to split the communication stream among the different connections, for example control commands on one connection and video/audio on another connection, or video on one and control on another connection. When a certain connection degrades significantly, the algorithm may choose to move its data stream to another connection. At times, this may mean giving up video (on a 3G connection) to switch to an audio-only (2G) connection. Further, the algorithm may choose to use a wireless connection which is on an older, slower but more reliable network (e.g. 2G) for audio, and simultaneously use a connection on a newer/faster but less reliable network (e.g. 3G) for video. This approach may ensure that audio is always robustly transported, while the video may have interruptions but will maintain good visual quality and frame rate. Alternatively, the system may have video and audio on the newer/faster connection, with simultaneous backup of audio on the older/slower connection. If the newer connection becomes less reliable, the system may cross-fade the played audio to use the data from the older/slower connection.
The portable telepresence apparatus 100 can be used in various applications. For example, the telepresence apparatus 100 can be used to allow for remote examination of a patient. The telepresence apparatus 100 can remain in an active setup-and-recording mode, even when there is no session with a remote operator in progress. This allows for offline recording of patient status, as well as pre-session “setup”. Pre-session setup allows a user to position the telepresence apparatus and use the digital box-zoom controls to ensure optimal viewing of the patient prior to the remote physician's entry. This is to be contrasted with prior art telepresence systems, wherein at the start of a new session, the camera pan/tilt/zoom settings are either at default, or previous settings. The telepresence apparatus allows a local user can set up the optimal view field for the remote doctor prior to his/her session initiation; and further can update the view field when the remote doctor becomes temporarily busy or requests local assistance.
The telepresence apparatus 100 may have an “aircraft mode” that inhibits outbound transmission during take-off and landing when the telepresence apparatus is located in an aircraft, for example. Additionally, the system may be switched to a “capture-then-send” modality during periods of limited wireless connectivity. In this modality, a user can make a video recording of a patient exam intended for a physician. The video recording may be supplemented by telemetry data from attached medical devices. Exam reports are then automatically forwarded to the physician upon the system regaining adequate connectivity, and placed in a queue at the physician's remote station.
The telepresence apparatus may also be equipped with a GPS (not shown). This allows for real-time tracking of the geographic location of each telepresence apparatus, and geo-tagging of session statistics. This serves a variety of functions, including: analysis of wireless connectivity based on geographic location; tracking of video clips and patient data based on proximity to a hospital and ambulance speed; and hospital and billing auditing. The GPS feature may also provide for unique fleet monitoring, anti-theft, etc.
The portable telepresence apparatus can be used for various applications in the medical field. One application is specialty transport, in particular pediatric transport. An ambulance and team can be deployed from Hospital A to Hospital B for patient transport. Upon arrival at Hospital B, a patient may be found to be in need of stabilization prior to transport. An expert consultation can occur in Hospital B, or during transport on the trip back to Hospital A.
For example, a call may be placed for a transport of a patient from a spoke Hospital B which does not have expertise that Hospital A has (e.g., pediatric intensivist specialist care). A transport team from Hospital A is deployed to Hospital B. The team brings the telepresence apparatus 100, mounts it on a gurney and places the gurney in an ambulance. The team arrives at Hospital B and views the patient. If at any point the transport team would like to request a consult, the remote physician from Hospital A establishes a link with the telepresence apparatus located on the gurney. The remote physician can pan-tilt-zoom the image to obtain a desired view. If still unable to access the desired views, someone at the telepresence apparatus side can assist by repositioning the telepresence apparatus 100 and using the viewfinder to help position the front camera on the patient/desired view. The telepresence apparatus side team is able to communicate with the remote physician via the main speaker/mic on the unit. The remote physician may speak with various members of the team and patient/family at Hospital B to make a recommendation. In the event of noisy environment, or privacy situation, a Bluetooth or wireless headset can be used as an alternative. The remote physician is able to help with decisions regarding care/transport of the patient.
Care can be advanced either through decision to continue transport, to not continue transport, or to administer certain care as determined by the remote physician in collaboration with the onsite team. The consult can also occur during transport if there are situations where the patient starts to decompensate. In this case the link would be between a remote station and a telepresence apparatus located in the ambulance during transport of the patient. The telepresence apparatus would be mounted on a gurney, the remote physician can view the patient and communicate with the transport team to help make a care decision.
Another application may include a nurse conducting a scheduled visit to a chronically ill patient in their home. The nurse views the patient. The touch screen of the telepresence apparatus can be used to document various symptoms. The data is stored in the telepresence apparatus. The data and video of certain patient interactions can be forwarded to a server. The telepresence apparatus may receive requested information from the server. The nurse may observe a troubling symptom and request a physician consult. The nurse may call the physician, who establishes a link with the telepresence apparatus and initiates a telehealth session with the patient, facilitated by the nurse. The physician may request that the nurse attach a digital stethoscope to the telepresence apparatus and apply it to the patient. The physician may then request that the nurse attach a portable ultrasound device to the auxiliary video port of the telepresence apparatus. Finally, the physician may decide that the patient should be taken immediately to a medical facility. The nurse may call the ambulance. The nurse stays by the patient's side, with the remote physician logged into the telepresence apparatus, as the patient is transported to the facility.
It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. In the claims, the conjunction “and” is inclusive, the conjunction “or” is exclusive and the conjunction “and/or” is either inclusive or exclusive. Embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows.
This application claims priority to Application No. 61/399,637, titled TELE-ROBOTIC SYSTEM WITH A HAND HELD ROBOTIC FACE, filed on Jul. 14, 2010 and is a continuation-in-part of application Ser. No. 12/548,122, titled PORTABLE REMOTE PRESENCE ROBOT, filed on Aug. 26, 2009, the entire contents of each of which are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61399637 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12548122 | Aug 2009 | US |
Child | 12868859 | US |