1. Field of the Invention
The present invention relates generally to the art of curing ultraviolet sealant material on floors, and more specifically a portable apparatus for enhanced curing of sealant to floor surfaces using ultraviolet radiation.
2. Description of the Related Art
Various types of flooring materials are available for use in industrial, manufacturing, and warehouse applications. Certain surfaces can be cured using a photo-initiated or photosensitive sealant material. For example, an ultraviolet (UV) ‘sealer’ is applied to the floor surface to protect the surface from wear and tear due to foot traffic, motorized traffic, spills, and so forth. For certain floor types, it may be highly desirable to apply UV sealers specially formulated for hardwood, stone, tile, medium density fiberboard, particle board, plywood, vinyl materials, or concrete flooring.
For example, to seal concrete floors a urethane-based copolymer UV material may be applied to the concrete floor surface, and cured. Other floor material types may respond well to treatment with photo-initiated sealant materials including acrylated and cationic epoxies, urethanes, polyesters, and environmental protection agency zero volatile organic compound formulas.
Many of today's UV sealant material formulations require a long period of time, e.g. ranging from several hours to days, to fully cure a surface such that the surface is ready for use. In situations where the area being sealed incurs a great deal of traffic or provides an emergency exit pathway, extensive down time while the sealant is curing is highly undesirable.
Various devices are currently available to facilitate the curing and sealing of UV light sensitive coatings applied to a floor surface. In general, such curing machines include a UV lamp, a reflector, and a power source housed in a moveable and portable frame. The device is positioned over the floor surface whereupon radiation provided from the UV lamp is directed to the coated surface. The frame may be manually pushed across the floor surface, and in certain instances, mechanized wheels power and propel the frame forward. Such machines typically power a UV light source at a relatively small distance above the surface, from a few inches to a foot, whereby adjusting the height of the frame away from the surface can in certain instances reduce the UV radiation applied to the coating. Materials requiring significant radiation for curing may require operation of such a machine and light source a very small distance from the floor to adequately cure the surface.
Today's designs may be problematic when operated in small spaces, in cramped quarters, and/or used for smaller jobs. Previous large designs may be unwieldy in such situations.
Typical existing curing designs employ a large width irradiator component sufficient for efficient operation on large surfaces, such as a warehouse floor. Large curing machines may become problematic when operated in smaller areas such as sealing wood flooring in a home, vinyl flooring in a hospital room or ward, and/or when operated in other facilities including gyms, restaurants. Large machines may be limited or prevent sideways movement and can be problematic when curing floor surfaces that border another structure, such as an orthogonal interior wall and installed equipment, as well as flooring surface edges, such as formed by a ‘T-mold’ transition strip positioned between the surface ready for curing and a carpeted, laminated, tiled, or other separated areas.
Additionally, today's floor curing systems large machine size may become problematic and difficult to move from one project site to the next project site, and store when not in use particularly in small places due to limited space constraints. Deploying a large machine to complete a job having a small physical area or may not be cost feasible or may significantly reduce profitability.
Further, certain existing designs employ a single universal UV source which may be undesirable in different situations, such as when curing different materials. A UV source that works well on one sealant/surface may not work well on another sealant/surface combination. The ability to cure all types of sealants in all types of scenarios can be particularly beneficial, where an appropriate amount of curing energy can be provided to the surface.
It would therefore be useful to provide a floor curing machine design that overcomes the drawbacks associated with previous machines.
According to one aspect of the present design, there is provided a portable floor curing apparatus, including an ultraviolet lamp, a replaceable reflector configured to direct light energy transmitted from the ultraviolet lamp, the replaceable reflector including one of a plurality of interchangeable reflectors, a shutter mechanism configured to selectively move a shutter to expose the ultraviolet lamp and the reflector toward a surface upon which the floor curing apparatus operates, and wheels. The ultraviolet lamp and the reflector height from the floor surface are maintained at a predetermined distance above the surface. The plurality of interchangeable reflectors provides varying transmission characteristics.
Other attributes of the portable design are disclosed, including a telescoping handle and specific wheel configurations.
These and other advantages of the present invention will become apparent to those skilled in the art from the following detailed description of the invention and the accompanying drawings.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which:
The present design is a portable floor curing apparatus comprising an irradiator assembly, reflector assembly, shutter assembly, cooling fans, in combination with a power supply module and a control console component. The assemblies, components, and devices are affixed to a wheel driven frame where the wheels are typically employed over a smooth surface, e.g. hardwood, stone, tile, and vinyl materials or concrete floor, where the surface has been treated with photo-initiated material. The rear wheels are a freewheeling omnidirectional design configured to facilitate movement of the floor curing machine when operated along side or against a wall, surface edge, or room transitions while operating at a relatively constant speed.
Additionally, the wheel driven frame is a fixed configuration where the vertical height of the ultraviolet irradiator, i.e. lamp, maintains a constant distance between the ultraviolet lamp and the floor surface at all times. A generally similar type of floor curing device is disclosed in U.S. patent application Ser. No. 12/803,985, entitled “Ultraviolet Floor Curing Device,” filed Jul. 12, 2010, inventors Andrew J. Mackinnon, et al, the entirety of which is incorporated herein by reference.
The present design includes an assembly that permits use of various reflectors, and the reflectors offered may include a focused reflector profile, a “flood light effect” reflector, and a cross focused reflector providing two focus points. Each reflector may be manually installed and each reflector may be employed to address specific surfaces and sealants. In the present design, curing energy is maintained via the use of this interchangeable reflector design.
The wheel driven frame may allow a user to move the entire apparatus back and forth or in a turning motion during general use. The user may operate the present design using a pistol handle grip with a trigger switch located on a handlebar portion of the irradiator control panel.
During operation the user may control the direction of the machine by applying equal and uniform force or pressure on the handgrip to engage both rear wheels equally and move the apparatus in a straightforward direction. Applying unequal force or pressure across the handgrip by means of applying either a left or right force to the handgrip may allow the machine to rotate about either the left side or right side freewheeling omnidirectional rear wheel, allowing one rear wheel to rotate around the opposite rear wheel. For example, applying pressure at the handgrip may direct the apparatus to the left. A left turn is realized by allowing the right side rear wheel to travel in an amount further than the left side rear wheel and allow the frame's right side rear wheel to rotate faster than the left side wheels affording the right side wheels the ability to travel a further distance when executing a left hand turn, preventing scuffing of the floor surface due to potential wheel drag.
The present freewheeling omnidirectional rear wheel arrangement enables the machine to change direction while maintaining a forward direction by allowing the machine to rotate in response to operator input from the handgrip. The operator may apply a force at the handgrip to direct the apparatus left or right.
The user may select the level of ultraviolet output power desired. The user may use the trigger switch to direct the opening and closing of a shutter device provided on the bottom of the portable floor curing device.
The shutter device enables control of the energy or radiation exposure or dose delivered to the flooring surface from the irradiation source, e.g. mercury ultraviolet light. The shutter device may include a linear actuator, such as a piston arrangement, configured to open and close the shutter based on input from the user selected at the control console.
When curing a particular type of floor coating material, such as urethane-based copolymers applied at a particular thickness and on top of a flooring material type, such as concrete, the operator may push the device at a speed of, for example, forty feet per minute. The operator may select a flood projection pattern reflector profile and a low electrical power output using a switch on the control console, causing a ultraviolet output power reduction on the order of 30 to 60 percent of full power depending on machine configuration. Such selectability enables control over the amount of emitted ultraviolet radiation usable to cure the applied photosensitive coating material.
Electronic controls receiving operator input and directing the components of the device in the manner desired are provided. For example, if X watts of ultraviolet radiation are desired, setting the controls to X watts may be an electronic setting or mechanical setting available to the user, and appropriate power may be provided to the ultraviolet light to effectuate the desired power level. Similarly, retraction timing for the shutter and other values or functions may be set and effectuated using control circuitry.
The operator may adjust the handgrip height via a telescoping device by lengthening or shortening the telescoping device. For example, a first handlebar position may facilitate user control while curing step surfaces under a staircase, and a second position may facilitate storage and transportation. Longer lengths may afford multiple convenient handlebar positions during operation on a long flat surface.
System
One embodiment of the floor curing apparatus is illustrated in
Referring to
Referring to
Shutter Assembly
Irradiator frame assembly 200 may include a low-pressure mercury ultraviolet lamp component 202 configured with reflector assembly 204. The cooling fans, shown in
The irradiation frame may include a skirt (not shown) configured to maintain the irradiator emissions inside irradiator frame 200. The skirt may extend around all sides of irradiator frame 200 forming an enclosure sufficient for containing the ultraviolet emissions between the apparatus and the floor surface. The skirt arrangement may also prevent ultraviolet exposure to the operator and restrict spurious emission of radiated energy.
The shutter assembly in
In operation, the shutter assembly of
Once the shutter assembly is activated, the device provides a signal to actuate the piston in the linear actuator, which drives the piston in the linear actuator to apply a force to the axle 232. Force applied to axle 232 drives the axle 232 toward the back of the apparatus in the bottom side orientation shown, causing left guide block 210A and right guide block 210B to travel across left shaft 214A and right shaft 214B thus pulling or drawing shutter 212 away from the ultraviolet lamp 202. Such operation enables ultraviolet radiation application at a desired time with relatively minimal risk of fouling or contacting other parts of the machine or the floor. Note that some type of lubricant, such as high temperature grease, may be applied to left guide shaft 214A and right guide shaft 214B. Simple periodic maintenance can ensure relatively high efficiency performance of the present design.
While in the design discussed herein does not use drive wheels or a drive system, such a system may be employed if desired. The floor curing apparatus may involve a gear motor (not shown) and a clutch (not shown) connected by a drive chain (not shown) for powering axle assembly 216 to rotate the drive wheels. The axle assembly may connect gear sprocket 234, fixed to linear driveshaft 232, with a gear sprocket fixed to the gear motor. Transfer of rotational motion from the gear motor to the drive wheels may propel the floor curing apparatus in a forward direction when the clutch is engaged. When operating the floor curing apparatus, the user may engage a clutch to rotate and spin axle assembly 216 relative to the gear motor speed using, for example, a pistol handle grip and trigger such as is illustrated in
The floor curing apparatus may provide a pair of swivel ball caster wheels 218 at the rear of the apparatus. The wheels and swivel ball caster wheels are the only apparatus components that are desired to come in contact the coated floor surface. Ball caster wheels 218 may be positioned at a similar location in line with the front wheels, with respect to the center of the apparatus, in the manner shown. Two ball caster wheels are shown in this embodiment, but more may be employed. Different wheel arrangements may be employed.
Arranging front wheels with rear freewheeling ball caster wheels may enable floor curing apparatus 100, shown in
Reflector
The irradiator, enclosed in irradiator frame 200, may be situated at a fixed height in relation to the floor surface. In this fixed height configuration, the operator may control the amount of ultraviolet exposure realized from the floor curing apparatus by installing reflector assemblies with differing illumination or projection patterns. Selecting from a set of reflector assemblies, each exhibiting a predetermined focus pattern, can provide for varying amounts of energy delivery in accordance with the operator's desired ultraviolet dosing characteristics. The operator may consider certain energy delivery parameters to determine the actual dosing characteristics required for a particular project. For example, the type of sealant, type of floor surface material, thickness of the applied sealant, desired cure speed, and environmental conditions, such as humidity, all may influence the operator's choice of reflector focus pattern.
The operator may adjust the amount of radiated ultraviolet energy absorbed by photosensitive floor coating by selecting and installing a particular reflector, and may further refine the adjusted amount using control console component 110, shown in
The present design's combination of a predetermined or fixed pattern reflector in conjunction with a fixed ultraviolet lamp height, in relation to the floor surface, may provide some control of the amount of ultraviolet radiation provided to cure the sealant material applied atop the floor surface. Fixing the height adjustment in this manner may reduce the curing energy losses sufficient for efficient and rapid curing of photo-initiated coatings and may prevent the apparatus skirt and other lower machine components from touching the floor coating material and floor during operation.
The present design may include selecting from a plurality of reflector profiles for adjusting the ultraviolet dosage delivered during operation. Referring to
The reflector profiles for adjusting the ultraviolet dosage may include but are not limited to a focused projection pattern shown in
Spur Gear
The present designs speed readout assembly may involve the use of a spur gear for determining the speed of the floor-curing machine.
The magnetic sensor may transmit a pulse signal to the control console component every time a gear tooth passes the sensor. The control console may include a digital display device and may be programmed to count pulses generated from the progression of the rotating gear teeth, counted over a period of time, sufficient for determining the machine speed and distance traveled as the wheel turns and rotates the teeth past the sensor. The digital display device may provide a liquid crystal or light emitting diode display available for viewing the real time machine speed by the operator presented on the control console at the top of the machine.
In an optional drive wheel embodiment, each wheel may connect to linear driveshaft 435 via a clutch bearing (not shown). The clutch bearing may be used in conjunction with a drive system to drive the wheels at slightly different speeds by causing slipping when executing a turn.
Caster Wheel
The present design may include a pair of ball casters or ball caster wheels at the rear of the irradiator assembly.
Transverse/Omnidirectional Wheels
The two omnidirectional rear wheels in combination with the set of transversely mounted wheels may be mounted on a bracket at the rear of the machine. The transversely mounted wheels may come into contact with the ground when the machine is tilted at an angle of approximately 10 degrees backwards. At an angle of 10 degrees or more, the irradiator assembly may be pushed sideways to allow curing along walls and edges. Although the omnidirectional wheels will allow for sideways movement, which is ideally suited for steering purposes, they are not freewheeling enough when the machine is pushed sideways.
While two omnidirectional wheels are disclosed herein, it should be noted that a different number, such as four, wheels may be employed, replacing the 230A and 230B with omnidirectional wheels, thus enabling and simplifying further directional changes. Use of additional wheels or alternate wheel arrangements can be particularly advantageous in small spaces.
Curing Inclines
The apparatus may be tilted, shown by arrow ‘A’ at point 710, at a small inclined angle while transitioning onto steep floor surface incline 720. After making the transition, the operator may allow the front wheels to regain contact with the floor surface and begin curing inclined floor surface 740. The apparatus may be tilted at an inclined angle in a manner and orientation sufficient to prevent the skirt, or any other irradiator assembly component from contacting floor surface 730. In addition, the apparatus may prevent skirt contact when transitioning over other obstacles such as door thresholds, gratings, and the like.
Pistol Handle Grip and Telescoping Handlebar
Referring to
Rotating handlebar 811 through this range of motion to, for example, point 816D may facilitate operation when curing underneath overhanging room elements, such as wall hung cabinets, low clearance machinery, underneath stairways, and other restricted spaces.
Control console assembly 810, illustrated in
There is thus provided a floor curing apparatus including a housing, an ultraviolet lamp, and a rear swivel wheel arrangement including a pair of freewheeling rear wheels configured to rotate or pivot around either the left rear swivel wheel or the right rear swivel wheel to facilitate movement of the floor curing machine when operated along side or against a wall, surface edge, or other room transitions while operating at a constant speed. The rear wheels are a freewheeling design configured to facilitate movement of the floor curing machine when operated along side or against a wall, surface edge, or other room transitions while operating at a constant speed.
The wheel driven frame is a fixed configuration where the vertical height of the ultraviolet irradiator maintains a constant distance between the ultraviolet lamp and the floor surface at all times. The floor curing apparatus also includes a shutter device, a linear actuator configured to drive a support element in a direction away from the ultraviolet lamp, where the support element is affixed to a plurality of guide blocks configured to draw the shutter device away from the ultraviolet lamp.
The present design includes a changeable irradiation profile using interchangeable reflectors/reflector assemblies to provide a desirable irradiation pattern on the floor below.
The design presented herein and the specific aspects illustrated are meant not to be limiting, but may include alternate components while still incorporating the teachings and benefits of the invention, namely a portable floor curing apparatus exhibiting the beneficial characteristics described herein. While the invention has thus been described in connection with specific embodiments thereof, it will be understood that the invention is capable of further modifications. This application is intended to cover any variations, uses or adaptations of the invention following, in general, the principles of the invention, and including such departures from the present disclosure as come within known and customary practice within the art to which the invention pertains.
This application is a continuation of co-pending U.S. patent application Ser. No. 12/932,137, entitled “Portable Ultraviolet Floor Curing Device,” inventors Andrew J. Mackinnon et al., filed Feb. 17, 2011, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4241255 | Sugiyama et al. | Dec 1980 | A |
6538258 | Rau et al. | Mar 2003 | B1 |
6761127 | Field et al. | Jul 2004 | B2 |
8458923 | Mackinnon et al. | Jun 2013 | B2 |
20050022844 | Field et al. | Feb 2005 | A1 |
20130340273 | Mackinnon et al. | Dec 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130340273 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12932137 | Feb 2011 | US |
Child | 13911972 | US |