The present invention is directed to a warming device and methods for warming an article, and more particularly to a portable warming device and method for warming one or more textile materials, and still even more particularly to a portable warming device and method for warming one or more towels.
Towels and similar articles are frequently employed by individuals for a variety of purposes, most notably including removing water from the surface of an individual's body following, for example, showering, bathing, swimming, using a hot tub, or other bodily contact with water. Individuals that take a shower, bathe in a tub, etc. generally used a towel to dry off. The towel is generally located on a wall mounted towel rack or on some other location in close proximity to the shower, tub, etc.
An unpleasant or undesirable complication associated with bathing and/or relaxing in a shower, tub, etc. is that once the individual exits the shower, tub etc., the individual is exposed to a colder ambient environment due to the disparity between the ambient temperature of a bathroom, tub room, etc. and the temperature of the water used for showering, bathing, soaking etc. For instance, an individual typically takes a shower at a water temperature that is higher than normal body temperature (e.g., 98.2° F.) so that the water feels warm to the skin. The ambient temperature of the bathroom is typically about 60-80° F. As such, when the individual exits the shower stall, the skin of the individual is immediately exposed to a significant temperature drop, which can be uncomfortable for many individuals. The water on the skin surface also acts as a good heat conductor, thereby increasing the rate at which the outer surface of the skin is cooled, thus increasing the level of discomfort to some individuals. As such, most individuals, upon exiting the shower, quickly grab a towel and dry their skin as fast as possible. The towel also functions as an insulator from the cooler ambient air. Consequently, many individuals wrap a towel over their hair and/or about portions of their body to keep their body warmer.
Although the rapid drying of the individual after showering, bathing, soaking, etc. reduces the discomfort many individuals experience when exiting a shower, tub, etc., the temperature of the towel on the skin when drying off and/or wrapping the towel over their hair and/or about portions of their body can still cause some discomfort to the individual due to the temperature of the towel. During showering, bathing, soaking, etc., the towel is left exposed to the ambient temperature of the bathroom, tub house, etc., thus causing the towel to have the same or similar temperature as the ambient air. Consequently, the cooler towel surface when contacting the wet skin surface of an individual can cause some discomfort to the individual. Some individuals have attempted to overcome this problem by heating the towel prior to using the towel for drying. By heating the towel, the temperature of the towel is elevated above ambient temperature thereby minimizing or overcome the discomfort of using the towel after exiting the shower, tub, etc.
A variety of towel warming devices have been commercially developed and offered to the public. Although several types of towel heating devices are known, these towel heating devices suffer from one or more disadvantages. For example, many of these towel warming devices require invasive structural modifications to accommodate the towel warming device, leading to undesired expense and cosmetic alteration of a bathroom. In addition, many of these towel warming devices are very expensive, thus only used commercially or by a small portion of the population. Furthermore, many of these towel warming devices are not portable, take a significant amount of time to proper heat the towel and/or use a significant amount of energy to heat the towel.
In view of the state of the prior art of towel warming devices, there is a need for a portable, low-cost towel warming device that quickly and efficiently warm towel and/or other textiles.
The present invention is directed to a warming device and methods for warming an article, and more particularly to a portable warming device and method for warming one or more textile materials, and still even more particularly to a portable warming device and method for warming one or more towels. The portable warming device of the present invention will be described with particular reference to the warming of one or more standard bath towels; however, it will be appreciated that other or additional articles (e.g., bath sheet, hand towel, wash cloth, bath robe, diaper, children and/or baby clothing, sock, undergarment, shirt, short, glove, scarf, mitten, house shoe, etc.) can be warmed by the portable warming device of the present invention. As defined herein, a standard bath towel is about 27-30″ by 52-60″ and has a thickness of about 0.125-0.25″, thus having an average volume of about 175-450 cubic inches. The portable warming device of the present invention will also be described as a portable unit that can be relatively easily and conveniently transported by a user to various locations. The portability of the portable warming device is at least in part based on the size and weight of the portable warming device. In accordance with one non-limiting embodiment of the present invention, the portable warming device has a weight, when not including one or more articles, of no more than about 50 lbs. The relatively low weight of the portable warming device enables an average adult to relatively easily move the portable warming device to various locations, as opposed to moving a standard clothing dryer that typically weighs over 75-100 lbs. and is designed to be positioned in a single location. In one non-limiting aspect of this embodiment, the portable warming device has a weight, when not including one or more articles, of no more than about 40 lbs. In additional and/or alternative non-limiting aspect of this embodiment, the portable warming device has a weight, when not including one or more articles, of no more than about 30 lbs. In still additional and/or alternative non-limiting aspect of this embodiment, the portable warming device has a weight, when not including one or more articles, of no more than about 20 lbs. In yet additional and/or alternative non-limiting aspect of this embodiment, the portable warming device has a weight, when not including one or more articles, of about 3-15 lbs. In still yet additional and/or alternative non-limiting aspect of this embodiment, the portable warming device has a weight, when not including one or more articles, of about 5-10 lbs. The size of the portable warming device is also selected to enable an average adult to relatively easily grasp and move the portable warming device to various locations. In accordance with additional and/or alternative non-limiting embodiment of the present invention, the body of the portable warming device has a total volume of no more than about 8000 cubic inches. This relatively small size of the portable warming device distinguishes the portable warming device from standard and compact dryers that have volumes that generally exceed 12000 cubic inches, thereby making such dryers difficult to move without assistance from another individual and/or with the use of a dolly. In one non-limiting aspect of this embodiment, the body of the portable warming device has a total volume of no more than about 7000 cubic inches. In still additional and/or alternative non-limiting aspect of this embodiment, the body of the portable warming device has a total volume of no more than about 6000 cubic inches. In yet additional and/or alternative non-limiting aspect of this embodiment, the body of the portable warming device has a total volume of no more than about 5000 cubic inches. In still yet additional and/or alternative non-limiting aspect of this embodiment, the body of the portable warming device has a total volume of about 400-2500 cubic inches. In additional and/or alternative non-limiting aspect of this embodiment, the body of the portable warming device has a total volume of about 450-2000 cubic inches. In still additional and/or alternative non-limiting aspect of this embodiment, the body of the portable warming device has a total volume of about 500-1750 cubic inches. As can be appreciated, the total volume of the portable warming device of the present invention will in part depend on the number and/or types of articles the portable warming device is designed to warm. For instance, if the portable warming device is designed to simultaneously warm 2-3 standard bath towels, then such device will generally have, but is not required to have, a total volume than is greater than a portable warming device that is designed to warm only a single standard bath towel at a time. The portable warming device of the present invention will be described as a portable device that is typically placed on a generally flat surface (e.g., counter top, floor, commode seat or top, tub deck, shelf, chair seat, bench, table, toilet seat, toilet tank top, etc.); however, it will be appreciated that the portable warming device can include, but is not required to include, one or more connectors that enable the portable warming device to be mounted on and/or secured to the generally flat surface, a wall or other location. The ability of the portable warming device to be secured to a generally flat surface, a wall or other location does not detract from the portable nature of the portable warming device.
In accordance with additional and/or alternative non-limiting aspect of the present invention, the portable warming device is designed to at least partially dry heat one or more articles. The term “dry heat” is defined herein as primarily heating the one or more articles by a means other than the use of a heated liquid such as, but not limited to, heated water and/or steam. As such “dry heating” includes a heating process wherein no additional moisture is purposely or intentionally introduced during the heating process. The positioning of moist or slightly moist articles on and/or into the portable warming device does not constitute purposeful or intentional introduction of moisture during the heating process. In addition, the use of the portable arming device in a humid environment (e.g., bathroom, steam room, sauna, indoor hot tub room, indoor swimming pool, etc.) also does not constitute purposeful or intentional introduction of moisture during the heating process. When the one or more articles are primarily heated by dry heat, the warmed article when first removed from the portable warming device has a generally dry feel as opposed to an article that is heated by steam. In accordance with one non-limiting embodiment of the invention, the of one or more articles are at least partially heated by a radiation heating mechanism, a conduction heating mechanism and/or a convection heating mechanism. In accordance with one non-limiting aspect of this embodiment, the one or more articles are primarily heated by a radiation heating mechanism, a conduction heating mechanism and/or a convection heating mechanism. In accordance with additional and/or alternative non-limiting aspect of this embodiment, the one or more articles are primarily heated by a conduction heating mechanism and/or a convection heating mechanism. In accordance with still additional and/or alternative non-limiting aspect of this embodiment, the one or more articles are primarily heated by a conduction heating mechanism. In accordance with one aspect of this embodiment, one or more portions of the portable warming device are heated by one or more heating elements. As the one or more portions of the portable warming device begin to elevate in temperature, the one or more articles in contact with one or more portions of the portable warming device also begin to be warmed or heated by the conduction mechanism. It will be appreciated that some air will also be heated by the warmer surfaces on the portable warming device and that at least a portion of such heated air will then contact the one or more articles on and/or in the portable warming device thereby heating the one or more articles by a convection heating mechanism; however, such convection heating mechanism is merely a secondary heating mechanism as compared to the heating of the one or more articles by the conduction mechanism. As can be appreciated, the portable warming device can include one or more air circulating devices (e.g., fan, blower, etc.) to increase the heating of the one or more articles by the use of a convection heating mechanism; however, this is not required.
In accordance with still additional and/or alternative non-limiting aspect of the present invention, the portable warming device includes a warming or inner cavity having at least one side wall. The one or more side walls are used to at least partially retain one or more articles in the portable warming device as the one or more articles are warmed. The one or more side walls can be made of a variety of materials (e.g., metal, plastic, ceramic, fiber reinforced materials, composite materials, etc.). In accordance with one non-limiting embodiment of the present invention, the one or more side walls are formed of an oxidizing resistance surface so as to not rapidly oxidize when exposed to moisture. Non-limiting examples of such oxidizing resistance surfaces include, but are not limited to, stainless steel, aluminum, ceramic, plastics, etc. In accordance with an additional and/or alternative non-limiting embodiment of the present invention, when one or more side walls are used to at least partially heat the one or more articles in the warming or inner cavity by a conduction mechanism, one or more portions of the one or more side walls typically include a material having good heat conducting properties (e.g., stainless steel, aluminum, tin, nickel, chrome, etc.). In accordance with still an additional and/or alternative non-limiting embodiment of the invention, the warming or inner cavity includes one side wall. In accordance with one non-limiting aspect of this embodiment, the warming or inner cavity has a generally circular cross-sectional shape that is formed by a single side wall. In accordance with yet an additional and/or alternative non-limiting embodiment of the invention, the warming or inner cavity includes a plurality of side walls. In accordance with one non-limiting aspect of this embodiment, the warming or inner cavity has a non-circular cross-sectional shape (e.g., polygonal, oval, one or more straight sides and one or more arcuate sides, etc.) that is formed by a plurality of side walls. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the warming or inner cavity is formed by at least two side walls that a) lie in generally the same plane, b) are spaced from one another, and c) the inner surfaces are generally parallel to one another. In accordance with yet an additional and/or alternative non-limiting embodiment of the invention, the warming or inner cavity includes a bottom wall. The bottom wall can be formed of the same or a different material from the one or more side walls. The bottom wall may or may provide heat to the one or more articles in the warming or inner cavity. The bottom wall may or may not be connected to interconnected with all or less than all of the one or more side walls. The bottom wall can have a variety of configurations and shapes (e.g., flat, dome-shaped, inverted-dome shaped, oval, circular, polygonal, etc.).
In accordance with yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include one or more lids or doors designed to substantially encapsulate one or more articles that have been positioned in the warming or inner cavity; however, this is not required. The substantial or complete encapsulation of the one or more articles in the warming or inner cavity can be used to increase the rate at which the one or more articles are heated by the portable warming device. In accordance with one non-limiting embodiment of the invention, one or more of the lids or doors are rotatably (e.g., pivotly connected, etc.) and/or slidably connected or interconnected to the warming or inner cavity and/or the housing of the portable warming device which includes the warming or inner cavity. In accordance with one non-limiting aspect of this embodiment, a single lid is pivotly connected or interconnected to the warming or inner cavity and/or the housing of the portable warming device. In accordance with an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors are removable from the warming or inner cavity and/or the housing of the portable warming device. In accordance with still an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors can include an opening and/or closing mechanism to facilitate in the opening and/or closing of the one or more lids. In accordance with one non-limiting aspect of this embodiment, the opening and/or closing mechanism includes one or more springs. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the opening and/or closing mechanism includes a friction and/or ratchet arrangement. As can be appreciated, other or addition arrangements can be used to facilitate in the opening and/or closing of the one or more lids or doors. In accordance with still an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors can include a retaining arrangement to facilitate in maintaining the one or more lids in a partial or fully closed position. In accordance with one non-limiting aspect of this embodiment, the retaining arrangement can include, but is not limited to, a locking arrangement, a latch arrangement, a magnet arrangement, Velcro, a spring arrangement, friction arrangement, ratchet arrangement, etc. As can be appreciated, other or addition arrangements can be used to facilitate in maintaining the one or more lids or doors in a partial or fully closed position. In accordance with still yet an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors can include a handle, lip and/or other type of arrangement to facilitate in the opening and/or closing of the one or more lids or doors. In accordance with an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors can be formed of a variety of materials (e.g., metal, plastic, glass, wood, composite materials, fiber reinforced materials, etc.). One non-limiting example of a material that can form all or a portion of the one or more lids or doors is a plastic. As defined herein, “plastic” is a general term to refer to a variety of polymer materials such as, but not limited to, thermoplastic polymers (e.g., polyurethane, polypropylene, acrylic resins, etc.), thermoset polymers (e.g., silicones, rubber, epoxides, etc.), etc. One non-limiting example of a plastic that can be used to form one or more portions of a lid or door is polypropylene. In accordance with still an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors can be at least partially formed of and/or include a transparent or semi-transparent material (e.g., clear or opaque plastic or glass, etc.). In accordance with yet an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors can be at least partially formed of a heat conducting material or a heat insulating material. In accordance with still yet an additional and/or alternative non-limiting embodiment of the invention, one or more of the lids or doors can include an opening and/or closing actuator to facilitate in the opening and/or closing of the one or more lids or doors. The opening and/or closing actuator can be formed or mechanical and/or electrical components. The opening and/or closing actuator can be designed to cause the one or more lids or doors to be manually or automatically opened and/or closed. In accordance with one non-limiting aspect of this embodiment, the portable warming device includes a foot pedal to cause one or more doors or lids to open and/or close. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the portable warming device includes a button or switch to cause one or more doors or lids to open and/or close. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the portable warming device includes a controller to automatically to cause one or more doors or lids to open and/or close.
In accordance with still yet additional and/or alternative non-limiting aspect of the present invention, the warming or inner cavity of the portable warming device has a volume, when used in combination with one or more lids or doors to substantially encapsulate up to one or more standard bath towels. In accordance with one non-limiting embodiment of the invention, the warming or inner cavity of the portable warming device has a volume, when used in combination with one or more lids or doors to substantially encapsulate up to four standard bath towels. In accordance with one non-limiting aspect of this embodiment of the invention, the warming or inner cavity of the portable warming device has a volume, when used in combination with one or more lids or doors, to substantially encapsulate up to three standard bath towels. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the warming or inner cavity of the portable warming device has a volume, when used in combination with one or more lids or doors, to substantially encapsulate up to two standard bath towels. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment of the invention, the warming or inner cavity of the portable warming device has a volume, when used in combination with one or more lids or doors, to substantially encapsulate up to one standard bath towel. In accordance with an additional and/or alternative embodiment of the invention, the warming or inner cavity of the portable warming device has an enclosed volume, when used in combination with one or more lids or doors, which is up to about 4000 cubic inches. In accordance with one non-limiting aspect of this embodiment, the warming or inner cavity of the portable warming device has an enclosed volume, when used in combination with one or more lids or doors, which is up to about 2000 cubic inches. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the warming or inner cavity of the portable warming device has an enclosed volume, when used in combination with one or more lids or doors, which is about 175-1500 cubic inches. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the warming or inner cavity of the portable warming device has an enclosed volume, when used in combination with one or more lids or doors, which is about 200-1000 cubic inches. In accordance with yet an additional and/or alternative non-limiting aspect of this embodiment, the warming or inner cavity of the portable warming device has an enclosed volume, when used in combination with one or more lids or doors, which is about 350-750 cubic inches.
In accordance with additional and/or alternative non-limiting aspect of the present invention, the warming or inner cavity of the portable warming device generally does not include a rack and/or other type of support arrangement. The warming or inner cavity is designed to enable a folded and/or unfolded article (e.g., bath towel, etc.) to be inserted into the warming or inner cavity. As such, no specific orientation of the article in the warming or inner cavity of the portable warming device is required in order to warm the article in the warming or inner cavity. The absence of a rack and/or other type of support arrangement in the warming or inner cavity simplifies the design of the warming or inner cavity of the portable warming device and the use of the portable warming device. As can be appreciated, a rack and/or other type of support arrangement can be included in the warming or inner cavity if so desired.
In accordance with still additional and/or alternative non-limiting aspect of the present invention, the warming or inner cavity of the portable warming device can include one or more drain openings. The one or more drain openings are used to enable liquid that collects in the warming or inner cavity to exit the warming or inner cavity. Wet or damp articles may be placed in the warming or inner cavity by a user. The liquid in the one or more wet or damp articles can accumulate at the base of the warming or inner cavity. During the heating of the one or more articles in the warming or inner cavity, the liquid in the warming or inner cavity can cause the one or more articles to feel damp after being removed from the warming or inner cavity by a user. The one or more drains in the warming or inner cavity can reduce the amount of liquid in the warming or inner cavity, thereby reducing the dampness of the one or more articles being warmed or heated in the warming or inner cavity. The one or more drains can also or alternatively be used to reduce the amount of liquid in the warming or inner cavity so that when other articles are place in the warming or inner cavity, such articles do not contact significant amounts of liquid in the warming or inner cavity so as to cause the articles to feel damp after being heated and removed from the warming or inner cavity by the user. The one or more drains can also or alternatively be used to inhibit or prevent damage, discoloration, etc. to one or more components of the portable warming device. In accordance with one non-limiting embodiment of the invention, one or more drain openings are position in the base or bottom of the warming or inner cavity. As can be appreciated, one or more drain openings can be positioned in other regions of the warming or inner cavity. In accordance with one aspect of this embodiment, at least one drain opening is positioned generally in the center of the base or bottom of the warming or inner cavity. In accordance with an additional and/or alternative non-limiting embodiment of the invention, the base or bottom of the warming or inner cavity includes one or more recessed or depressed regions so as to facilitate in the accumulation of the liquid in such recessed or depressed regions. When the base or bottom of the recessed or depressed regions include one or more of such recessed or depressed regions, one or more drain openings, when used, are typically located in the recessed or depressed regions to remove the accumulated liquid in such recessed or depressed regions. In accordance with still an additional and/or alternative non-limiting embodiment of the invention, a drain pan and/or other type of liquid retention device can be used to hold liquid that passes though the one or more drain openings so as to reduce or prevent the liquid from being deposited on a surface below the one or more drain openings. When drain pan and/or other type of liquid retention device is used, the drain pan and/or other type of liquid retention device can be designed to be removed or otherwise emptied by a user; however, this is not required.
In accordance with yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device generally does not include a spinning warming or inner cavity and/or a spinning device in the warming or inner cavity. In most clothes dryers, articles of clothing are placed in a drum. This drum is rotated during a drying cycle of the one or more articles in the drum. The portable warming device does not require the use of rotating components to warm or heat the one or more articles in the warming or inner cavity. The elimination of rotating components in the portable warming device results in a more simplified design of the portable warming device. As can be appreciated, one or more spinning devices and/or arrangements can be included in the portable warming device, if so desired.
In accordance with still yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device includes an outer shell. In this arrangement, the outer surface of the outer shell forms the outer surface of the portable warming device. The outer shell can be formed or a variety of the materials (e.g., metal, plastic, ceramic, glass, wood, etc.). The outer shell can have a variety of configurations (e.g., circular, oval, polygonal, etc.). The outer surface of the shell can have a variety of colors and/or designs. In accordance with one non-limiting embodiment of the invention, the portable warming device includes an inner shell and an outer shell. The inner shell and outer shell can be formed of the same or different materials. The inner shell and outer shell can have the same general shape or have different shapes. The inner shell and outer shell can have generally the same thickness or different thicknesses. In accordance with one non-limiting aspect of this embodiment, there is provided an outer shell having an inner and outer surface and an inner shell having an inner and outer surface. The inner surface of the inner shell at least partially forms the warming or inner cavity of the portable warming device. The outer surface of the inner shell and the inner surface of the outer shell may be in contact with one another or be partially or fully spaced apart from one another. In accordance with one non-limiting design of this aspect of the embodiment, the outer surface of the inner shell and the inner surface of the outer shell are at least partially spaced apart from one another and one or more heating and/or electronic components are positioned in the one or more spaces between the inner and outer shells. In accordance with an additional and/or alternative non-limiting embodiment of the invention, the outer shell of the portable warming device includes an inner surface that at least partially forms the warming or inner cavity of the portable warming device. In accordance with one non-limiting aspect of this embodiment, the outer shell is a single component that includes at least one cavity designed to at least partially include one or more heating and/or electronic components and has an outer wall that forms at least a portion of the outer surface of the portable warming device and an inner surface that form at least a portion of the warming or inner cavity of the portable warming device. In accordance with an additional and/or alternative non-limiting embodiment of the invention, the outer shell is a single component that includes one or more heating and/or electronic components and has an outer wall that forms at least a portion of the outer surface of the portable warming device and which outer wall creates a heated surface to warm or heat one or more articles on the outer surface.
In accordance with an additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include a top and/or bottom housing; however, this is not required. The top and/or bottom housing can be formed of the same or different material. The top and/or bottom housing can be formed of the same or different material from the outer shell. The top and/or bottom housing can be formed of the same or different material from the inner shell, when an inner shell is used. The top and/or bottom housing can have the same or a different shape. The top and/or bottom housing can be detachably connected or permanently connected to the outer shell. The top and/or bottom housing can be detachably connected or permanently connected to the inner shell, when an inner shell is used. The top and/or bottom housing can be formed of a variety of materials (e.g., metal, wood, plastic, ceramic, composite materials, fiber reinforced materials, etc.). The top and/or bottom housing can be formed of a heat conducting or heating insulating material. The top and/or bottom housing can include a surface (e.g., rough surface, grooved surface, ribbed surface, non-slick surface, etc.) that facilitates in gripping the portable warming device by a user; however, this is not required. The bottom housing can include a non-slick surface (e.g., rubber surface, silicone surface, etc.) that inhibits or prevents the bottom housing from slipping and/or inadvertently moving on a surface; however, this is not required. The non-slick surface, when used, can include one or more legs, dimple, feet, etc. in the bottom housing; however, this is not required. The top and/or bottom housing can include one or more connectors (e.g., slot, groove, rib, screw hole, clip, clamp, etc.) used to secure the outer shell and/or inner shell to the top and/or bottom housing; however, this is not required. The top and/or bottom housing can include one or more connectors to at least partially maintain the position of the outer shell and inner shell relative to on another; however, this is not required. The top and/or bottom housing can include one or more connectors to at least partially mount the top and/or bottom housing to another surface; however, this is not required.
In accordance with still additional and/or alternative non-limiting aspect of the present invention, the portable warming device includes a heating arrangement. One or more portions of the heating arrangement can be secured to and/or form part of a) the inner and/or outer shell of the portable warming device, b) the top and/or bottom housing of the portable warming device, and/or c) the lid and/or door of the portable warming device. In accordance with one non-limiting embodiment of the invention, the heating arrangement includes a conduction heating mechanism that conducts heat through at least a portion of the inner and/or outer shell of the portable warming device so as to heat at least a portion of an outer surface of the portable warming device or at least a portion of an inner surface of the warming or inner cavity. In accordance with one non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements. In accordance with an additional and/or alternative non-limiting embodiment of the invention, at least one of the heating elements includes one or more electrically conductive wires (e.g., copper wire, aluminum wire, tin wire, steel wire, etc.) that are at least partially encapsulated and/or coated in one or more layers of an electrical insulting material (e.g., silicone, plastic, rubber, fiberglass, etc.). The electrical insulating material is typically not a heat insulating material; however, this is not required. In accordance with still an additional and/or alternative non-limiting embodiment of the invention, at least one of the heating elements includes one or more electrically conductive wires that are at least partially encapsulated/coated in an electrical insulting material and which one or more protective layers (e.g., plastic tape, metal tape, fiberglass material, etc.) are place over and/or about the electrical insulting material so as to provide protection to the electrical insulting material and/or to facilitate in securing the heating element to at least a portion of the inner and/or outer shell of the portable warming device. In accordance with yet an additional and/or alternative non-limiting embodiment of the invention, one or more of the heating elements can be a) positioned in the outer and/or inner shell, b) positioned on or closely adjacent to the inner and/or outer surface of the outer and/or inner shell, and/or c) spaced from the inner and/or outer surface of the outer and/or inner shell. In accordance with one non-limiting aspect of this embodiment, the portable warming device includes an inner and outer shell and one or more of the heating elements are positioned closely adjacent to or are in contact with at least a portion of the outer surface of the inner shell. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the portable warming device includes an inner and outer shell and one or more of the heating elements are positioned closer to the outer surface of the inner shell than to the inner surface of the outer shell. In accordance with still yet an additional and/or alternative non-limiting embodiment of the invention, the conduction heating mechanism includes one or more heating elements that can generate at least about 100 watts of energy. In accordance with one non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can generate up to about 1500 watts of energy. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can generate about 200-1000 watts of energy. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can generate about 300-800 watts of energy. In yet additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can generate about 350-600 watts of energy. In accordance with an additional and/or alternative embodiment of the invention, the conduction heating mechanism includes one or more heating elements that can heat at least a portion of an outer surface of the portable warming device or at least a portion of the inner surface of the warming or inner cavity to a temperature up to about 330° F. Temperatures that exceed 330° F. can result in damage to certain types of polymer or acrylic fabric blends. In accordance with one non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat at least a portion of an outer surface of the portable warming device or at least a portion of the inner surface of the warming or inner cavity to a temperature of at least about 105° F. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat at least a portion of an outer surface of the portable warming device or at least a portion of the inner surface of the warming or inner cavity to a temperature of about 110-300° F. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat at least a portion of an outer surface of the portable warming device or at least a portion of the inner surface of the warming or inner cavity to a temperature of about 150-290° F. In accordance with yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat at least a portion of an outer surface of the portable warming device or at least a portion of the inner surface of the warming or inner cavity to a temperature of about 200-260° F. In accordance with still an additional and/or alternative embodiment of the invention, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 130° F. in less than about 30 minutes; however, it will be appreciated that the time period can be greater than 30 minutes. The heating of the standard bath towel to elevated temperatures not only heats the standard bath towel to a desired temperature level for the user, the elevated temperature can also or alternatively reduce or eliminate bacteria, mold, mildew, fungus, allergens, dust mites, viruses, etc. from the standard bath towel. In one non-limiting example, mold and/or mildew common grow in damp and moist regions. A standard bath towel that has been used to dry an individual will be damp and can be susceptible to the growth of mold and/or mildew. As such, after several days of use, the standard bath towel may have an undesired smell and require washing to achieve a fresh and clean scent. The towel warming device of the present invention can warm or heat the standard bath towel to elevated temperatures that can cause some or all of the mold and/or mildew growing on the standard bath towel to be killed. In another and/or alternative non-limiting example, bacteria, dust mites, viruses, etc. in the surrounding environment can become deposited on a standard bath towel. The towel warming device of the present invention can warm or heat the standard bath towel to elevated temperatures that can cause some or all of the bacteria, dust mites, viruses, etc. on the standard bath towel to be killed, thus at least in part disinfecting the standard bath towel. As can be appreciated, other or additional foreign objects on the standard bath towel can be reduced or eliminated by the warming or heating of the standard bath towel by the portable towel warming device. As can also be appreciated, other or additional articles can be warmed or heated by the towel warming device to reduce or eliminate various foreign objects on such articles. In accordance with one non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 130° F. in less than about 20 minutes. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 130° F. in less than about 15 minutes. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 130° F. in less than about 10 minutes. In accordance with yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 150° F. in less than about 30 minutes; however, it will be appreciated that the time period can be greater than 30 minutes. In accordance with still yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 150° F. in less than about 20 minutes. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 150° F. in less than about 15 minutes. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 150° F. in less than about 10 minutes. In accordance with yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 180° F. in less than about 30 minutes; however, it will be appreciated that the time period can be greater than 30 minutes. In accordance with still yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 180° F. in less than about 20 minutes. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 180° F. in less than about 15 minutes. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 180° F. in less than about 10 minutes. In accordance with yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 200° F. in less than about 30 minutes; however, it will be appreciated that the time period can be greater than 30 minutes. In accordance with still yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 200° F. in less than about 20 minutes. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 200° F. in less than about 15 minutes. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to an average temperature of at least about 200° F. in less than about 10 minutes. In accordance with yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to a temperature that can cause at least about 2% of the foreign objects (e.g., bacteria, mold, mildew, fungus, allergens, dust mites, viruses, etc.) on the standard bath towel to be disabled, killed and/or eliminated within less than about 10 minutes. In accordance with still yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to a temperature that can cause at least about 5% of the foreign objects on the standard bath towel to be disabled, killed and/or eliminated within less than about 10 minutes. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to a temperature that can cause at least about 10% of the foreign objects on the standard bath towel to be disabled, killed and/or eliminated within less than about 10 minutes. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to a temperature that can cause at least about 20% of the foreign objects on the standard bath towel to be disabled, killed and/or eliminated within less than about 10 minutes. In accordance with yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to a temperature that can cause at least about 25% of the foreign objects on the standard bath towel to be disabled, killed and/or eliminated within less than about 10 minutes. In accordance with still yet an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to a temperature that can cause at least about 40% of the foreign objects on the standard bath towel to be disabled, killed and/or eliminated within less than about 10 minutes. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the conduction heating mechanism includes one or more heating elements that can heat a standard bath towel positioned on least a portion of an outer surface of the portable warming device or in the warming or inner cavity of the portable warming device to a temperature that can cause at least about 50% of the foreign objects on the standard bath towel to be disabled, killed and/or eliminated within less than about 10 minutes. In accordance with yet an additional and/or alternative one non-limiting embodiment of the invention, the conduction heating mechanism includes one or more heating elements that uniformly heat or non-uniformly heat the outer surface of the portable warming device or inner surface of the warming or inner cavity. In accordance with one non-limiting aspect of this embodiment, the one or more heating elements only heat one or more side walls of the warming or inner cavity. In additional and/or alternative non-limiting aspect of this embodiment, the one or more heating elements heat one or more side walls of the warming or inner cavity and at least a portion of the bottom or base of the warming or inner cavity. In still additional and/or alternative non-limiting aspect of this embodiment, the one or more heating elements heat one or more side walls of the warming or inner cavity and at least a portion of the bottom or base of the warming or inner cavity and at least one or more lid and/or doors of the portable warming device. In yet additional and/or alternative non-limiting aspect of this embodiment, the one or more heating elements heat one or more side walls of the warming or inner cavity to a higher temperature than the bottom or base of the warming or inner cavity. In still yet additional and/or alternative non-limiting aspect of this embodiment, the one or more heating elements heat one or more side walls of the warming or inner cavity and the bottom or base of the warming or inner cavity to a higher temperature than the one or more lid and/or doors of the portable warming device.
In accordance with yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device includes a heating arrangement having a controller (e.g., fuse, timer, thermostat, electronic circuit, microprocessor, etc.) that terminates the heating of the outer surface of the portable warming device or the warming or inner cavity after a predetermined event; however, this is not required. The controller is designed to eventually terminate the heating of the outer surface of the portable warming device or the warming or inner cavity after the heating arrangement has been activated. The use of such a controller prevents the heating arrangement from continuously heating the one or more articles on the outer surface of the portable warming device or in the warming or inner cavity after the heating arrangement has been activated. The continued heating of the outer surface of the portable warming device or the warming or inner cavity can result in 1) damage to one or more components of the heating arrangement and/or one or more other components of the portable warming device, 2) damage to one or more articles on the outer surface of the portable warming device or in the warming or inner cavity, 3) the wasting of electrical energy, 4) heating of the one or more articles on the outer surface of the portable warming device or in the warming or inner cavity to an undesired elevated temperature, and/or 5) heating the outer surfaces of the portable warming device an undesired elevated temperature. In accordance with one non-limiting embodiment of the invention, the predetermined event includes a predetermined temperature one or more regions of the portable warming device are heated to. In accordance with one non-limiting aspect of this embodiment, one or more thermostats or other temperature measuring devices are used to detect a temperature in one or more regions of the portable warming device and to then cause one or more of the heating elements to temporarily or permanently stop generating heat. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the detected temperature is up to about 330° F. In accordance with still an additional and/or alternative non-limiting aspect of this embodiment, the detected temperature in combination with a certain amount of time after achieving a certain detected temperature is used then cause one or more of the heating elements to temporarily or permanently stop generating heat. In accordance with an additional and/or alternative non-limiting embodiment of the invention, the predetermined event includes a predetermined time period the one or more heating elements generate heat. In accordance with one non-limiting aspect of this embodiment, a timer is used to cause one or more of the heating elements to temporarily or permanently stop generating heat after a certain time period of heating by the one or more heating elements. In accordance with one non-limiting design of this aspect of the embodiment, a timer causes and/or generates a signal to cause one or more of the heating elements to temporarily or permanently stop generating heat after a time of up to about 60 minutes; however, it will be appreciated that the time period can be greater than 60 minutes. In accordance with still an additional and/or alternative non-limiting design of this aspect of the embodiment, a timer causes and/or generates a signal to cause one or more of the heating elements to temporarily or permanently stop generating heat after a time of up to about 30 minutes. In accordance with yet an additional and/or alternative non-limiting design of this aspect of the embodiment, a timer causes and/or generates a signal to cause one or more of the heating elements to temporarily or permanently stop generating heat after a time of up to about 20 minutes. In accordance with still yet an additional and/or alternative non-limiting design of this aspect of the embodiment, a timer causes and/or generates a signal to cause one or more of the heating elements to temporarily or permanently stop generating heat after a time of up to about 15 minutes. In accordance with an additional and/or alternative non-limiting design of this aspect of the embodiment, a timer causes and/or generates a signal to cause one or more of the heating elements to temporarily or permanently stop generating heat after a time of up to about 10 minutes. As can be appreciated, the timer can cause and/or generate a signal to make one or more of the heating elements temporarily or permanently stop generating heat after some other period of time. In accordance with still an additional and/or alternative non-limiting embodiment of the invention, the predetermined event includes a predetermined number of heating cycles. In accordance with one non-limiting aspect of this embodiment, the portable warming device includes a heating arrangement having a controller that deactivates one or more heating elements after one or more heating cycles. In accordance with one non-limiting aspect of this embodiment, the controller is designed to terminate the heating of the outer surface of the portable warming device or the warming or inner cavity after a predetermined period of time has transpired and/or after a predetermined number of heating cycles has occurred. In accordance with an additional and/or alternative non-limiting aspect of this embodiment, the controller only allows a single heating cycle for a portion or all of the heating elements after the heating arrangement has been activated. In this arrangement, once the heating arrangement has been activated, one or more heating elements are activated to heat the outer surface of the portable warming device or the warming or inner cavity and then one or more of the heating elements are terminated from further generating heat after a predetermined event. In accordance with still an additional and/or alternative non-limiting embodiment, the controller only allows a predefined number of heating cycles to occur for a portion or all of the heating elements after the heating arrangement has been activated. In this arrangement, once the heating arrangement has been activated, one or more heating elements are activated to heat the outer surface of the portable warming device or the warming or inner cavity and then one or more of the heating elements are terminated after a predetermined event and then reactivated at least one additional time and then again terminated after a predetermined event. The time period between each heating cycle can be less than a second to several minutes. The duration of each heating cycle can be the same or different. The temperature that the outer surface of the portable warming device or the warming or inner cavity is heated to during each heating cycle can be the same or different. In one non-limiting aspect of this embodiment, the number of predefined heat cycles is no more than ten; however, it will be appreciated that predefined number of heating cycles can be more than ten cycles. In additional and/or alternative non-limiting aspect of this embodiment, the number of predefined heat cycles is no more than three. In additional and/or alternative non-limiting aspect of this embodiment, the number of predefined heat cycles is no more than two.
In accordance with still yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device includes a heating arrangement that can be powered by an internal and/or external power source. In accordance with one non-limiting embodiment of the invention, the heating arrangement can be at least partially powered by an external power source. Such external power sources can included, but are not limited to, a 120V and/or 220V wall plug or other 120V and/or 220V electric source (e.g., electric generator, hand-crank generator, etc.). When an external power source is used, the portable warming device typically includes a power cord having a plug that is used to connect to the external power source. The power may or may not include a ground connector. The portable warming device can include a storage cavity for the power cord; however, this is not required. If the portable warming device includes a storage cavity for the power cord, the storage cavity can include a cord winding mechanism to take-up and payout the power cord; however, this is not required. In accordance with an additional and/or alternative non-limiting embodiment of the invention, the heating arrangement can be at least partially powered by an internal power source. One non-limiting internal power source is a battery; however other or additional internal power sources can be used (e.g., solar panel, fuel cell, hand-crank generator, etc.). When an internal power source is used, portable warming device can include a power source cavity that enables a user to access the internal power source and replace the internal power source; however, this is not required. When an internal power source is used, the portable warming device can include a recharging arrangement (e.g., power cord that is connectable to an external power source, etc.) to enable a user to recharge the internal power source; however, this is not required.
In accordance with additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include a heating arrangement that has one or more activators used to begin one or more heating cycles of the heating elements of the heating arrangement; however, this is not required. In accordance with one non-limiting embodiment of the invention, an activation switch is used by a user to activate/deactivate the heating arrangement. The type activator and/or location of the activator on the portable warming device can be numerous. Non limiting examples of an activation switch include, but are not limited to, toggle switches, rocker switches, push button switches, slide switches, rotary switches, keylock switches, leaf switches, snap-action switches, grasp switches, membrane switches, light touch switches, cylindrical touch switch, fiber optic switch, adjustable proximity switch, adjustable photoelectric switch, eye-blink switch, voice activated switch, vibration switch, etc. Non-limiting examples of the location of the activation switch on the portable warming device includes, but is not limited to, the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc. In accordance with an additional and/or alternative non-limiting embodiment of the invention, a mechanical timer and/or electronic circuit can be used to activate/deactivate the heating arrangement. The mechanical timer and/or electronic circuit can be set or programmed to automatically activate the heating arrangement at a certain time. In accordance with still an additional and/or alternative non-limiting embodiment of the invention, a remote control device can be used to activate/deactivate the heating arrangement. The remote control can use RF, IR, sound waves (e.g., voice activated, ultrasound waves, etc.), etc. to control the heating arrangement from a remote location.
In accordance with still additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include one or more light generating visual indicators and/or audible indicators; however, this is not required. Non-limiting examples of light generating visual indicators include, but are not limited to, LED lights, incandescent lights, fluorescent lights, HID lights, halogen lights etc. Non-limiting examples of audible indicators include, but are not limited to, an electronic buzzer, electronic bell, electronic music, etc. The one or more light generating visual indicators and/or audible indicators can be positioned in a variety of locations on the portable warming device such as, but not limited to, the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc. The one or more light generating visual indicators and/or audible indicators can be used for a variety of reasons in combination with the heating arrangement such as, but not limited to, 1) indicating that one or more heating elements are generating heat, 2) indicating that one or more heating elements are not generating heat, 3) indicating that the portable warming device is connected to a power source, 4) indicating that one or more heating elements are cooling down and/or heating up, 5) indicating when an article is properly heated, 6) indicating when one or more articles can or should be inserted and/or removed from the outer surface of the portable warming device or the warming or inner cavity, 7) indicating when one or more lids or doors can or should be opened or closed, 8) indicating that lid or door is open or closed, 9) indicating the proper operation and/or a malfunction of the heating arrangement, 10) indicating that one or more articles on the outer surface of the portable warming device or in the warming or inner cavity have been heated to some temperature, 11) illuminating one or more controls and/or displays on the portable warming device, 12) indicating that one or more controls on the portable warming device have been activated, deactivated, etc., 13) indicating that heating elements were activated but no articles where placed on the outer surface of the portable warming device or in the warming or inner cavity, 14) indicating that heating elements were activated but articles on the outer surface of the portable warming device or in a warming or inner cavity were not removed after completion or partial completion of one or more heating cycles, 15) indicating that a lid or door was not opened after completion or partial completion of one or more heating cycles, 16) indicating that one or more components of the portable warming device are not working, are not properly working, and/or require service and/or replacement, 17) indicating that a power source is recharging, needs recharging and/or needs to be replaced, 18) providing a temperature display and/or illuminating a temperature display to display ambient temperature and/or temperature on the outer surface of the portable warming device or in warming or inner cavity, 19) providing a clock and/or illuminating a clock to indicate time, date, alarm settings, etc., 20) proving a timer and/or illuminating a timer, 21) proving a user interface and/or illuminating a user interface to that is used by a user to view and/or interface with one or more actual and/or preprogrammed operations of the heating arrangement (e.g., setting warming temperature, setting time of heating, setting activation time, displaying remaining time of heating, displaying time since heating elements terminated, displaying length of time an article has been heated, displaying length of time since an article remained on the outer surface of the portable warming device or in warming and heating cavity after termination of heating elements, etc.) and/or 22) indicating that a lid or door was not opened prior to activation of one or more heating cycles. As can be appreciated, there can be other or addition uses of the one or more light generating visual indicators and/or audible indicators in combination with the heating arrangement. As can also be appreciated, the one or more light generating visual indicators and/or audible indicators can have one or more functions that are independent of and/or used in combination with the heating arrangement of the portable warming device. Non-limiting examples of such uses include, but are not limited to, 1) functioning as a light (e.g., night light), 2) playing music (e.g., radio, CDs, DVDs, MP3s, etc.), 3) generating a light show (e.g., random light displays, lighting displays sensitive to music or other types of sounds, preprogramed light displays, etc.), and/or 4) functioning as an alarm (e.g., wake-up alarm, intruder alarm, fire and/or smoke alarm, CO2 and/or CO alarm, etc.). As can be appreciated, there can be other or addition uses of the one or more light generating visual indicators and/or audible indicators.
In accordance with yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include one or more controllers and/or user setting devices; however, this is not required. The one or more controllers can be positioned in a variety of locations on the portable warming device such as, but not limited to, the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc. Non-limiting examples of such controllers and/or user setting devices include, but are not limited to, electronic or mechanical timer, electronic or mechanical clock, audio controllers (e.g., volume controller, radio tuner controller, CD controller, DVD controller, MP3 controller, etc.), visual controllers (e.g., light display controller, light color controller, light intensity controller, etc.), and/or heating element controllers (e.g., mechanical and/or electronic activation/deactivation switch, electronic or mechanical timer, electronic or mechanical clock, temperature settings, etc.). As can be appreciated, there can be other or addition types of controllers and/or user setting devices.
In accordance with yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include one or more safety devices; however, this is not required. Non-limiting examples of safety devices include, but are not limited to, circuit breaker, fuse, GFCI, power cord ground, etc. As can be appreciated, other or additional safety devices can be used. The portable warming device can be designed to be water proof or substantially water proof, and/or housing vulnerable electric components in a housing or compartment that is water proof or substantially water proof; however, this is not required.
In accordance with still yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include a deactivation arrangement to temporarily terminate one or more operations of the heating arrangement; however, this is not required. In accordance with one non-limiting embodiment of the invention, one or more lid or doors on the portable warming device include a mechanism that deactivates or causes the deactivation of one or more heating elements when the lid or door is opened and/or not properly closed. In accordance with an additional and/or alternative non-limiting embodiment of the invention, one or more lids or doors on the portable warming device include a mechanism that deactivates or causes the deactivation of one or more heating elements when the portable warming device is moved (e.g., pick-up portable warming device, etc.) and/or not properly positioned on a surface (e.g., laid on its side, tipped over, etc.).
In accordance with additional and/or alternative non-limiting aspect of the present invention, one or more components of the portable warming device can be formed of or include a transparent or semi-transparent material; however, this is not required. The use of such materials can enable a user to view one or more of the internal components of the portable warming device, view the contents of the warming or inner cavity, etc.
In accordance with still additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include one or more blowers to enhance and/or increase the rate of warming of the one or more articles on the outer surface of the portable warming device or in the warming or inner cavity and/or to cool one or more components of the portable warming device; however, this is not required. As can be appreciated, the one or more blowers can have other or additional functions. The one or more blowers can be positioned in a variety of locations on the portable warming device such as, but not limited to, the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc. The one or more blowers can be automatically activated/deactivated and/or manually activated/deactivated. For example, the one or more blowers can be automatically activated when 1) immediately after or some time after one or more heating elements have been activated, 2) the temperature of one or more internal components of the portable warming device obtains a certain temperature, 3) immediately after or some time after a certain time of operation of the one or more heating elements, and/or 4) immediately after or some time after the outer surface of the portable warming device or the warming or inner cavity obtains a certain temperature. As can be appreciated, the one or more blowers can be activated for other or additional reasons. In additional and/or alternative example, the one or more blowers can be automatically deactivated when 1) one or more lids or doors of the portable warming device are opened, 2) immediately after or some time after one or more heating elements have terminated heating, 3) immediately after or some time after the temperature of one or more internal components of the portable warming device has fallen below a certain temperature, 4) immediately after or some time after the outer surface of the portable warming device or the warming or inner cavity has fallen below a certain temperature, 5) immediately after or some time after a certain time of operation of the one or more blowers, and/or 6) the portable warming device is not in a proper operating position (e.g., tipped over, etc.). As can be appreciated, the one or more blowers can be deactivated for other or additional reasons. In additional and/or alternative example, the one or more blowers can be manually activated and/or deactivated by use of a switch, timer, etc. As can be appreciated, the one or more blowers can be activated/deactivated by other means. One or more filter materials can be used in combination with the one or more blowers to remove lint, dust, etc.; however, this is not required. When one or more blowers are used, the top housing, the bottom housing, the lid, the door, the outer shell, and/or the outer shell can include one or more openings to facilitate in the flow of air; however, this is not required.
In accordance with yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include an aroma or scent generating arrangement; however, this is not required. The aroma or scent generating arrangement can be used to provide a fresh scent, clean scent and/or other desirable scent to the one or more articles positioned on the outer surface of the portable warming device or in the warming or inner cavity and/or to provide a scent to a region about the portable warming device. As can be appreciated, aroma or scent generating arrangement in combination with the disabling, killing and/or eliminating of foreign objects (e.g., bacteria, mold, mildew, fungus, allergens, dust mites, viruses, etc.) on the one or more articles can provide an enhanced experience by the user when using the warmed or heated article; however, this is not required. The aroma or scent generating arrangement can be positioned in a variety of locations on the portable warming device such as, but not limited to, the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc. The aroma or scent generating arrangement can be designed to provide a desired scent to the one or more articles on the outer surface of the portable warming device or in the warming or inner cavity and/or to provide a scent to a region about the portable warming device. The aroma or scent generating arrangement can include and/or be used with one or more blowers; however, this is not required. The aroma or scent generating arrangement can be automatically activated/deactivated and/or manually activated/deactivated. The aroma or scent generating arrangement can be designed to enable a user to change out and/or refill an aroma or scent containing member and/or receptacle; however, this is not required. The aroma or scent generating arrangement can include a volatile material (e.g., liquid, gel, solid, etc.) to release volatile substances (e.g., perfume, air fresheners, etc.) into the towel and/or in the atmosphere surrounding the portable warming device. The aroma or scent generating arrangement can be used independently and/or in conjunction with the heating arrangement of the portable warming device to cause controlled and/or uncontrolled release of the volatile substances. In one non-limiting embodiment of the invention, the volatile material is a consumable article designed to diffuse active volatile substances in the consumable article. In one non-limiting aspect of this embodiment, the consumable article is a heat shrinkable material, which material can have volatile substances impregnated therein. In another and/or alternative non-limiting aspect of this embodiment, the consumable article is designed to shrink as volatile substances are released therefrom. In still another and/or alternative non-limiting aspect of this embodiment, the consumable article includes heat shrink textile fibers such as, but not limited to, chlorofiber non-woven needled sheet bonded by a polyvinyl chloride resin. This particular non-limiting material is nonflammable and is heat shrinkable at elevated temperatures and can be impregnated with a volatile substance. In yet another and/or alternative non-limiting aspect of this embodiment, the consumable article includes a polyamide resin body such as, but not limited to, a Versalon™ type polyamide resin body. Non-limiting examples of polyamide resins that can be used include, but are not limited to, fatty polyamides (e.g., diamines, triaminesand relatively high molecular weight dibasic acids [e.g., the condensation products of dimerized linoleic acid and ethylene diamine], etc.). These types of resins are advantageous in that such resins generally retain their hardness at room temperature. In another and/or alternative non-limiting embodiment of the invention, the volatile substances include perfume oils (e.g., complex mixtures of volatile compounds including esters, ethers, aldehydes, nitrites, alcohols, unsaturated hydrocarbons [e.g., terpenes, etc.], etc.). In still another and/or alternative non-limiting embodiment of the invention, the volatile substances constitute at least about 1 weight percent of the volatile material. In one non-limiting aspect of this embodiment, the volatile substances constitute up to about 100 weight percent of the volatile material. In another and/or alternative non-limiting aspect of this embodiment, the volatile substances constitutes about 5-70 weight percent of the volatile material. In yet another and/or alternative non-limiting embodiment of the invention, the volatile substances can include insecticides, bactericides, odorants, and the like; however, this is not required. In still yet another and/or alternative non-limiting embodiment of the invention, the volatile substances can be diluted form in solvent (e.g., oily glycol type solvent [e.g., dipropylene glycol, ethylene diclycol, etc.], etc.); however, this is not required.
In accordance with still yet additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include an insulating material to reduce the amount of heat transmitted to the outer surface of the outer shell of the portable warming device; however, this is not required. Non-limiting examples of insulating materials include, but are not limited to, rock wool, slag wool, fiberglass, cellulose, polystyrene foam, polyurethane foam, polyisocyanurate foam, etc. The insulating material can be positioned in a variety of location on the portable warming device such as, but not limited to, the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc.
In accordance with additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include one or more components that change color and/or clarity due to temperature changes; however, this is not required. Non-limiting components of the portable warming device can include, but are not limited to, the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc.
In accordance with still additional and/or alternative non-limiting aspect of the present invention, the portable warming device can include a steam warming arrangement which can be used independently or in conjunction with one or more heating elements to heat one or more articles on the outer surface of the portable warming device or in the warming or inner cavity; however, this is not required. The steam warming arrangement can be at least partially positioned in the top housing, the bottom housing, the lid, the door, the outer shell, the inner shell, the space between the outer and inner shell, etc.
In accordance with one non-limiting object of the present invention, there is provided a portable warming device for warming one or more textile materials.
In accordance with an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that quickly and efficiently warms one or more textile materials.
In accordance with still an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes a warming or inner cavity for at least partially encapsulating one or more textile materials during the warming of such textile materials.
In accordance with yet an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes one or more lids or doors to substantially encapsulate one or more textile materials in the warming or inner cavity of the portable warming device.
In accordance with still yet an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that substantially dry heats one or more textile materials.
In accordance with an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that primarily warms or heats one or more textile materials by use of a conduction mechanism.
In accordance with still an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes one or more drains in the warming or inner cavity of the portable warming device.
In accordance with yet an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes one or more blowers to increase the rate at which one or more textile materials are warmed or heated.
In accordance with still yet an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes a heating arrangement that terminates the heating of one or more textile materials after some predefined event.
In accordance with an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes a heating arrangement that is powered by an internal and/or external power source.
In accordance with still an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes aroma or scent generating arrangement.
In accordance with yet an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes a light display generating mechanism.
In accordance with still yet an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that includes an audio generating mechanism.
In accordance with an additional and/or alternative non-limiting object of the present invention, there is provided a portable warming device that is able to drain moisture from a warming or inner cavity of the portable warming device.
These and other advantages will become apparent to those skilled in the art upon the reading and following of this description taken together with the accompanying drawings.
Reference may now be made to the drawings, which illustrate various embodiments that the invention may take in physical form and in certain parts and arrangements of parts wherein:
Referring now to the drawings wherein the showings are for the purpose of illustrating embodiments of the invention only and not for the purpose of limiting the same,
The portable warming device illustrated in
Referring now to
The portable warming device 100 is shown to have a body 110 that is mostly defined by an outer shell 120, a bottom housing 140, a top housing 160, and a lid 185. The outer shell can be formed by a variety of the materials (e.g., aluminum, stainless steel, etc.). The outer surface of the outer shell can have a variety of colors and/or designs to enhance the aesthetics of the portable warming device. The outer shell can have a variety of configurations. As illustrated in
Referring now to
Referring again to
As illustrated in
As illustrated in
Referring now to
Referring again to
As illustrated in
As illustrated in
As best illustrated in
The top surface 173 of the top housing includes a lid landing 174 and two lid connector openings 175 at the back region of the portable warming device. The lid landing terminates against an inner wall 180 to define a lid cavity that receives the lid in a closed position. The lid connector is best illustrated in
As illustrated in
Referring now to
Referring now to
Referring now to
As best shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The heating arrangement can include one or more safety devices (e.g., circuit breaker, fuse, GFCI, power cord ground, etc.) to enhance the operation of the portable warming device, however, this is not required.
The heating arrangement can include a latch or other arrangement on lid 185 to cause the heating mat to deactivate when the lid is not in the closed position; however, this is not required. As can also be appreciated, the heating arrangement can include a button or other type of detector used to deactivate the heating mat when the bottom housing is not properly placed on a generally flat surface (e.g., portable warming device laid on its side and/or tipped over, etc.); however, this is not required.
A non-limiting method for warming a towel by portable warming device 100 will now be discussed. The towel warming is generally positioned in a location desired by the user so as to provide convenient access to the warmed or heated towel (e.g., bathroom countertop, atop a toilet tank, on a bathroom floor, etc.). The electric cord 130 is connected to a source of electrical current, such as a wall outlet. The user warms or heats a towel by folding, shoving or otherwise pacing the towel in the warming or inner cavity of the portable warming device. The towel is positioned in the warming or inner cavity by opening lid 185 by grasping the 187 and lifting the lid into the open position as illustrated in
Referring now to
Portable warming device 300 includes a support frame 302 that has a generally U-shape. The support frame is designed to support a towel between the upright vertical walls 318, 320 of the support frame. The support frame is maintained in an upright position by two base supports 306. Referring now to
The outer shell 316 includes opposed and generally vertical walls 318, 320 that are maintained in a spaced apart relationship by a connecting portion 322. The vertical walls 318, 320 and the connecting portion 322 of the outer shell 316 can be of unitary construction; however, this is not required. The vertical wall and connection portions can be constructed from a plastic, metal, etc. which materials have the desired thermal, and durability properties. The vertical walls 318, 320 and connecting portion 322 can be of any suitable dimension suitable to holding one or more standard towels 304. In one non-limiting arrangement, the vertical walls 318, 320 and connecting portion 322 have a length that is slightly shorter than the length of a standard bath towel, resulting in a portion of the towel 304 being laterally exposed from one or both of the side ends of portable warming device 300 when the towel 304 is positioned in support frame 302. This particular design of the support frame enables a user to remove and insert towel 304 in support frame 302 without having to touch the support frame. As can be appreciated, the size of the support frame can be greater so that the ends of the towel do not extend beyond the sides of the support frame.
The connecting portion 322 is illustrated as a generally arcuate member disposed in a manner that translates its curvature to the vertical walls 318, 320. The curvature of the connecting portion maintains vertical walls 318, 320 in a spaced apart and in a slightly angularly offset relationship to each other. In this arrangement, the bottom portions of vertical walls 318, 320 that are connected to the connecting portion 322 are spaced apart a distance that is less than the distance separating the upper portions of vertical walls 318, 320. This arrangement of the vertical walls facilitates in the insertion of towel 304 into the support frame. As can be appreciated, the vertical walls can be equally spaced apart from one another or spaced apart in other orientations with respect to one another.
As best illustrated in
Referring again to
As illustrated in
As illustrated in
The connecting portion 336 is constructed from a suitable material, such as an appropriate metal, plastic, etc., that imparts a degree of resilient flexibility and biasing on the connection portion 336; however, this is not required. In one non-limiting arrangement, the vertical walls 332, 334 are spaced apart and angularly offset in a manner that enables a towel 304 to be placed between the vertical walls and to be compressed by the inner surface 334 of the inner shell. The compressive force applied to the towel 304 by the inner shell can increase the transfer rate of heat from the inner shell to the towel 304. Although not shown, the outer surface 338 of the inner shell 314 can include a plurality of perforations used to increase the rate of heat transfer from the heating mat to the towel positioned in the inner shell.
In one non-limiting configuration, a spaced region exists between the inner surface 338 of the inner shell 314 and the inner surface 324 of the outer shell 316 when the inner shell and outer shell are connected together. The spaced region functions in part as a situs for the positioning of the heating mat. In one particular non-limiting arrangement, the heating mat is disposed along substantially the entire surface of the space region, i.e., along substantially the entirety of the inner surface 338 of the inner shell 314. As illustrated in
Referring now to
Referring now to
Referring now to
The control circuitry 308 includes an electrical power cord 310 coupled to the heating mat. The power cord 310 is designed to interface with a source of electrical current. In one non-limiting configuration, the power cord 310 is a ribbon-like generally flat cord that is designed to interface with a conventional wall-mounted source of electrical current through a conventional male plug adaptor 312.
The control housing 346 is illustrated as including a user actuable switch 348 which the user interacts with to operate the portable warming device 300. The user actuable switch 348 is designed to be communicatively coupled to the heating mat in a manner that actuation of the switch 348 causes electric current to flow to the heating mat. The user actuable switch is illustrated as a mechanical switch; however, it can be appreciated that other types of switches can be used. In one non-limiting arrangement, the user actuable switch 348 is coupled to a timer element, not shown. In this arrangement, the actuation of the user actuable switch causes the heating mat to heat for a predetermined period of time. Referring again to
The heating mat, not shown, is used as the heating source to heat the inner surface 340 of the inner shell 314. The heating mat is designed to generate sufficient heat to heating the inner surface 340 of inner shell 314 to a desired elevated temperature. Typically the heating mat is designed to generate sufficient heat to heating the inner surface 340 of inner shell 314 to a temperature of at least about 120° F., and more typically about 150-300° F. As can be appreciated, when the towel is heated by inner surface 340 to an elevated temperature, foreign objects (e.g., bacteria, mold, mildew, fungus, allergens, dust mites, viruses, etc.) on the towel can be disabled, killed and/or eliminated from the towel; however, this is not required. In one non-limiting configuration, the heating mat is an electrical resistance heating mat. The heating mat is designed to generate sufficient heat to heat the inner surface 340 of inner shell 314 to a desired elevated temperature in less than about 10 minutes; however, it can be appreciated that other time limits can be used. The heating mat generally includes a top layer, a bottom layer, and a heating element disposed therebetween. The top layer and bottom layer can be generally flat, thin members, which generally mirror each other, and constructed of an electrically insulating and durable material. Non-limiting examples of materials that can be used for the top and/or bottom layers include, but are not limited to, vinyl (e.g., Duraflex™, available from Duraflex, Tewkesbury, England), acrylonitrile-butadiene-styrene (ABS) plastic, polyvinylchloride (PVC), polyarylate, polycarbonate, high density polyethylene (HDPE), acrylic-styrene-acrylonitrile (ASA), polystyrene (PS), styrene-acrylonitrile (SAN), polyarylsulfone, and any suitable heat transferable and electrically insulating material. Non-limiting examples of commercially available heating mats that can be used in the portable warming device include heating mats available from Calesco, those available under the tradename Performance Master Advantage Plus, and the like. The heating mat can include one or more layers of protective heat conducting material (e.g., plastic tape, metal tape, fiberglass material, etc.); however, this is not required. The protective heat conducting material, when used, can be designed to capture, absorb and/or reflect radiant energy from the heating mat and at least partially directed such energy to the inner shell; however, this is not required. The protective heat conducting material, when used, can also be designed to provide additional electrical and/or heat insulating properties to the heating mat; however, this is not required. In another non-limiting configuration, the heating mat includes a heating element that is at least partially coated in an electrically insulating material. Non-limiting examples of electrically insulating materials include, but are not limited to, vinyl (e.g., Duraflex™, available from Duraflex, Tewkesbury, England), acrylonitrile-butadiene-styrene (ABS) plastic, polyvinylchloride (PVC), polyarylate, polycarbonate, high density polyethylene (HDPE), acrylic-styrene-acrylonitrile (ASA), polystyrene (PS), styrene-acrylonitrile (SAN), polyarylsulfone, silicones, and any suitable heat transferable and electrically insulating material. The heating element and electrically insulating material can be covered on one or more sides by one or more layers of a protective heat conducting material (e.g., plastic tape, metal tape, fiberglass material, etc.); however, this is not required. The electrically insulating material, when used, can also be designed to capture, absorb and/or reflect radiant energy from the heating element at least partially directed such energy to the inner shell; however, this is not required. The electrically insulating material, when used, can also be designed to provide additional electrical and/or heat insulating properties to the heating element; however, this is not required.
The heating element of the heating mat generally includes one or more elongate heating wires (e.g., copper, tin, lead, platinum, alloys thereof, etc.) positioned in the heating mat. The one or more heating wires can be sinuously looped throughout the heating mat in a manner that maximizes the amount of the one or more heating wires disposed in the heating mat, thereby increasing its heat-emitting capacity; however, it can be appreciated that other orientations of the one or more heating wires in the heating mat can be used. The heating element is designed to be electrically coupled to control circuitry 308. The control circuitry is designed to directed electric current into the heating element to cause the heating element to generate heat, as known to one of ordinary skill in the art.
As mentioned above, the control circuitry 308 couples the heating element to a source of electrical current so as to enable a user to control and/or direct operation of the heating mat. As mention above, the heating mat is generally designed to be couplable to a source of electrical current through a conventional electric cord 310 electrically associated with the heating mat in a well-known manner. The electric cord 310 generally includes at one end a plug adaptor 312 and/or other type of connector designed to be connected to a source of electric current (e.g., 120V AC, one or more batteries, etc.). The electric cord generally is provided in sufficient length to facilitate in positioning of the portable warming device 300 in any desired position and/or location. The electrical cord 310 can be designed to be suitably retractable into the body of the portable warming device to simplify storage of the device and/or to reduce the amount of unneeded cord being exposed from the portable towel device; however, this is not required. As can be appreciated, the portable warming device can include one or more projections or receptacles designed to receive the electric cord; however, this is not required. Such one or more projections or receptacles can be used to wrap the electric cord on the portable warming device, store the electrical cord in the portable warming device, and/or detachably connect the electric cord to the portable warming device; however, this is not required.
The control circuitry 308 can include one or more buttons, switches, program surfaces, etc. to enable a user to control and/or direct the operation of the heating element; however, this is not required. The one or more control elements generally include one or more mechanical and/or electrical mechanisms to enable a user to activate and/or deactivate the flow of electrical current to the heating element. The one or more mechanical and/or electrical mechanisms can include a user interface that is designed to receive user input and translate the received user input into the activation and/or deactivation of the flow of electric current to the heating mat; however, this is not required. As indicated above, the user interface can be any appropriate device such as, but not limited to, a conventional on/off switch, a pushbutton switch, a rotary dial, a slidable mechanism, programming buttons, programming screen, etc. The control circuitry 308 can include one or more mechanical and/or electrical mechanisms (e.g., clock, timer, electric circuit, etc.) designed to terminate the flow of electric current to the heating mat after a certain period of time; however, this is not required. In one non-limiting arrangement, one or more mechanical and/or electrical mechanisms can include a timer that is activated in response to the actuation of a user interface and causes electrical current to flow to the heating mat for a predetermined period of time. Upon the expiration of the predetermined period of time, the flow of electrical current to the heating mat is discontinued. The predetermined period of time can be an automatic predetermined time period and/or be a user selected time period. One non-limiting configuration of a user selected time period arrangement includes a timer having a switch, knob, rheostat-like slide, etc. that enables a user to manually select or input a particular time setting (e.g., five minutes, ten minutes, thirty minutes, etc.). Another non-limiting configuration of a user selected time period arrangement includes a programmable interface designed to receive user-generated instructions for operation of the portable warming device. The programmable interface can be designed to enable a user to activate and/or deactivate the heating element in the heating mat and/or to preprogram the automatic activation and/or deactivation the heating element in the heating mat at a future time period and/or period time periods. In one non-limiting example, some users follow well-established routines such as, for example, always entering the shower at 6:30 A.M. during workdays. Accordingly, the programmable interface can be designed to be programmed with user generated instructions to automatically activate the heating element at a certain time (e.g., 6:30 A.M. during workdays, etc.), for a certain duration of time (e.g., 5 minutes, 10 minutes, etc.), and/or warm or heat the towel to a certain temperature (e.g., 200° F., 250° F., etc.). The programmable interface includes any conventionally known user programmable mechanism (e.g., hardwired circuit, data processing device, etc.).
The control circuitry 308 can also be designed to provide information to a user; however, this is not required. For example, the control circuitry can include a visual and/or audible arrangement (e.g., light, meter, beeping noise, song, buzzer noise, etc.) designed to inform the user that 1) the heating element has been activated and is in the process of warming or heating a towel, 2) the heating element is deactivated, 3) the heating element is cooling down, etc. As can be appreciated, the visual and/or audible arrangement can be used to provide the user with other or additional information. The visual and/or audible arrangement can be in close proximity to written indicium (e.g., “heating”, “on/off”, “power on”, “power off”, “cooling down”, “ready”, “error”, etc.) to provide the user information about the visual and/or audible arrangement.
As mention above, the control circuitry 308 can include a user interface to enable a user to select a desired temperature to warm or heat the towel; however, this is not required. Non-limiting examples of such a user interface can include, but is not limited to, a rotary dial that enables a user to select a plurality of available temperatures, an electronic and/or programmable interface that enables a user to select a plurality of available temperatures, etc.
The control circuitry 308 can include one or more user interface protective elements designed to govern various aspects of the operation of the portable warming device; however, this is not required. Non-limiting examples of user interface protective elements include, but are not limited to, activation/deactivation key, activation/deactivation combination or code, etc. The user interface protective elements can be used to inhibit or prevent the unauthorized operation of the portable towel warming device.
The control circuitry 308 can include one or more user integrated protective elements designed to govern various aspects of the operation of the portable warming device; device; however, this is not required. Non-limiting examples of integrated protective elements include, but are not limited to, timer, a temperature cutoff switch, ground fault circuit interrupter (GFCI) components, general components designed to resist the deleterious impact of water, etc.
Referring now to
Portable warming device 300 can be positioned in a variety of locations (e.g., counter top, floor, commode seat or top, tub deck, shelf, chair seat, bench, table, toilet seat, toilet tank top, etc.). When the portable warming device is positioned on a generally flat surface, the base 306 interfaces with the generally flat surface to support the portable warming device in a desired position. As can be appreciated, the outer shell 316 can include one or more connectors (e.g., one or more arm-like members, straps, clips, mount openings, etc.) to enable the portable warming device to be fastened to a wall, hung from a towel, etc.
The portable warming device 300 can include an aroma or scent generating arrangement to impart a desirable aroma to the towel and/or to release a desired aroma in the area about the portable warming device; however, this is not required. In one non-limiting arrangement, a volatile material (e.g., liquid, gel, solid, etc.) is used to release volatile substances (e.g., perfume, air fresheners, etc.) into the towel and/or in the atmosphere surrounding the portable warming device. The aroma or scent generating arrangement can be used independently and/or in conjunction with the heating arrangement of the portable warming device to cause controlled and/or uncontrolled release of the volatile substances.
The portable warming device 300 can include one or more blowers to facilitate in the warming or heating of the one or more towels positioned in the inner or warming cavity of the portable warming device; however, this is not required.
The inner cavity of the portable warming device 300 can be eliminated and the heating mat can be used to form the inner surface of the warming or inner cavity; however, this is not required. In this arrangement, the heating mat is secure to the rib-like protrusions 328 and/or inner surface 324 of the outer shell 316.
The heating mat configuration described in the embodiments discussed in regard to
A non-limiting method for warming a towel by portable warming device 300 will now be discussed. The towel warming device is generally positioned in a location desired by the user so as to provide convenient access to the warmed or heated towel (e.g., bathroom countertop, atop a toilet tank, on a bathroom floor, etc.). The electric cord 310 is connected to a source of electrical current, such as a wall outlet. The user warms or heats a towel 304 by folding and pacing the towel in the warming or inner cavity of the portable warming device. The insertion of the towel 304 may or may not require a small degree of force due to the biasing of vertical walls 350, 352. Once the towel is positioned in the warming or inner cavity, protruding flange 358 on user actuable switch 348 is depressed by the user so as to move the user actuable switch downwardly in slot 356. The pressing of actuable switch 348 causes electric current to flow to heating mat. The flow of current to the heating mat causes heat to be dissipated therefrom. The actuable switch 348 can be coupled to a timer mechanism that permits the flow of current to the heating mat for a predetermined period of time. After actuable switch 348 has been depressed, the user then proceeds to take a shower, bath, etc. After the user exits the shower, bath etc., the user removes the warmed or heated towel from the warming or inner cavity of the portable warming device and dries oneself with the warmed towel. The heating mat can be designed to quickly warm or heat a towel after activation of the actuator switch; however, this is not required. As such, a user can still enjoy a warmed or heated towel even if the user takes a short shower, bath, etc. The heating mat can also be designed to retain a significant amount of heat after the flow of current has been discontinued to the heating mat so as to continue to warm or heat a towel after current has been terminated to the heating mat; however, this is not required. This design of the heating mat provides a warmed or heated towel to a user ever if the user takes an extended shower, bath, etc. which exceeded the time period that current was directed to the heating mat. After use of the portable warming device, the user can leave the portable warming device in the same location, or move the portable warming device to another location (e.g., linen closet, under a bathroom vanity, etc.).
Referring now to
The device body 401 of portable warming device 400 can be formed by any suitable construction, configuration and material. As illustrated in
The bottom wall 410 of the device body 401 defines a bottom portion of the portable warming device 400. The bottom wall 410 can be designed to be an integral component with front wall 402 and rear wall 404; however, this is not required. As can be appreciated, one or more components of the device body can be separate components. The bottom wall 410 is shown to be disposed in a generally perpendicular relationship to the front wall 402 and rear wall 404; however, this is not required. The bottom wall 410 has a sufficient length to maintain the front and rear walls in a desired spaced apart relationship. The bottom wall 410 is designed to cooperate with the front and rear walls to define a generally cross sectional J-shaped configuration as illustrated in
The side walls 406, 408 of the device body 401 are disposed in a spaced apart relationship. The side walls are shown to be oriented in a generally parallel relationship to one another; however, this is not required. The side walls are illustrated as in an abutting engagement with the respective lateral ends of the front wall 402, rear wall 404 and bottom wall 410; however, this is not required. The side walls 406, 408 can be designed to be cap-like members and/or connection members that cooperate with the front, rear and bottom wall structure of the device body to complete the lateral vertical walls of the device body and to define an inner compartment 414. As illustrated in
The device body 401 includes an inner compartment 414 as illustrated in
The access door 412 provides access to the user to inner compartment 414. The access door 412 is designed to be moveable between a closed position as illustrated in
As illustrated in
The access door 412 is illustrated in
The device body can be constructed so as to have any suitable dimension and/or configuration. In one non-limiting arrangement, the device body includes an inner compartment 414 having a volume sufficient to receive at least one standard bath towel. In another non-limiting arrangement, the device body includes an inner compartment 414 having a volume sufficient to receive no more than two standard bath towels. As can be appreciated, the device body can include an inner compartment 414 having a volume sufficient to receive more than two standard bath towels.
The portable warming device 400 includes a heating arrangement that includes a heating element, not shown, and control circuitry to control the operation of the heating element. The heating arrangement is designed to warm or heat one or more towels that are placed in the inner compartment 414. The heating element can be similar to the heating mat or other type of configuration that was described above with regard to the embodiments of
As illustrated in
Referring again to
Although not shown, the heating mat can be positioned between an inner shell, not shown, and the wall of the device body; however, this is not required. In this arrangement, the inner shell forms at least a portion of the surface of the inner or warming cavity of the portable heating device and the heating mat heats the inner shell, which in turn is used to heat the one or more towels in the inner or warming cavity.
The heating arrangement of the portable warming device 400 includes control circuitry that is designed to control the activation and/or deactivation of the heating mat 416. The configuration and/or features of the control circuitry can be the same or similar to the control circuitry described above with regard to the embodiments of
Referring now to
The control circuitry 460 can also be designed to provide information to a user; however, this is not required. For example, the control circuitry can include a visual and/or audible arrangement (e.g., light, meter, beeping noise, song, buzzer noise, etc.) designed to inform the user that 1) the heating element has been activated and is in the process of warming or heating a towel, 2) the heating element is deactivated, 3) the heating element is cooling down, etc. As can be appreciated, the visual and/or audible arrangement can be used to provide the user with other or additional information. The visual and/or audible arrangement can be in close proximity to written indicium (e.g., “heating”, “on/off”, “power on”, “power off”, “cooling down”, “ready”, “error”, etc.) to provide the user information about the visual and/or audible arrangement.
As mention above, the control circuitry 460 can include a user interface to enable a user to select a desired temperature to warm or heat the towel; however, this is not required. Non-limiting examples of such a user interface can include, but is not limited to, a rotary dial that enables a user to select a plurality of available temperatures, an electronic and/or programmable interface that enables a user to select a plurality of available temperatures, etc.
The control circuitry 460 can include one or more user interface protective elements designed to govern various aspects of the operation of the portable warming device; however, this is not required. Non-limiting examples of user interface protective elements include, but are not limited to, activation/deactivation key, activation/deactivation combination or code, etc. The user interface protective elements can be used to inhibit or prevent the unauthorized operation of the portable towel warming device.
The control circuitry 460 can include one or more user integrated protective elements designed to govern various aspects of the operation of the portable warming device; device; however, this is not required. Non-limiting examples of integrated protective elements include, but are not limited to, timer, a temperature cutoff switch, ground fault circuit interrupter (GFCI) components, general components designed to resist the deleterious impact of water, etc.
Portable warming device 400 can be positioned in a variety of locations (e.g., counter top, floor, commode seat or top, tub deck, shelf, chair seat, bench, table, toilet seat, toilet tank top, etc.). When the portable warming device is positioned on a generally flat surface, the base 406 interfaces with the generally flat surface to support the portable warming device in a desired position. As can be appreciated, one or more of the walls of the device body can include one or more connectors (e.g., one or more arm-like members, straps, clips, mount openings, etc.) to enable the portable warming device to be fastened to a wall, hung from a towel, etc.
The portable warming device 400 can include an aroma or scent generating arrangement to impart a desirable aroma to the towel and/or to release a desired aroma in the area about the portable warming device; however, this is not required. In one non-limiting arrangement, a volatile material (e.g., liquid, gel, solid, etc.) is used to release volatile substances (e.g., perfume, air fresheners, etc.) into the towel and/or in the atmosphere surrounding the portable warming device. The aroma or scent generating arrangement can be used independently and/or in conjunction with the heating arrangement of the portable warming device to cause controlled and/or uncontrolled release of the volatile substances.
The portable warming device 400 can include one or more blowers to facilitate in the warming or heating of the one or more towels positioned in the inner or warming cavity of the portable warming device; however, this is not required.
The heating mat configuration described in the embodiments discussed in regard to
A non-limiting method for warming a towel by portable warming device 400 will now be discussed. The towel warming is generally positioned in a location desired by the user so as to provide convenient access to the warmed or heated towel (e.g., bathroom countertop, atop a toilet tank, on a bathroom floor, etc.). The electric cord 461 is connected to a source of electrical current, such as a wall outlet. The user warms or heats a towel by folding, shoving or otherwise pacing the towel in the warming or inner cavity of the portable warming device. The towel is positioned in the warming or inner cavity by opening access door 412 by grasping the door handle 442 and sliding the access door downward into a stored position in closed cavity 454 as illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
As illustrated in
Portable warming device 500 can include user interface 510 to enable a user to actuate operation of the warming device 500; however, this is not required. The portable warming device can be simply designed so that when the portable warming device is connected to a power source, the portable warming device is activated, and when the portable warming device is disconnected from the power source, the portable warming device is deactivated. As illustrated in
Layers 514, 516 and the fasteners 504 can be constructed from any suitable material displaying the desired thermal and/or structural properties for such components. In one non-limiting arrangement, layers 514, 516 and fasteners 504 are primarily constructed from plastic. As illustrated in
The portable warming device 500 can include an aroma or scent generating arrangement to impart a desirable aroma to the towel and/or to release a desired aroma in the area about the portable warming device; however, this is not required. In one non-limiting arrangement, a volatile material (e.g., liquid, gel, solid, etc.) is used to release volatile substances (e.g., perfume, air fresheners, etc.) into the towel and/or in the atmosphere surrounding the portable warming device. The aroma or scent generating arrangement can be used independently and/or in conjunction with the heating arrangement of the portable warming device to cause controlled and/or uncontrolled release of the volatile substances.
The portable warming device 500 can include one or more blowers to facilitate in the warming or heating of the one or more towels, which one or more blowers are positioned in the inner compartment of the portable warming device; however, this is not required.
The heating mat configuration described in the embodiments discussed in regard to
A non-limiting method for warming a towel by portable warming device 500 will now be discussed. The towel warming device is generally positioned in a location desired by the user so as to provide convenient access to the warmed or heated towel (e.g., towel rack). The portable warming device is secured to a towel rack by manipulating the fasteners 504 so that the fasteners are disposed around the tubular portion 572 of towel rack 570. Once the fasteners are positioned over the towel rack, the body engaging portions 528, 530 on the fasteners are fittingly engaged with the fastener engaging portions 524, 526 so that the body 502 of the portable warming device is suspended from the towel rack as illustrated in
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained, and since certain changes may be made in the constructions set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. The invention has been described with reference to preferred and alternate embodiments. Modifications and alterations will become apparent to those skilled in the art upon reading and understanding the detailed discussion of the invention provided herein. This invention is intended to include all such modifications and alterations insofar as they come within the scope of the present invention. It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention, which, as a matter of language, might be said to fall therebetween.
The present invention is a continuation-in part of U.S. patent application Ser. Nos. 11/020,183 filed Dec. 27, 2004 now abandoned and 11/020,231 filed Dec. 27, 2004, now abandoned both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1914190 | Herr | Jun 1933 | A |
3138699 | Taylor | Jun 1964 | A |
3626152 | Governale | Dec 1971 | A |
3839622 | Mastin | Oct 1974 | A |
3849629 | Graham, Jr. | Nov 1974 | A |
4084080 | McMahan | Apr 1978 | A |
4117309 | Cayley | Sep 1978 | A |
4559442 | Graham | Dec 1985 | A |
4644136 | Watchman | Feb 1987 | A |
4684787 | Bunting | Aug 1987 | A |
4694146 | DeMars | Sep 1987 | A |
4694973 | Rose et al. | Sep 1987 | A |
4700048 | Levy | Oct 1987 | A |
RE32616 | Graham | Mar 1988 | E |
4760243 | Tedioli | Jul 1988 | A |
4794228 | Braun, Jr. | Dec 1988 | A |
4837421 | Luthy | Jun 1989 | A |
4849610 | Alvarez | Jul 1989 | A |
4918290 | DeMars | Apr 1990 | A |
4927995 | Lovett et al. | May 1990 | A |
5014446 | Reesman | May 1991 | A |
5210396 | Sanders | May 1993 | A |
5231266 | Warren | Jul 1993 | A |
5341992 | Bishopp | Aug 1994 | A |
5397875 | Bechtold, Jr. | Mar 1995 | A |
5408576 | Bishop | Apr 1995 | A |
5569403 | Swanson | Oct 1996 | A |
5606640 | Murphy | Feb 1997 | A |
5642462 | Huff | Jun 1997 | A |
5736714 | Bechtold | Apr 1998 | A |
5842287 | Murphy | Dec 1998 | A |
5981923 | Jackson | Nov 1999 | A |
6005227 | Pappas | Dec 1999 | A |
6018145 | Moreno | Jan 2000 | A |
6046436 | Hunts | Apr 2000 | A |
6080974 | Ambrosiano | Jun 2000 | A |
6085026 | Hammons et al. | Jul 2000 | A |
6153862 | Job | Nov 2000 | A |
6154607 | Flashinski et al. | Nov 2000 | A |
6189230 | Huen | Feb 2001 | B1 |
6341554 | Thiriat | Jan 2002 | B2 |
6431360 | Julius | Aug 2002 | B1 |
6525298 | Hunts | Feb 2003 | B1 |
6551560 | Flashinski et al. | Apr 2003 | B1 |
6555789 | Owens et al. | Apr 2003 | B2 |
6604942 | Sharp | Aug 2003 | B2 |
6627857 | Tanner | Sep 2003 | B1 |
6649877 | Mauffrey et al. | Nov 2003 | B1 |
6667464 | Ellis | Dec 2003 | B2 |
6693260 | Rodrigues | Feb 2004 | B1 |
6774343 | Ibanez | Aug 2004 | B2 |
6830456 | Obermeyer | Dec 2004 | B2 |
6855915 | Gehring | Feb 2005 | B2 |
6917753 | Cooper | Jul 2005 | B2 |
6935279 | Bosworth | Aug 2005 | B2 |
6982399 | Hunts | Jan 2006 | B1 |
7191546 | Maruca | Mar 2007 | B2 |
20030015513 | Ellis | Jan 2003 | A1 |
20040190882 | Cooper | Sep 2004 | A1 |
20040245234 | Gehring | Dec 2004 | A1 |
20050121435 | Hofer-Noser et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 03053101 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060191901 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11020183 | Dec 2004 | US |
Child | 11410764 | US | |
Parent | 11020231 | Dec 2004 | US |
Child | 11020183 | US |