PORTABLE WIRELESS ACCESSORY FOR A WIRELESS COMMUNICATION SYSTEM

Abstract
A system that incorporates teachings of the present disclosure may include, for example, a portable wireless High Definition Multimedia Interface (HDMI) accessory for a wireless communication system, including: an HDMI processor which receives an audio/video encrypted signal and sends out an audio/video stream; a wireless HDMI module which receives the audio/video stream from the HDMI processor and transmits the audio/video stream wirelessly; a housing assembly for carrying the HDMI processor and the wireless HDMI module; and a coupling member which is operative to be coupled to a media processor via a port. Other embodiments are disclosed.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to wireless communications and, more specifically, to a portable wireless accessory for a wireless communication system.


BACKGROUND

Communication systems and electronic systems normally comprise a plurality of separate components that are coupled together by cabling. For example, cables are used for connecting television (TV) sets to cable set-top boxes (STBs). However, relying on cables can become cumbersome and unsightly when the number of cables increases to handle various components and peripheral devices. Also, popular wall mounted High Definition TV (HDTV) sets have the unsightly cable(s) hanging or extending from below the TV set and therefore are not aesthetically pleasing to the eye.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-2 depict illustrative embodiments of communication systems that provide media services;



FIG. 3 depicts an illustrative embodiment of a portal interacting with the communication systems of FIGS. 1-2;



FIG. 4 depicts an illustrative embodiment of a communication device utilized in the communication systems of FIGS. 1-2;



FIG. 5 depicts an illustrative embodiment of a portable wireless accessory for a wireless communication system operating in portions of the communication systems of FIGS. 1 and 2;



FIG. 6 is a schematic view of an illustrative embodiment of a portable wireless accessory operating in portions of the communication systems of FIGS. 1, 2 and 5;



FIG. 7 depicts an illustrative embodiment of a method operating in portions of the communication systems of FIGS. 1-2; and



FIG. 8 is a diagrammatic representation of a machine in the form of a computer system within which a set of instructions, when executed, may cause the machine to perform any one or more of the methodologies discussed herein.





DETAILED DESCRIPTION

One embodiment of the present disclosure can entail a portable wireless High Definition Multimedia Interface (HDMI) accessory for a wireless communication system, including: an HDMI processor which receives an audio/video encrypted signal and sends out an audio/video stream; a wireless HDMI module which receives the audio/video stream from the HDMI processor and transmits the audio/video stream wirelessly; a housing assembly for carrying the HDMI processor and the wireless HDMI module; and a coupling member which is operative to be coupled to a media processor via a port.


Another embodiment of the present disclosure can entail a computer-readable storage medium, including computer instructions for instructing a communication system to: receive, at a portable wireless High Definition Multimedia Interface accessory communicatively coupled to a media processor, an audio/video encrypted signal from the media processor; and transmit, from the portable wireless HDMI accessory, an audio/video stream wirelessly to a High Definition Television (HDTV).


Yet another embodiment of the present disclosure can entail a set-top box (STB), including a controller to: send a request for communication services from a portable wireless accessory communicatively coupled to the STB via a port disposed on the STB; wherein the portable wireless accessory receives an audio/video encrypted signal from the STB and transmits an audio/video stream wirelessly to a High Definition Television.



FIG. 1 depicts an illustrative embodiment of a first communication system 100 for delivering media content. The communication system 100 can represent an Internet Protocol Television (IPTV) broadcast media system. The IPTV media system can include a super head-end office (SHO) 110 with at least one super headend office server (SHS) 111 which receives media content from satellite and/or terrestrial communication systems. In the present context, media content can represent audio content, moving image content such as videos, still image content, or combinations thereof. The SHS server 111 can forward packets associated with the media content to video head-end servers (VHS) 114 via a network of video head-end offices (VHO) 112 according to a common multicast communication protocol.


The VHS 114 can distribute multimedia broadcast programs via an access network 118 to commercial and/or residential buildings 102 housing a gateway 104 (such as a common residential or commercial gateway). The access network 118 can represent a group of digital subscriber line access multiplexers (DSLAMs) located in a central office or a service area interface that provide broadband services over optical links or copper twisted pairs 119 to buildings 102. The gateway 104 can use common communication technology to distribute broadcast signals to media processors 106 such as Set-Top Boxes (STBs) which in turn present broadcast channels to media devices 108 such as computers or television sets managed in some instances by a media controller 107 (such as an infrared or RF remote control).


The gateway 104, the media processors 106, and media devices 108 can utilize tethered interface technologies (such as coaxial or phone line wiring) or can operate over a common wireless access protocol. With these interfaces, unicast communications can be invoked between the media processors 106 and subsystems of the IPTV media system for services such as video-on-demand (VoD), browsing an electronic programming guide (EPG), or other infrastructure services.


Some of the network elements of the IPTV media system can be coupled to one or more computing devices 130 a portion of which can operate as a web server for providing portal services over an Internet Service Provider (ISP) network 132 to wireline media devices 108 or wireless communication devices 116 by way of a wireless access base station 117 operating according to common wireless access protocols such as Wireless Fidelity (WiFi), or cellular communication technologies (such as GSM, CDMA, UMTS, WiMAX, Software Defined Radio or SDR, and so on).


It will be appreciated by an artisan of ordinary skill in the art that a satellite broadcast television system can be used in place of the IPTV media system. In this embodiment, signals transmitted by a satellite 115 supplying media content can be intercepted by a common satellite dish receiver 131 coupled to the building 102. Modulated signals intercepted by the satellite dish receiver 131 can be submitted to the media processors 106 for generating broadcast channels which can be presented at the media devices 108. The media processors 106 can be equipped with a broadband port to the ISP network 132 to enable infrastructure services such as VoD and EPG described above.


In yet another embodiment, an analog or digital broadcast distribution system such as cable TV system 133 can be used in place of the IPTV media system described above. In this embodiment the cable TV system 133 can provide Internet, telephony, and interactive media services.


It follows from the above illustrations that the present disclosure can apply to any present or future interactive over-the-air or landline media content services.



FIG. 2 depicts an illustrative embodiment of a communication system 200. employing an IP Multimedia Subsystem (IMS) network architecture to facilitate the combined services of circuit-switched and packet-switched systems. Communication system 200 can be overlaid or operably coupled with communication system 100 as another representative embodiment of communication system 100.


Communication system 200 can comprise a Home Subscriber Server (HSS) 240, a tElephone NUmber Mapping (ENUM) server 230, and other common network elements of an IMS network 250. The IMS network 250 can establish communications between IMS compliant communication devices (CD) 201, 202, Public Switched Telephone Network (PSTN) CDs 203, 205, and combinations thereof by way of a Media Gateway Control Function (MGCF) 220 coupled to a PSTN network 260.


IMS CDs 201, 202 can register with the IMS network 250 by contacting a Proxy Call Session Control Function (P-CSCF) which communicates with a corresponding Serving CSCF (S-CSCF) to register the CDs with at the HSS 240. To initiate a communication session between CDs, an originating IMS CD 201 can submit a Session Initiation Protocol (SIP INVITE) message to an originating P-CSCF 204 which communicates with a corresponding originating S-CSCF 206. The originating S-CSCF 206 can submit queries to the ENUM system 230 to translate an E.164 telephone number in the SIP INVITE to a SIP Uniform Resource Identifier (URI) if the terminating communication device is IMS compliant.


The SIP URI can be used by an Interrogating CSCF (I-CSCF) 207 to submit a query to the HSS 240 to identify a terminating S-CSCF 214 associated with a terminating IMS CD such as reference 202. Once identified, the I-CSCF 207 can submit the SIP INVITE to the terminating S-CSCF 214. The terminating S-CSCF 214 can then identify a terminating P-CSCF 216 associated with the terminating CD 202. The P-CSCF 216 then signals the CD 202 to establish communications.


If the terminating communication device is instead a PSTN CD such as references 203 or 205, the ENUM system 230 can respond with an unsuccessful address resolution which can cause the originating S-CSCF 206 to forward the call to the MGCF 220 via a Breakout Gateway Control Function (BGCF) 219. The MGCF 220 can then initiate the call to the terminating PSTN CD by common means over the PSTN network 260.


The aforementioned communication process is symmetrical. Accordingly, the terms “originating” and “terminating” in FIG. 2 are interchangeable. It is further noted that communication system 200 can be adapted to support video conferencing by way of common protocols such as H.323. In addition, communication system 200 can be adapted to provide the IMS CDs 201, 203 the multimedia and Internet services of communication system 100.



FIG. 3 depicts an illustrative embodiment of a portal 302 which can operate from the computing devices 130 described earlier of communication 100 illustrated in FIG. 1. The portal 302 can be used for managing services of communication systems 100-200. The portal 302 can be accessed by a Uniform Resource Locator (URL) with a common Internet browser such as Microsoft's Internet Explorer™ using an Internet-capable communication device such as those described for FIGS. 1-2. The portal 302 can be configured, for example, to access a media processor 106 and services managed thereby such as a Digital Video Recorder (DVR), a VoD catalog, an EPG, a personal catalog (such as personal videos, pictures, audio recordings, etc.) stored in the media processor, provisioning IMS services described earlier, provisioning Internet services, provisioning cellular phone services, and so on.



FIG. 4 depicts an exemplary embodiment of a communication device 400. Communication device 400 can serve in whole or in part as an illustrative embodiment of the communication devices of FIGS. 1-2. The communication device 400 can comprise a wireline and/or wireless transceiver 402 (herein transceiver 402), a user interface (UI) 404, a power supply 414, a location receiver 416, and a controller 406 for managing operations thereof. The transceiver 402 can support short-range or long-range wireless access technologies such as Bluetooth, WiFi, Digital Enhanced Cordless Telecommunications (DECT), or cellular communication technologies, just to mention a few. Cellular technologies can include, for example, CDMA-1X, UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO, WiMAX, SDR, and next generation cellular wireless communication technologies as they arise. The transceiver 402 can also be adapted to support circuit-switched wireline access technologies (such as PSTN), packet-switched wireline access technologies (such as TCPIP, VoIP, etc.), and combinations thereof.


The UI 404 can include a depressible or touch-sensitive keypad 408 with a navigation mechanism such as a roller ball, joystick, mouse, or navigation disk for manipulating operations of the communication device 400. The keypad 408 can be an integral part of a housing assembly of the communication device 400 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting for example Bluetooth. The keypad 408 can represent a numeric dialing keypad commonly used by phones, and/or a Qwerty keypad with alphanumeric keys. The UI 404 can further include a display 410 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 400. In an embodiment where the display 410 is touch-sensitive, a portion or all of the keypad 408 can be presented by way of the display.


The UI 404 can also include an audio system 412 that utilizes common audio technology for conveying low volume audio (such as audio heard only in the proximity of a human ear) and high volume audio (such as speakerphone for hands free operation). The audio system 412 can further include a microphone for receiving audible signals of an end user. The audio system 412 can also be used for voice recognition applications. The UI 404 can further include an image sensor 413 such as a charged coupled device (CCD) camera for capturing still or moving images.


The power supply 414 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and charging system technologies for supplying energy to the components of the communication device 400 to facilitate long-range or short-range portable applications. The location receiver 416 can utilize common location technology such as a global positioning system (GPS) receiver for identifying a location of the communication device 400 based on signals generated by a constellation of GPS satellites, thereby facilitating common location services such as navigation.


The communication device 400 can use the transceiver 402 to also determine a proximity to a cellular, WiFi or Bluetooth access point by common power sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or a signal time of arrival (TOA) or time of flight (TOF). The controller 406 can utilize computing technologies such as a microprocessor, a digital signal processor (DSP), and/or a video processor with associated storage memory such a Flash, ROM, RAM, SRAM, DRAM or other storage technologies.


The communication device 400 can be adapted to perform the functions of the media processor 106, the media devices 108, or the portable communication devices 116 of FIG. 1, as well as the IMS CDs 201-202 and PSTN CDs 203-205 of FIG. 2. It will be appreciated that the communication device 400 can also represent other common devices that can operate in communication systems 100-200 of FIGS. 1-2 such as a gaming console and a media player.



FIG. 5 depicts an illustrative embodiment of a portable wireless accessory for a wireless communication system 500 operating in portions of the communication systems of FIGS. 1 and 2. More specifically, FIG. 5 shows a more detailed view of the commercial and/or residential buildings 102 shown in FIG. 1. Note that like references numerals denote like elements, except that a “5” precedes the numeral rather than a “1” (e.g., the commercial and/or residential buildings is labeled as 502). As will be discussed in more detail below, the portable wireless accessory comprises a portable wireless High Definition Multimedia Interface (HDMI) accessory 505 with a small form-factor like a dongle similar in size and appearance to a universal serial bus (USB) flash drive or flash memory. The portable wireless HDMI accessory 505 is operative to connect to an audio/visual device or media server or processor 506 such as but not limited to a cable STB, a direct broadcast satellite (DBS) STB, an IPTV STB, a digital video disc (DVD) player, and other such devices such as home theater systems. FIG. 5 shows an STB 506 connected to a home wiring/network 504 which is connected to a cable, DBS, IPTV, etc., or similar service provider 533. The portable wireless HDMI accessory 505 allows the transport of uncompressed high definition (HD) and standard definition (SD) video streams to, for example, an HDTV set 508 that has an integrated Wireless High Definition Multimedia Interface (WHDMI) interface, or to an HDTV set 508′ without an integrated WHDMI and which thus includes an external WHDMI adapter 520 as a receiver. The external WHDMI adapter 520 may be connected to the HDTV 508′ by an HDMI cable 525.


HDMI is a digital audio/video interface standard used for connecting audio/visual equipment such as HDTV sets to cable STBs, DBS satellite STBs, IPTV STBs and other devices such as home theater systems. With 19 wires wrapped in a single cable that resembles a USB wire, HDMI is able to carry a bandwidth of 5 gigabits per second (Gbps). HDMI is becoming the primary interface for connecting HDTV sets to HDMI compliant devices. The existing HDMI standard is designed for wired connections between devices. WHDMI enables the transmission of uncompressed high quality HDTV streams to be sent to devices that could support WHDMI. The present invention contemplates using, for example, Ultra-Wideband (UWB) and 802.11n extensions to transmit a significantly large amount of data to display devices with either built-in WHDMI interfaces or external WHDMI devices that are connected to television monitors. The UWB technology was designed initially to be used at very low energy levels for short-range high-bandwidth communications by using a large portion of the radio spectrum. However, UWB in WHDMI is capable of high data rate transmission of over 1 Gbps at distances of more than 60 feet through walls. Other wireless communications may be used such as, for example, a Wireless Local Area Network (WLAN) operating in accordance with existing standards or future standards or derivatives thereof.



FIG. 6 is a schematic view of an illustrative embodiment of a portable wireless HDMI accessory 600 (corresponding to portable wireless HDMI accessory 505 shown in FIG. 5) operating in portions of the communication systems of FIGS. 1, 2 and 5. As noted above, the portable wireless HDMI accessory 600 has a small form-factor like a dongle similar in size and appearance to a USB flash drive or flash memory. The portable wireless HDMI acessory 600 comprises an HDMI processor 605 which receives an audio/video encrypted signal (high-bandwidth digital content protection (HDCP) encrypted) from the STB 506, decodes the content and (assuming that there is no optional lossless encoder as discussed below) sends out an audio/video stream to a wireless HDMI module 610. The wireless HDMI module 610 receives the audio/video stream from the HDMI processor 605 and transmits the audio/video stream wirelessly to the HDTV set 508 with the integrated WHDMI interface, and/or to the HDTV set 508′ without an integrated WHDMI and which thus includes the external WHDMI adapter 520 as a receiver. A housing assembly 630 is provided for carrying the HDMI processor 605, the wireless HDMI module, and any other optional elements. A coupling member or connector 635, which is similar in form/shape to a USB connector, serves as the physical HDMI interface and is operative to be coupled to a media processor such as STB 506 via a port 540 (shown in broken lines in FIG. 5). The port 540 may be positioned on the front of STB 506.


In order to make use of the WHDMI bandwidth more efficiently, an embodiment of the present invention may make use of low complexity and low delay lossless video compression schemes that allow the transport of multiple HD streams to devices with WHDMI interfaces in, for example, the home. In this way, optimal use is made of the bandwidth over the wireless link. There are a number of very low-complexity and low-delay video compression algorithms such as Bit Plane Encoding or lossless Predictive Coding that may be used to compress video without any loss. The low-delay, low-complexity lossless video compression techniques are also cost effective. FIG. 6 shows an optional lossless encoder 615. The lossless encoder 615 receives the A/V stream from the HDMI processor 605 through a bus 620 and compresses the data into a lossless A/V stream at a lower bit rate. A memory 625, such as a dynamic random access memory (DRAM) type memory, is used for video compression by the optional lossless encoder 615. The compressed data is presented back to the HDMI processor 605 through the bus 620 for encryption and HDMI packaging. The HDMI processor 605 then sends the compressed data to the wireless HDMI module 610 for wireless transmission to the HDTV sets 508, 508′ as discussed above.


This portable wireless HDMI accessory 600 (505) may be hot pluggable, that is powered through the HDMI interface of the unit it is connected to, e.g., through the plug 540 of the STB 506.



FIG. 7 depicts an illustrative method 700 that operates in portions of the communication system/wireless communication system of FIGS. 1, 2 and 5. Method 700 can begin with step 702 in which the portable wireless HDMI accessory 600 (505) is connected to an A/V device with an HDMI port 540 such as STB 506 (e.g., an IPTV STB) by plugging in the coupling member or connector 635. In step 704, the portable wireless HDMI accessory 600 receives and HDMI stream from the STB 506. Then, in step 706, the portable wireless HDMI accessory 600 creates a decoded A/V stream. Assuming that there is no optional lossless encoder, the wireless HDMI module 610 receives the audio/video stream from the HDMI processor 605 and transmits the audio/video stream wirelessly to the HDTV set 508 with the integrated WHDMI interface, and/or to the HDTV set 508′ without an integrated WHDMI and which thus includes the external WHDMI adapter 520 as a receiver (see steps 708 and 710).


If, on the other hand, the portable wireless HDMI accessory 600 include a lossless encoder 615, at step 708 the lossless encoder 615 receives the A/V stream from the HDMI processor 605 through a bus 620 and, at step 712, compresses the data into a lossless A/V stream at a lower bit rate. The compressed data is presented back to the HDMI processor 605 through the bus 620 for encryption and HDMI packaging as at step 714. The HDMI processor 605 then sends the compressed data to the wireless HDMI module 610 for wireless transmission to the HDTV sets 508, 508′ as discussed above (see step 710).


Based on the foregoing, some of the benefits of the portable wireless HDMI accessory consistent with the present invention include: 1) wireless transmission of high quality either uncompressed or losslessly encoded HD/SD video with a low complexity, low delay and low cost encoder; 2) no HDMI wire is required; 3) a portable unit, having a small form-factor; 4) accessory is powered through the HDMI interface of the device with a wired HDMI interface; and 5) enables existing HDTV sets with wired HDMI interface to receive HDMI video wirelessly.


Upon reviewing the aforementioned embodiments, it would be evident to an artisan with ordinary skill in the art that said embodiments can be modified, reduced, or enhanced without departing from the scope and spirit of the claims described below. For example, while the coupling the coupling member or connector 635 is described as similar to a USB connector in form/shape, other suitable shapes may be used.


Other suitable modifications can be applied to the present disclosure without departing from the scope of the claims below. Accordingly, the reader is directed to the claims section for a fuller understanding of the breadth and scope of the present disclosure.



FIG. 8 depicts an exemplary diagrammatic representation of a machine in the form of a computer system 800 within which a set of instructions, when executed, may cause the machine to perform any one or more of the methodologies discussed above. In some embodiments, the machine operates as a standalone device. In some embodiments, the machine may be connected (e.g., using a network) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client user machine in server-client user network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a device of the present disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


The computer system 800 may include a processor 802 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 804 and a static memory 806, which communicate with each other via a bus 808. The computer system 800 may further include a video display unit 810 (e.g., a liquid crystal display (LCD), a flat panel, a solid state display, or a cathode ray tube (CRT)). The computer system 800 may include an input device 812 (e.g., a keyboard), a cursor control device 814 (e.g., a mouse), a disk drive unit 816, a signal generation device 818 (e.g., a speaker or remote control) and a network interface device 820.


The disk drive unit 816 may include a machine-readable medium 822 on which is stored one or more sets of instructions (e.g., software 824) embodying any one or more of the methodologies or functions described herein, including those methods illustrated above. The instructions 824 may also reside, completely or at least partially, within the main memory 804, the static memory 806, and/or within the processor 802 during execution thereof by the computer system 800. The main memory 804 and the processor 802 also may constitute machine-readable media.


Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.


In accordance with various embodiments of the present disclosure, the methods described herein are intended for operation as software programs running on a computer processor. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.


The present disclosure contemplates a machine readable medium containing instructions 824, or that which receives and executes instructions 824 from a propagated signal so that a device connected to a network environment 826 can send or receive voice, video or data, and to communicate over the network 826 using the instructions 824. The instructions 824 may further be transmitted or received over a network 826 via the network interface device 820.


While the machine-readable medium 822 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.


The term “machine-readable medium” shall accordingly be taken to include, but not be limited to: solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories; magneto-optical or optical medium such as a disk or tape; and/or a digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. Accordingly, the disclosure is considered to include any one or more of a machine-readable medium or a distribution medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.


Although the present specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Each of the standards for Internet and other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) represent examples of the state of the art. Such standards are periodically superseded by faster or more efficient equivalents having essentially the same functions. Accordingly, replacement standards and protocols having the same functions are considered equivalents.


The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.


Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.


The Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A portable wireless High Definition Multimedia Interface (HDMI) accessory for a wireless communication system, comprising: an HDMI processor which receives an audio/video encrypted signal and sends out an audio/video stream;a wireless HDMI module which receives the audio/video stream from the HDMI processor and transmits the audio/video stream wirelessly;a housing assembly for carrying the HDMI processor and the wireless HDMI module; anda coupling member which is operative to be coupled to a media processor via a port.
  • 2. The portable wireless HDMI accessory of claim 1, wherein the coupling member of the portable wireless HDMI accessory comprises a form and shape of a universal serial bus (USB) connector for coupling with the port of the media processor.
  • 3. The portable wireless HDMI accessory of claim 1, wherein the portable wireless HDMI accessory is powered from the port of the media processor.
  • 4. The portable wireless HDMI accessory of claim 1, comprising a lossless encoder which receives the audio/video stream from the HDMI processor through a bus and compresses data into a lossless audio/video stream at a lower bit rate, wherein the compressed data is presented back to the HDMI processor through the bus for encryption and HDMI packaging.
  • 5. The portable wireless HDMI accessory of claim 4, comprising a memory for video compression by the lossless encoder.
  • 6. The portable wireless HDMI accessory of claim 1, wherein the wireless module transmits the audio/video stream wirelessly to a High Definition Television (HDTV) set with an integrated wireless HDMI interface.
  • 7. The portable wireless HDMI accessory of claim 1, wherein the wireless module transmits the audio/video stream wirelessly to a High Definition Television (HDTV) set without an integrated wireless HDMI interface and which includes an external wireless HDMI adapter as a receiver.
  • 8. The portable wireless HDMI accessory of claim 1, wherein the media processor comprises one of a cable set-top box (STB), a direct broadcast satellite (DBS) STB, an Internet Protocol Television (IPTV) STB, a digital video disc (DVD) player, or a home theater system
  • 9. A computer-readable storage medium, comprising computer instructions for instructing a communication system to: receive, at a portable wireless High Definition Multimedia Interface (HDMI) accessory communicatively coupled to a media processor, an audio/video encrypted signal from the media processor; andtransmit, from the portable wireless HDMI accessory, an audio/video stream wirelessly to a High Definition Television (HDTV).
  • 10. The computer-readable storage medium of claim 9, wherein the portable wireless HDMI accessory is powered from a port of the media processor.
  • 11. The computer-readable storage medium of claim 9, wherein the media processor comprises one of a cable set-top box (STB), a direct broadcast satellite (DBS) STB, an Internet Protocol Television (IPTV) STB, a digital video disc (DVD) player, or a home theater system.
  • 12. The computer-readable storage medium of claim 9, wherein the HDTV comprises a High Definition Television (HDTV) set with an integrated wireless HDMI interface.
  • 13. The computer-readable storage medium of claim 9, wherein the HDTV comprises a High Definition Television (HDTV) set without an integrated wireless HDMI interface and which includes an external wireless HDMI adapter as a receiver.
  • 14. A set-top box (STB), comprising a controller to: send a request for communication services from a portable wireless accessory communicatively coupled to the STB via a port disposed on the STB;wherein the portable wireless accessory receives an audio/video encrypted signal from the STB and transmits an audio/video stream wirelessly to a High Definition Television (HDTV).
  • 15. The STB of claim 14, wherein the port comprises a shape of a universal serial bus (USB) port for coupling with a connector of the portable wireless accessory.
  • 16. The STB of claim 14, wherein the portable wireless accessory is powered from the port of the STB.
  • 17. The STB of claim 14, wherein the port is disposed in a front portion of the STB.
  • 18. The STB of claim 14, wherein the STB comprises an Internet Protocol Television (IPTV) STB.
  • 19. The STB of claim 14, wherein the HDTV comprises a High Definition Television (HDTV) set with an integrated wireless HDMI interface.
  • 20. The STB of claim 14, wherein the HDTV comprises a High Definition Television (HDTV) set without an integrated wireless HDMI interface and which includes an external wireless HDMI adapter as a receiver.