1. Field of the Invention
The subject invention relates to a portal wheel end for connection to an axle of a vehicle to increase the ground clearance of the axle.
2. Description of the Related Art
Portal wheel ends are often connected to an axle of a vehicle to increase the ground clearance of the vehicle. Prior art portal wheel ends typically include a wheel hub with a tire is mounted to the wheel hub. The portal wheel end includes a housing that is connected to the axle and houses an input gear and an output gear. The input gear receives rotational input from the axle and the output gear is coupled to the input gear and to the wheel hub to transfer the rotational input to the wheel hub. The input gear is higher than the output gear, which increases the ground clearance of the axle.
Portal wheel ends are used in a wide variety of applications including military vehicles and aftermarket applications for off-road vehicles. Several different makes and models of axles exist. Each different axle has a different configuration, which in turn defines different locations of mounting arrangements for the portal wheel end and different packaging constraints for placement adjacent the portal wheel end. The portal wheel end must be configured to accommodate for the specific mounting arrangement and packaging constraints of the axle in order to be properly connected to the axle. As such, a different portal wheel end must be designed and manufactured for each of these differently configured axles so that the housing of the portal wheel end can accommodate the specific mounting arrangement and packaging constraints of the specific axle for which the portal wheel end is designed to be connected. In other words, the portal wheel end is typically only used with one specific make and model of axle.
The cost of portal wheel ends is detrimentally increased due to the design and manufacturing costs associated with designing and manufacturing a different portal wheel end for each of the differently configured axles. These costs are especially increased, and even prohibitive, in lower volume production, such as for off-road vehicles that have uncommon axles. As such, there remains a need to develop a portal wheel end that is more modular in nature and can have a majority of its components used in a variety of different applications.
The present invention includes a modular portal wheel end system for connection to a plurality of differently configured axles for vehicles. The modular portal wheel end system comprises a housing for being selectively coupled with any one of the plurality of differently configured axles. An input gear is supported by the housing and is rotatable about a first rotational axis for receiving rotational input from any one of the plurality of differently configured axles. An output gear is supported by the housing and is coupled to the input gear with the output gear rotatable about a second rotational axis offset from the first rotational axis. A wheel hub is coupled to the output gear. A plurality of adapter brackets are each configured to be interchangeably connected to the housing and each have a different predetermined configuration for connection to a separate one of the plurality of differently configured axles for coupling the housing to any one of the plurality of differently configured axles.
The present invention also includes a portal wheel end for connection to an axle of a vehicle. The portal wheel end comprises a housing for being selectively coupled with any one of a plurality of differently configured axles. An input gear is supported by the housing and is rotatable about a first rotational axis for receiving rotational input from any one of the plurality of differently configured axles. An output gear is supported by the housing and is coupled to the input gear with the output gear rotatable about a second rotational axis offset from the first rotational axis. A wheel hub is coupled to the output gear. An adapter bracket extends from the housing and has a predetermined configuration for connection to a selected one of the plurality of differently configured axles. The adapter bracket is formed separately from and connected to the housing for coupling the housing to the selected one of the plurality of differently configured axles.
Accordingly, by connecting the appropriate bracket to the housing, the portal wheel end system can be used to attach the portal wheel end to any one of the plurality of differently configured axles. Accordingly, the same housing, input gear, output gear, and wheel hub can be used with any of the plurality of differently configured axles. Such a configuration advantageously reduces the design and manufacturing costs associated with producing a different portal wheel end for each of the differently configured axles.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate like parts throughout the several views, a portal wheel end is shown generally at 20. The portal wheel end 20 is connected to an axle 22 of a vehicle (not shown). A portion of the axle 22 including a differential 92 is shown in
The portal wheel end 20 receives rotational input from the axle 22 along a first rotational axis R1, as best shown in
As shown in
The axle housing 30 is supported by the vehicle. The portal wheel end 20 is connected to and supported by the axle housing 30. Referring again to
Axles exist in several different makes and models. Each different make and model typically has a unique configuration such that a plurality of differently configured axles exist. As set forth further below, the portal wheel end 20 is modular and can easily modified to connect with any one of the plurality of differently configured axles. More specifically, the housing may be configured to selectively couple with any one of the plurality of different axles.
As best shown in
As shown in
The input gear 52 may be further defined as a plurality of input gears 52. The input gears 52 are configured to be interchangeably connected to the housing 24 for rotation about the first rotational axis R1. Each of the input gears 52 have a different predetermined width along the first rotational axis R1. The input gears 52 are rotatable about the first rotational axis R1 and receive rotational input from any one of the plurality of different axles. The output gear 54 may be further defined as a plurality of output gears 54. The output gears 54 are configured to be interchangeably connected to the housing 24 for rotation about the second rotational axis R2, which is offset from the first rotational axis R1. Each of the output gears 54 have a different predetermined width along the second rotational axis R2. The output gears 54 are rotatable about the second rotational axis R2 and may receive rotational input, directly or indirectly, from any one of the input gears 52. The width of one of the plurality of input gears 52 typically equals the width of one of the plurality of output gears 54. Typically, the input and output gears 52, 54 will have a width of from about one half inch to about three inches. In other words, the width of each of the input and output gears 52, 54 typically vary from about one half inch in width to about three inches in width. However, it is to be appreciated that the width of the input and output gears 52, 54 may be less than one half inch without deviating from the scope of the present disclosure. It is to be further appreciated that the width of the input and output gears 52, 54 may be greater than three inches without deviating from the scope of the present disclosure.
The width of the input and output gears 52, 54 is typically dependent upon requirements of the particular application of the vehicle. For example, the width of the input and output gears 52, 54 will typically be smaller for light-duty and/or on road vehicle applications. Alternatively, for heavy-duty off-road the input and output gears 52, 54 will typically each have a greater width. Generally, the width of the input and output gears 52, 54 will vary proportionately relative to one another. However, it is to be appreciated that the input and output gears 52, 54 are not so limited and the width of the input and output gears 52, 54 may vary disproportionately relative to one another without deviating from the scope of the present disclosure.
The plurality of idler gears 57 are configured to be interchangeably connected to the housing 24. The idler gears 57 are disposed along a third rotational axis R3, offset from the first and second rotational axes R1, R2. Each of the idler gears 57 typically have a different predetermined width along the third rotational axis R3. The idler gears 57 are rotatable about the third rotational axis R3. The width of one of the idler gears 57 typically equals the width of one of the input gears 52. The width of one of the idler gears 57 may also equal the width of one of the output gears 54. The width of the idler gears 57 is typically dependent upon the width of the input gears 52 and/or the width of the output gears 54.
The output gears 54 are coupled to the input gears 52. Specifically, the input gears 52 receive a rotational input from the axle 22 and are in meshing engagement with the idler gears 57 for rotating the idler gears 57. The idler gears 57 are in meshing engagement with the output gears 54 for rotating the output gears 54. The input gears 52 are rotatable about the first rotational axis R1 and the output gears 54 are rotatable about the second rotational axis R2, which, as set forth above, is offset from the first rotational axis R1 to increase the ground clearance of the axle 22. It should be appreciated that the reduction gear system 44 may include a variable gear reduction between the ratios of 1.5 to 1.0 by altering the size of the input gear 52, the output gear 54, and the idler gears 57 respectively.
The housing 24 is modular and is configured to accommodate various sizes of gears 52, 54, 57. Specifically, the outer ring 48, of the housing 24, defines a width corresponding to the predetermined width of the input gears 52, the output gears 54, and/or the idler gears 57. In other words, the width of the outer ring 48 may be smaller when the input gears 52 and/or the output gears 54 define a smaller width, e.g. one half inch. Similarly, the width of the outer ring 48 may be larger when the input gears 52 and/or the output gears 54 define a greater width, e.g. three inches. The outer ring 48 typically has a substantially constant width about a perimeter thereof. However, it is to be appreciated that the outer ring 48 may have a varying width about the perimeter, such that the outer ring 48 is wider in some areas about the perimeter and narrower in other portions of the perimeter. Additionally, the width of the outer ring 48 is typically proportionately related to the width of the input gears 52, output gears 54, and/or the idler gears 57. However, the width of the outer ring is not so limited and may define any width related to or unrelated to the width of the input gears 52, output gears 54, and/or the idler gears 57 without deviating from the scope of the present disclosure.
As discussed above, the inner portion 46 is coupled to the outer ring 48 for defining the cavity 42 within the main portion 40 of the housing 24. The inner portion 46 typically includes a plurality of opening for supporting the input gear 52, the output gear 54, the idler gears 57, and/or the bearings 56. It is to be appreciated that the inner portion 46 may not include the openings. With additional reference to
As shown in
As set forth above, the portal wheel end system includes a plurality of adapter brackets 26. The adapter brackets 26 are interchangeably connected to the housing 24, i.e., only one adapter bracket 26 is connected to the housing 24 at any one time such that one adapter bracket 26 can be disconnected from the housing 24 and another adapter bracket 26 can be subsequently connected to the housing 24. Two different adapter brackets 26 are shown in isolation in
Each adapter bracket 26 has a different predetermined configuration, i.e., geometric configuration, for connection to a selected one 22 of the plurality of differently configured axles. In other words, each of the plurality of adapter brackets 26 corresponds to a different one 22 of the plurality of differently configured axles. The predetermined configurations of the adapter brackets 26 are described further below.
As best shown in
The adapter bracket 26 is formed separately from and connected to the housing 24. The adaptor bracket 26 is mounted to the rear of the inner portion 46 of the housing 24 adjacent the axle 22 to which the portal wheel end 20 is mounted. The housing 24 has a mounting surface 64 and the flange 62 abuts the mounting surface 64 of the housing 24 when the adapter bracket 26 is connected to the housing 24. The flange 62 is complementary in configuration to the mounting surface 64. In other words, contours of the flange 62 match contours of the mounting surface 64 such that the flange 62 is flush with the mounting surface 64 when connected to the housing 24.
As best shown in
The portal wheel end 20 allows for the disconnection of one of the adapter brackets 26 from the housing 24 and the subsequent connection of another adapter bracket 26 to the housing 24. Specifically, if the portal wheel end 20 is to be connected to a selected one of the differently configured axles, the adapter bracket 26 that corresponds to that selected one of the differently configured axles is connected to the housing 24 for coupling the housing 24 to the selected one of the plurality of differently configures axles.
Referring again to
The predetermined configuration is further defined as locating at least one of the first hole 72 and second hole 74 relative to the housing 24. In other words, the differently configured axles each present the upper and lower connections at different locations. As such, the adapter bracket 26 that corresponds to the selected one 22 of the plurality of axles has the first hole 72 and the second hole 74 located relative to the housing 24 to properly receive the upper and lower connections. As such, the location of the first hole 72 and the second hole 74 are part of the predetermined configuration such that the first hole 72 and the second hole 74 of the adapter bracket 26 align with the upper and lower connections, respectively.
As shown in
The predetermined configuration includes locating the brace 76 relative to the housing 24 and the body 60. Each of the differently configured axles has varying packaging constraints, i.e., clearances, in the area adjacent the portal wheel end 20. As such, the brace 76 is located relative to the housing 24 and the body 60 to fit within these packaging constraints presented by the selected one 22 of the plurality of axles to which the portal wheel end 20 is connected.
As best shown in
As set forth above, each of the differently configured axles have varying clearances in the area adjacent the portal wheel end 20. The gap 90 is located relative to the housing 24 and the body 60 to accommodate these differently configured axles by eliminating interference with the axle 22 while maintaining functional stability and rigidity.
As set forth above, the portal wheel end 20 can be advantageously connected to any of the plurality of differently configured axles. Specifically, the adapter bracket 26 corresponding to the selected axle 22 can be connected to the housing 24 to couple the housing 24 to the selected axle 22. Accordingly, to attach the portal wheel end 20 to a selected axle 22, the correct adaptor bracket corresponding to that selected axle 22 is mounted to the inner portion 46 of the housing 24, thereby permitting the portal wheel end 20 to be mounted to that selected axle 22. By changing the adaptor bracket, the portal wheel end 20 is attachable to a different make and model of axle. Accordingly, the same housing 24, reduction gear system 44, and wheel hub 58 may be mounted to the different makes and models of axles by simply changing the adaptor bracket. When the proper adapter bracket 26 is connected to the housing 24, the input gear 52 of the portal wheel end 20 can receive rotational input from the axle 22, i.e., the input gear 52 can receive rotational input from any one 22 of the plurality of differently configured axles when the housing 24 is connected to the axle 22 with the proper adapter bracket 26.
A steering arm 82 extends from the adapter bracket 26 for connection with steering components of the vehicle. As best shown in
As best shown in
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described.
The subject patent application is a continuation in part application of U.S. patent application Ser. No. 12/501,273 for a PORTAL WHEEL END, filed on Jul. 10, 2009, which claims priority to and all the benefits of U.S. Provisional Patent Application No. 61/134,461, which was filed on Jul. 10, 2008, each of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61134461 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12501273 | Jul 2009 | US |
Child | 13401839 | US |