Porting

Information

  • Patent Grant
  • 5714721
  • Patent Number
    5,714,721
  • Date Filed
    Tuesday, October 29, 1996
    28 years ago
  • Date Issued
    Tuesday, February 3, 1998
    26 years ago
Abstract
A loudspeaker enclosure has an inside volume. At least one port characterized by predetermined mass intercouples the inside volume and the region outside the enclosure. Each port has a smoothly flared input end within the inside volume and smoothly flared output end adjacent to the region outside the inside volume. The port defines a boundary between the acoustic mass therein and the inside volume, the boundary typically being defined by an ellipse, and in a particular form by the rotation of an ellipse about the axis of a port. Typically, the length of the port corresponds substantially to the major diameter of the ellipse.
Description

The invention relates to porting in a loudspeaker system.
According to the invention, there is a port or tube for radiating acoustic energy to the region outside a loudspeaker enclosure smoothly flared at each end. The port has a lengthwise axis and is typically symmetrical about the lengthwise axis and smoothly flared at each end for substantially the entire perimeter about the lengthwise axis. The tube has a cross-sectional area that progressively decreases towards the center. According to one aspect of the invention, the port is bounded by an elliptical toroid, such that the tube length is approximately equal to the major diameter of an ellipse rotated about the port axis to form the toroid. An exemplary port according to the invention is embodied in the commercially available Bose Acoustimass.RTM. 5 series II loudspeaker system incorporated herein by reference. According to another aspect, the port is of rectangular cross section.
The tapered cross section of the flared port helps reduce turbulent airflow that might cause audible noise when radiating at high velocity levels.





Other features and advantages will become apparent from the following detailed description when read in connection with the accompanying drawing in which:
FIG. 1 is a cross section of a loudspeaker system including a flared port according to the invention; and
FIGS. 2A and 2B are perspective views of another embodiment of the invention of rectangular cross section exposing the smoothly flared input end and smoothly flared output end, respectively.





A loudspeaker enclosure or cabinet 11 has multiple subchambers, V.sub.1 -V.sub.3, and multiple passive radiators, P.sub.1 -P.sub.4, such as ports. Woofers 12 are mounted on first dividing wall 13 which separates first internal subchamber V.sub.1 from second subchamber V.sub.2. Second dividing wall 11 separates subchambers V.sub.1 and V.sub.2 from subchambers V.sub.3 and includes three passive radiators P.sub.1, P.sub.2, and P.sub.4. Flared passive radiator P.sub.3 is mounted in external wall 15 for radiating acoustic energy to the region outside the enclosure.
The invention is embodied in the commercially available ACOUSTIMASS.RTM. 5 series II bass module being manufactured and sold by the assignee of this application. This commercial embodiment has the following representative parameters:
Volume of intermediate subchamber V.sub.1 is 0.00413m.sup.3
Volume of end subchamber V.sub.2 is 0.00657m.sup.3
Volume of end subchamber V.sub.3 is 0.0119m.sup.3
Port tube passive radiator P.sub.1 is 0.203m long by 0.044m in diameter.
Port tube passive radiators P.sub.2 and P.sub.4 are each 0.057m long by 0.051m in diameter.
Flared port tube passive radiator P.sub.3 is 0.12m long by 0.12m in diameter at each end and 0.058m in diameter at the center bounded by the inside of a toroid of elliptical cross section. The ellipse has a major diameter substantially equal to the length of the tube.
The woofers are 14 cm diameter woofers. These parameters produce three deflection minima at 44 Hz, 80 Hz and 190 Hz and provide a frequency response characteristic having a relatively uniform response over the bass frequency range and a sharp cutoff at 30 db per octave above 200 Hz to sharply reduce the radiation of undesired harmonics through flared port P.sub.3.
The tapered cross section of flared port tube P.sub.3 helps reduce turbulent airflow to the region outside the enclosure that might produce audible noise when radiating at high velocity levels.
Referring to FIGS. 2A and 2B, there is shown an alternate embodiment of the invention in which the port is of rectangular cross section. Port conduit 21 has a flared inside end 22 and a flared outside end 23. Preferably, the curvature of each flared end portion is substantially the same. It may also be advantageous to have the surface of each side be defined by an ellipse having a major diameter corresponding to the length of the conduit. While this embodiment is shown as of generally rectangular cross section, it is within the principles of the invention to flare a conduit of any cross section, including a regular polygon. The particular curvature is preferably such as to enclose a volume of predetermined acoustic mass while producing inaudible noise at relatively high power levels.
It is believed to be advantageous for the port to be symmetrical about the port axis and symmetrical about a plane midway between the port ends. It is believed to be advantageous for the port cross-sectional area to be a minimum in this plane midway between the ends.
Other embodiments are within the claims.
Claims
  • 1. A loudspeaker enclosure with at least one port for radiating acoustic energy to a region outside said enclosure and having an inside volume,
  • said at least one port having an axis and characterized by predetermined acoustic mass intercoupling said inside volume and the region outside said enclosure having a smoothly flared input end within said inside volume and a smoothly flared output end adjacent to the region outside said inside volume,
  • wherein said port defines a boundary between the acoustic mass therein and said inside volume,
  • said boundary being defined by an ellipse having a major diameter.
  • 2. A loudspeaker enclosure in accordance with claim 1 wherein said boundary is defined by the rotation of said ellipse about the axis of said port.
  • 3. A loudspeaker enclosure in accordance with claim 2 wherein the length of said port corresponds to the major diameter of said ellipse.
  • 4. A loudspeaker enclosure in accordance with claim 1 wherein said at least one port is of circular cross section.
  • 5. A loudspeaker enclosure in accordance with claim 1 wherein said at least one port is of rectangular cross section.
  • 6. A loudspeaker enclosure in accordance with claim 1 wherein said at least one port is symmetrical about a plane perpendicular to said axis midway between said input end and said output end.
Parent Case Info

This is a continuation of application Ser. No. 07/843,858, filed Feb. 27, 1992, now abandoned which is continuation-in-part application of Ser. No. 07/621,531, filed Dec. 3, 1990, now issued as U.S. Pat. No. 5,092,424.

US Referenced Citations (14)
Number Name Date Kind
2900040 Novak Aug 1959
3142353 Todisco Jul 1964
4206831 Welch et al. Jun 1980
4213515 Laupman Jul 1980
4301332 Dusanoek Nov 1981
4549631 Bose Oct 1985
4596305 Jagborn Jun 1986
4790408 Adair Dec 1988
4869340 Coudoux Sep 1989
4875546 Krnan Oct 1989
4964482 Meyer Oct 1990
5067583 Hathaway Nov 1991
5092424 Schreiber et al. Mar 1992
5109422 Furukawa Apr 1992
Non-Patent Literature Citations (2)
Entry
Fluid Mechanics, Viscous Flow in Ducts, pp. 335-336, 348, 360-365, 404-411.
Lyle F. Yerges, "Sound, Noise, and Vibration Control" Sep. 1969, pp. 33-69.
Continuations (1)
Number Date Country
Parent 843858 Feb 1992
Continuation in Parts (1)
Number Date Country
Parent 621531 Dec 1990