The present invention relates to a position control device for an electric motor, and more particularly to a control system that has a current control section and a speed control section in a minor loop and a position control section in a major loop then controls the position of the electric motor.
The position control section 1 inputs a deviation signal between an angle command θref and an angle detection θdy which are setting inputs of the position control device, and the position control section 1 calculates an angular velocity command ωref. A difference signal between this calculated angular velocity command ωref and an angular velocity detection ωdy is determined in a subtraction section 6 and is inputted to the speed control section 2. The speed control section 2 then calculates a torque current command Tdy. The mechanical property section 4 of the rotor is controlled by this torque current command Tdy through the current control section 3. And the angular velocity detection ωdy, at this time, of the mechanical, property section 4 of the rotor is returned to the subtraction section 6 as feedback, then a difference operation (a difference calculation) between the angular velocity command ωref and the angular velocity detection ωdy is performed.
In addition, the angle detection θdy of the mechanical property section 4 is returned to a subtraction section 5 as feedback, then a difference operation (a difference calculation) between the angle command θref and the angle detection θdy is performed.
A technique that executes such position control described above is known by Patent Document 1 etc. This Patent Document 1 discloses that even in a case where parameters of resonance/antiresonance frequencyies of a mechanical system are unknown, in order to suppress vibration of the mechanical system, a vibration suppression compensator is provided, and the vibration suppression compensator inputs a deviation between a speed command determined by calculation and a speed detection signal and generates a speed command compensation signal, then the sum of this compensation signal and a speed command basic signal is set as a speed signal.
Patent Document 1: Japanese Patent Application Publication No. JP2002-325473
As shown in
Since the electric motor that is an object to be controlled has a range of torque which the electric motor can output, as shown in
In recent years, for instance, for the sake of production of vibration for a dynamometer system etc., a position control device having a more stable and higher response frequency characteristic has been required. However, as described above, since the electric motor has the outputable torque range, in the case where the torque limit is imposed in the speed control section 2 in the related art position control device, there is a need to take a measure against the windup, and a windup measure for the position control is also required. Because of this, it becomes difficult to make an adjustment to achieve the high response in a feedback control. In addition, if the position control is performed at a low response as the windup measure, it is difficult for the position control response to be high.
It is therefore an object of the present invention to provide a position control device that is capable of performing a position control with a high response to the command value.
According to one aspect of the present invention, a position control device for an electric motor, which inputs a deviation signal between an angle command and an angle detection value to a position control section and calculates an angular velocity command, inputs a deviation signal between this angular velocity command and an angular velocity detection value to a speed control section and calculates a torque current command, and controls, on the basis of this torque current command, the electric motor that is an object to be controlled through a current control section, comprises: a disturbance observer section which inputs the torque current command and the angular velocity detection value and estimates a signal corresponding to a disturbance torque; a rate-of-change limitation section which has a limiter inputting a disturbance observer output value by this disturbance observer section and performing rate-of-change limitation of upper and lower limit values of the angle command; and a target value filter section which is configured by a control gain equivalent to the speed control section and through which the angular velocity command from the position control section passes.
According to another aspect of the present invention, a rate-of-change limiter upper limit value of the rate-of-change limitation section is a value obtained by subtracting an output absolute value of the disturbance observer section from a rated maximum driving torque of the electric motor, multiplying this subtraction result by a sampling interval and dividing this multiplication value by motor inertia and a proportional gain of the position control section, and a rate-of-change limiter lower limit value of the rate-of-change limitation section is a value obtained by adding a rated maximum regenerative torque of the electric motor and the output absolute value of the disturbance observer section together, multiplying this addition result by the sampling interval and dividing this multiplication value by the motor inertia and the proportional gain of the position control section.
According to a further aspect of the invention, a low-pass filter is provided at an output side of the limiter of the rate-of-change limitation section.
According to a further aspect of the invention, the disturbance observer section estimates, as a corresponding disturbance torque, a difference signal between the angular velocity detection value and the torque current command.
According to a further aspect of the invention, a position control device for an electric motor, which inputs a deviation signal between an angle command and an angle detection value to a position control section and calculates an angular velocity command, inputs a deviation signal between this angular velocity command and an angular velocity detection value to a speed control section and calculates a tongue current command, and controls, on the basis of this torque current command, the electric motor that is an object to be controlled through a current control section, comprises: a speed limiter which is provided at an output side of the position control section for speed limitation; and a target value filter section which is configured by a control gain equivalent to the speed control section and through which the angular velocity command passing through the speed limiter passes.
According to a further aspect of the invention, an angular velocity limiter upper limit value of the speed limiter is a value determined by a fact that a rated maximum driving tongue of the electric motor is divided by motor inertia and a proportional gain of the position control section, and
According to a further aspect of the invention, the speed limiter is provided with an angular velocity limiter upper limit judgment section and an angular velocity limiter Lower limit judgment section for allowing variation of the angular velocity limiter upper limit value and the angular velocity limiter lower limit value respectively.
The present invention is the one in which, a limiter is provided in a position control device, and by properly setting an upper limit value and a lower limit value of the limiter, an overshoot amount of a position detection value against a rapidly varied angular velocity command is reduced. The present invention will be explained below on the basis of each embodiment.
A reference sign 7 is a rate-of-change limitation section. The rate-of-change limitation section 7 inputs an angle command θref [rad/s] and a disturbance observer output value Tobs, and outputs a rate-of-change limitation position command θcmd to a subtraction section 5.
A reference sign 8 is a target value filter section, and a reference sign 9 is a disturbance observer section. This disturbance observer section 9 calculates the disturbance observer output value Tobs from a torque current command Tdy and an angular velocity detection ωdy [rad/s].
Prior to an explanation of the embodiment of the present invention shown in
In order for a current control section 3 to have a high response that does not affect frequency bands of a position control section 1 and a speed control section 2, the following equations are set.
ωref=KPθ*(θref−θdy) (1)
ωdy=θdy*s (2)
Tdy={(KIω/s)*(ωref−ωdy)}−(KPω*ωdy) (3)
(Js+D)ωdy=Tdy (4)
Here, J is motor inertia [kgm2], D is a rotation loss [Nms/rad], KPθ is a proportional gain of the position control section, KIω is an integral gain of the speed control section, KPω is a proportional gain of the speed control section, and s is a Laplace operator (Laplacian).
When determining θdy/θref from the above equations (1) to (4), the following expression is determined.
θdy/θref=(KIω*KPθ)/{Js3+(KPω+D)s2+KIωs+(KIω*KPθ)} (5)
A denominator polynomial of the expression (5) is a cubic polynomial, and linear to cubic coefficients of an expression obtained by dividing the denominator expression by a constant term KIω*KPθ and setting the constant term to 1 are independent with respect to KIω, KPθ, KPω. Therefore, when making coefficient comparison so that the denominator polynomial of the expression (5) becomes 1+c1*s+c2*s2+c3*s3,
KPθ=1/c1 (6)
KPω=(c2*J/c3)−D (7)
KIω=c1*J/c3 (8)
Parameters KPθ, KPω and KIω can be determined from the above (6) to (8).
For example, when a binomial coefficient, type (s+1) 3=1+3*s+3*s2+1*s3 by which all poles become a damping coefficient 1 is determined and s is replaced with s/ws then their coefficients are c1, c2 and c3, in the case of the binomial coefficient type, C1=3/wc, c2=3/wc2, c3=1/wc3. For these c1 to c3, each parameter KPθ, KPω and KIω of the position control section 1 and the speed control section 2, shown by the expressions (6) to (8), is determined.
The target value filter section 8 has a gain characteristic of KIω/(KPωs+KPθ), and when the speed control has a PI control configuration shown in
In the embodiment shown in
The rate-of-change limitation section 7 shown in
[Expression ]
θ_Rate_Lim_H=(Tmax−|Tobs|)·Ts/(J·KPθ) (9)
[Expression 2]
θ_Rate_Lim_L=(Tmin−Tobs|)·Ts/(J·KPθ) (10)
The disturbance observer output value Tobs calculated at the disturbance observer section 9 is converted into an absolute value at an absolute value conversion section 72 through a torque limiter 70 and a low-pass filter 71.
The absolute value is compared with a rated maximum driving torque Tmax [Nm] of the electric motor, and a difference calculation (a difference operation) between the absolute value and the rated maximum driving torque Tmax [Nm] is performed. This difference calculation result is divided by the motor inertia J and multiplied by a predetermined sampling interval Ts [sec] (at a multiplication section 73), then is divided by the proportional gain KPθ of the position control section 1 at a proportional element 75. A signal obtained by the division is inputted to a limiter 77 and is set as the upper limit value of the rate-of-change limiter.
On the other hand, a setting rated maximum regenerative torque Tmin [Nm] of the electric motor is also added to the absolute value. This addition calculation result is divided by the motor inertia J and multiplied by the sampling interval Ts at a multiplication section 74. This result (multiplication result) is divided by the proportional gain KPθ of the position control section 1 at a proportional element 76. A signal obtained by the division is outputted from the proportional element 76 and inputted to the limiter 77, and is set as the lower limit value of the rate-of-change limiter.
That is, the rate-of-change limitation section 7 carries out the rate-of-change limitation with priority given to the disturbance observer, then the control is performed so that the speed control is not limited by the torque limiter.
A subtraction section 78 subtracts a last sampling rate-of-change limitation position command θcmd that is one-sampling-delayed by a delay circuit 79 from the angle command θref inputted to the rate-of-change limitation section 7, and this subtraction result is inputted to the limiter 77. The limiter 77 outputs a signal that is proportional to an input signal between the setting upper and lower limit values, and this output signal and a last sampling value that is one-sampling-delayed by the delay circuit 79 are added together at an addition section, then this added value becomes the rate-of-change limitation position command θcmd and is outputted to the subtraction section 5.
At the subtraction section 5, a deviation signal between the rate-of-change limitation position command θcmd and the feedback angle detection θdy of the mechanical property section 4 is determined and is inputted to the target value filter section 8 through the position control section 1.
A subtraction section 6 performs a subtraction operation between the angular velocity command ωref passing through the target value filter section 8 and the feedback angular velocity detection ωdy of the mechanical property section 4, and this subtraction result is inputted to the speed control section 2. The torque current command Tdy is then calculated at the speed control section 2, and is output: ted
to the current control section 3 and the disturbance observer section 9.
The disturbance observer section 9 is configured as shown in
As is clear from
Hence, according to the present embodiment, a stable position control and a high response control are allowed, and it is possible to reduce overshoot amounts, with respect to target value response, of a position command value and the position detection value. Further, by the fact that the disturbance observer output value Tobs is subtracted from the rated maximum driving torque Tmax, the present embodiment has an effect of allowing the position control that gives priority to the disturbance torque.
An angular velocity limiter upper limit value ω_Lim_H by the speed limiter 10 is an expression (11), whereas an angular velocity limiter lower limit value ω_Lim_L by the speed limiter 10 is an expression (12).
[Expression ]
ω_Lim—i H=Tmax/(J·−KPθ) (11)
[Expression 4]
ω_Lim—L=Tmin/(J·KPθ) (12)
The angular velocity limiter upper limit value ω_Lim_H is determined by the fact that the rated maximum driving torque Tmax is divided by the motor inertia J and the proportional gain KPθ of the position control section 1. The angular velocity limiter lower limit value ω_Lim_ is determined by the fact that the rated maximum regenerative torque Tmin is divided by the motor inertia J and the proportional gain KPθ of the position control section 1.
Here, as same as
By the fact that the angular velocity command ωref obtained by multiplying a deviation signal between the angle command θref and the angle detection θdy by the proportional gain at the position control section 1 is inputted to the speed limiter 10, an angular velocity command value ωcmd that is speed-limited to (or between) the angular velocity limiter upper limit value ω_Lim_H and the angular velocity limiter lower limit value ω_Lim_L is generated. After this angular velocity command value ωcmd is outputted to the subtraction section 6 through the target value filter section 8 and the subtraction operation between this output and the angular velocity detection ωdy is executed, this calculation result is inputted to the speed control section 2. The torque current command Tdy is then calculated at the speed control section 2, and the electric motor is controlled through the current control section 3.
When arbitrarily setting the upper and lower limit values of the angular velocity limiter of the speed limiter 10, in a case where an external angular velocity limiter upper limit value Ext_H and an external angular velocity limiter lower limit value Ext_L are present, each limiter value is set by the angular velocity limiter upper and lower limit judgment sections 11 and 12.
That is, in the angular velocity limiter upper limit judgment section 11, when “Ext_H<(Tmax/(J·KPθ))” is judged, a terminal is switched from a to b, and the angular velocity limiter upper limit value ω_Lim_H is set to “ω_Lim_H =Ext_H”. In the angular velocity limiter upper limit judgment section 11, when “Ext_H<(Tmax/(J·KPθ))” is judged, the terminal is switched from b to a, and the angular velocity limiter upper limit value ω_Lim_H is set to “ω_Lim_H=Tmax/(J·KPθ)”.
Also, in the angular velocity limiter lower limit judgment section 12, when “Ext_L<(Tmin/(J·KPθ))” is judged, a terminal is switched from a′ to b′, and the angular velocity limiter lower limit value ω_Lim_L is set to “ω_Lim_L=Ext_L”. In the angular velocity limiter lower limit judgment section 12, when “Ext_L<(Tmin/(J·KPθ))” is judged, the terminal is switched from b′ to a′, and the angular velocity limiter lower limit value ω_Lim_L is set to “_Lim_L=Tmin/(J·KPθ)”.
As is clear from
Hence, according to the second embodiment, even in a case where the disturbance torque that is equal to or greater than the rated maximum driving torque Tmax is inputted, the stable position control and the high response control are allowed, and it is possible to reduce the overshoot amounts, with respect to the target value response, of the position command value and the position detection value.
In addition, by providing the arbitrary angular velocity limiter upper and lower limit, values, an operation as an overspeed preventing function becomes possible.
As explained above, according to the present invention, it is possible to reduce the overshoot amounts, with respect to the target value response, of the position command value and the position detection value, then the stable and high response position control becomes possible.
Number | Date | Country | Kind |
---|---|---|---|
2010-258420 | Nov 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP11/76660 | 11/18/2011 | WO | 00 | 5/16/2013 |