The present invention relates to position control systems. More specifically, the present invention relates to position control systems for vehicles on a fixed path.
Currently, the monitoring of vehicle motion along a path, such as a railway or a track, is carried out using a central controller or computer. The computer monitors each vehicle's position on the track and when vehicle spacing is within a predetermined minimum distance, all vehicles on the track are stopped. Such a system, in addition to the computer, includes multiple sensors mounted at various locations along the track and complex wiring for connecting each sensor and the computer.
For example, U.S. Pat. No. 4,864,306 describes a system in which machine readable trackside markers such as bar code markers are utilized along the track and are read by apparatus on board the train to provide track number identification, milepost identification and train direction. On board the train is equipment to provide train identification and train speed. This information is transmitted through transponders between trains and to a central station and is processed by apparatus on board the respective trains and the central location to provide visual and audible signals indicative of a potential train collision.
More recently, U.S. Pat. No. 7,182,298 describes a track network incorporating at least one node at which at least two track sections of the track network adjoin one another and also comprising a plurality of vehicles traveling along the track network and each of which comprises a control unit wherein the control of the movements of these vehicles can be effected and wherein the information relating to the successor or the forerunner vehicle is stored in the control unit of the vehicle and is updated when the vehicle passes a node of the track network.
However, because of the necessary computer, complex wiring, and multiple sensors, the system is difficult to integrate and to costly to maintain. Other disadvantages include the requirement to test and prove system functionality after track installation, the technical challenge of aligning a sensor and target for the vehicle to track interface, the inability to sense a spacing problem until it has become sufficiently severe to violate the minimum spacing, the inability to change spacing criteria without adding additional sensors which makes the system less flexible, and the inability to account for horizontal wheel slip and wheel and tire breakdown.
Therefore, to date, no suitable method or system for position control for a vehicle on a fixed track exists.
In one embodiment of the present invention, a method for controlling a plurality of vehicles each having wheels located on a fixed path is presented. The method comprising: mounting a processor on each vehicle; mounting a vehicle sensor device to each vehicle; using each processor and each vehicle sensor device to determine an actual velocity of each vehicle while each vehicle is moving along the path; and using a position control correction module to compare each vehicle's actual velocity to each vehicle's velocity commands to determine if wheel slip is occurring and to decrease the magnitude of vehicle velocity commands where wheel slip occurs.
In another aspect of the invention, a method for determining slippage of at least one wheel of at least one vehicle having a motor and a processor that communicates velocity commands to the motor for varying a velocity of the vehicle is presented. The method comprising determining an actual velocity of the vehicle over regular intervals; comparing, over regular intervals, the actual velocity of the vehicle to the expected velocity from the magnitude of the velocity commands to determine whether there is slip of the wheel of the vehicle; and reducing the magnitude of the velocity commands to equal approximately the actual velocity of the vehicle where there is slip of the wheel.
The following detailed description is made with reference to the accompanying drawings, in which:
One embodiment of the present invention concerns a control system and method for controlling a plurality of vehicles on a fixed path. One particular embodiment of the system includes a position control and correction module for correcting spacing between vehicles.
Referring to
A distance/speed sensor 116 may comprise a magnet 120 and a magnetic field or optical sensor 122, which together function in a known manner to provide electrical pulses to a processor (not shown), which correspond to a distance traveled by wheel 14. A processor, memory, timer, distance and a driving and stopping system (each to be discussed further with reference to
Referring now to
The processor 310 may be any suitable processor such as a programmable logic controller. The memory 312 may be any suitable type including but not limited to RAM, ROM, EPROM, and flash. The memory 312 may store a program for the processor 310 and store a look up table for a predicted range of locations given a duration that a vehicle is traveling along the track. The memory may also be configured to store wheel diameter measurement, horizontal wheel slip measurements and vehicle spacing measurement, e.g., how far each vehicle is from a corresponding vehicle at any particular time.
The timer 314 provides a timing function that may be used by the processor 310 to time an actual duration that the vehicle is traveling along the track.
The distance/speed sensor 316 may comprise a magnet and a magnetic field or optical sensor which together function in a known manner to provide electrical pulses to the processor 310 which correspond to a distance traveled by the wheel. Optionally, other sensors such as a multi-turn encoder may be employed. To determine the distance, the pulses may be counted or directly measured by the processor 310 to determine a distance and, therefrom, a location of the vehicle along the track.
The vehicle driving and stopping system 318 may be interconnected with a drive motor 334 including a motor controller (not shown) and a brake 332 such as the disc brake 30 (
The processor 310 is configured, via any suitable means such as software or firmware, to receive an initial signal from a start indicator 324 that the vehicle has started traveling along the track and thereafter, to continuously, or at regular intervals, calculate an actual location for the vehicle along the track. Optionally, transponders (not shown) may be located along the track and a sensor may be provided for ascertaining an actual location for the vehicle.
The calculated actual location may be used by the processor 310 to control, via the vehicle driving and stopping system 318, the distance between a plurality of vehicles so that vehicles maintain a predetermined spacing from one another. However, position errors may accumulate during operation because of, e.g., vehicle wheel wear or wheel slippage. For example, as the vehicle increases in age, tires may begin to wear and become smaller, velocity and position errors may accumulate. Also, when vehicles start out or round corners wheel slippage may occur causing further velocity and position errors. To reduce these errors, a position control correction module 330 is provided which may be configured to receive velocity commands from the processor 310, and return a signal to the processor correcting the velocity commands based on velocity and position errors. Accordingly, the position control correction module 330 advantageously reduces variation in predetermined distance between vehicles to reduce undesirable vehicle contact.
To compensate for wheel wear, the position control correction module 330 working with the processor 310, may be configured to calculate a distance between fixed points, e.g., illuminated by transponders, that are located along a path and identified by additional vehicle position sensors and then compare that value with a known number of wheel revolutions sensed, e.g., by the sensor 116. Current wheel diameter may be calculated and then applied to correct the measured velocity and acceleration.
Generally, to compensate for wheel slip, e.g., during acceleration, the position control correction module 330 may compare a velocity command (VN), described above, to an actual velocity that the vehicle is traveling along the fixed path. If there is a difference between the velocity of the vehicle expected from the velocity command and the actual velocity of the vehicle, the velocity command may be reduced in magnitude such as to the actual velocity to eliminate the slippage and regain frictional engagement with the fixed path. Thereafter, the velocity commands may be slowly ramped up in magnitude, described below, to thereby retain frictional engagement with the fixed path.
Referring now to the flow diagram of
In operation and during regular intervals, a summation 422 combines calculated velocity and position errors (Ev), (Ep) which are, in turn, fed to the summation 410 that subtracts the error values from the velocity at a particular sensed position (Vsp) to achieve a corrected velocity G(v). The corrected velocity G(v) and the actual velocity (not shown) may be provided at 408 and communicated to the processor 310 (
The corrected velocity G(v) is thereafter output to the secondary loop 414 to calculate a new error in velocity (Ev) and combined with the output from the timer 406 for use in the secondary loop 416 to calculate a new error in position (Ep). It is also communicated to the processor 310 to determine whether velocity needs to be increased to correct an error in position and thus spacing between vehicles.
Optionally, to smooth and slowly ramp up vehicle transition speeds F(Vsp) and prevent the error from accumulating in the system, the vehicle velocity commands (VN) may be applied to an algorithm such as that provided below.
F(Vsp)=Σ[θ−2π,λπ(cos(θ)+1)·[½·(VNnew−VNold)]] where:
θ=θ+λ, where λ=F(a)/π
if VNold≠VNnew, θ=π
VN=velocity command
The acceleration function F(a) of a vehicle may be calculated from the following equation where acceleration is limited by a percentage of the change in velocity to further reduce possible slip during acceleration.
F(a)=aN·[(VN−Vactual)/VN]%
where:
Vactual=F(Vsp)(VN)
aN=acceleration command
A function of a gain term (K) for (used in calculating an error in velocity (Ev) and an error in position (Ep) see above) velocity Kv and position Kp weigh the respective terms so that speed correction is smooth. These may be calculated as follows:
F(Kv,p)=Kv,p·Kv,p·Kwheel ø,
Kwheel ø=1−[(actual−measured)/actual)]%
If Ev>>ø, θ=π, F(a)=F(a)·Kcorrection
Referring now to
The track processor 52 may also be configured to determine and broadcast an ideal location of each vehicle to each vehicle on the path according to some predetermined plan such as every vehicle is spaced equally along the path. Each vehicle, via each processor 310, may then synchronize or vary its position along the path by increasing velocity or braking, as described above, to correct its spacing from other vehicles.
A method of monitoring and controlling location of a plurality of vehicles movable along a path in accordance with another embodiment of the present invention is illustrated generally at 600 in
Technical effects of the herein described systems and methods include correcting a velocity of a vehicle to account for wheel slip. Other technical effects include correcting a vehicle spacing on a track.
While the present invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the present invention is not limited to these herein disclosed embodiments. Rather, the present invention is intended to cover all of the various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4498016 | Earleson et al. | Feb 1985 | A |
4864306 | Wiita | Sep 1989 | A |
5197562 | Kakinami | Mar 1993 | A |
5305693 | Johnson et al. | Apr 1994 | A |
5473225 | Miyazaki | Dec 1995 | A |
5495251 | Gilling | Feb 1996 | A |
5533695 | Heggestad et al. | Jul 1996 | A |
5595121 | Elliott et al. | Jan 1997 | A |
5689422 | Heymann et al. | Nov 1997 | A |
6148269 | Kumar et al. | Nov 2000 | A |
6285944 | Tange | Sep 2001 | B1 |
6295487 | Ono et al. | Sep 2001 | B1 |
6420996 | Stopczynski | Jul 2002 | B1 |
6526346 | Ishizu | Feb 2003 | B2 |
6532411 | Manaka | Mar 2003 | B2 |
6587763 | Ishikawa | Jul 2003 | B2 |
6600987 | Ohtsu | Jul 2003 | B2 |
6666411 | Hart | Dec 2003 | B1 |
6691014 | Reich et al. | Feb 2004 | B2 |
6853902 | Miller | Feb 2005 | B2 |
7084602 | Donnelly et al. | Aug 2006 | B2 |
7182298 | Fischer | Feb 2007 | B2 |
7286934 | Gaegauf et al. | Oct 2007 | B2 |
7451034 | Deur | Nov 2008 | B2 |
7739023 | Lee | Jun 2010 | B2 |
20040181320 | Kane et al. | Sep 2004 | A1 |
20090114114 | Rose et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
1134559 | Oct 1996 | CN |
1137993 | Dec 1996 | CN |
19509696 | Sep 1996 | DE |
10209378 | Sep 2003 | DE |
1302382 | Apr 2003 | EP |
63249405 | Oct 1988 | JP |
04251502 | Sep 1992 | JP |
07170603 | Jul 1995 | JP |
09140009 | May 1997 | JP |
2008289237 | May 2007 | JP |
2004024531 | Mar 2004 | WO |
2009032382 | Mar 2009 | WO |
WO 2009032382 | Mar 2009 | WO |
Entry |
---|
Office Action for Japanese Patent Application No. 2011543531 issued Nov. 25, 2013. |
Number | Date | Country | |
---|---|---|---|
20100168940 A1 | Jul 2010 | US |