This application claims priority under 35 U.S.C. §1.119(a)-(d) to Japanese Patent Application No. 2013-091600, filed on Apr. 24, 2013, the content of which is incorporated herein by reference in its entirety as part of the present disclosure.
The present invention relates to a position controller that controls a position of a drive target in accordance with a command from a higher-level controller.
The configuration and operation of the position controller are described below. The position controller receives an input of a position command value X from a higher-level device (not shown). A subtractor 101 calculates a positional deviation X−xL by subtracting a position detected value xL from the position command value X. The position detected value xL is a position detection signal which is obtained by directly detecting the position of a control target of the target system 112 by a linear scale or the like (not shown).
Further, a time derivative of the position command value X is obtained by differentiators 104, 109 which respectively output the obtained values as a speed command value V and an acceleration command value A. The acceleration command value A is amplified by an acceleration torque conversion constant Ca by an amplifier 110 to be used as an acceleration torque command value τca that causes the target system 112 to be moved at the rate of acceleration. The speed command value A and the acceleration torque command value τca are respectively added to the speed command and the torque command. Such a series of processes form a well-known feed forward block for reducing a constant positional deviation X−xL down to zero.
An amplifier 102 proportionally amplifies the positional deviation X−xL at an amplification factor of a position loop gain Gp. An output from the amplifier 102 becomes the final speed command value Vc after the speed command value V is added to the output by an adder 103. A subtractor 105 calculates a speed deviation Vc−vm by subtracting a motor speed vm from the speed command value Vc. The motor speed vm is a time derivative value, obtained by a differentiator 107, of a rotational angular position xm of a position detector (not shown) connected to a servo motor, or an output of a speed detector (not shown) connected to the servo motor. An amplifier 106 amplifies the speed deviation Vc−vm at an amplification factor of a speed loop gain Gv.
The output of the amplifier 106 becomes a torque command value τc after addition of an acceleration torque command value τca by an adder 108. The torque command value τc becomes a generated torque τ for the target system 112 after being power amplified by a power amplifying unit 111. The power amplifying unit 111, which consists of a power amplifier and a servo motor, amplifies the torque command value τc to output the generated torque τ. The amplification ratio is represented by a torque conversion constant Ct. The generated torque τ is supplied to the target system 112 and used to drive the target system 112. It should be noted that, a reference symbol “S” of the differentiators in
In previously-known position controllers, a positional follow-up deviation due to a frictional force is minimized by providing a friction compensation calculation unit 113 to respectively add compensation values Vsfc, τsfc calculated by the friction compensation calculation unit 113 to a speed command and a torque command.
However, when sliding characteristics of a target system are changed due to deterioration over time, a temperature change, a lubrication state change of a sliding surface, or the like, desirable friction compensation becomes impossible, causing a positional follow-up error and a decrease in processing accuracy. In order to avoid this, control parameters of the friction compensation calculation unit 113 should be reset (re-adjusted). Because resetting is time-consuming and is required every time the sliding characteristics change, resetting is troublesome.
Further, although changing control parameters of the friction compensation calculation unit 113 in accordance with a change in the sliding characteristics may be considered, because the sliding torque changes according to a traveling speed of the target system, it is necessary to compare sliding torques under the same speed in order to quantitatively handle the sliding torques. Therefore, it becomes necessary to obtain sliding toques by providing a dedicated operation mode, which would result in an increase of non-cutting time.
The present invention is provided to overcome these problems. An object of the present invention is to provide a position controller which can maintain desired friction compensation without a need to provide a dedicated operation mode even when sliding characteristics of a target system change due to deterioration over time, a temperature change, a lubrication state change of a sliding surface, or the like.
A position controller according to the present invention controls a position of a control target by providing a command to a drive motor of a control target system in accordance with a position command value from a higher-level controller. The position controller comprises a friction compensation calculation unit that calculates, based on a speed command value, a friction compensation reference value that is a reference value of a friction compensation value compensating a positional deviation due to a frictional force; a sliding torque normalization calculation unit that, with characteristic information indicating a relationship between a speed and a sliding torque stored in advance, calculates a sliding torque at a pre-defined normalized speed under a current state based on the speed command value, a torque command value, and the characteristic information; a compensation value amplifying ratio calculation unit that calculates a compensation value amplifying ratio that is an amplifying ratio of the friction compensation reference value based on a sliding torque at a normalized speed under the current state and a sliding torque at the normalized speed in an initial state; and an multiplier that multiplies the compensation value amplifying ratio by the friction compensation reference value to output the friction compensation value which compensates the positional deviation due to the frictional force.
In a preferred embodiment, the sliding torque normalization calculation unit comprises a sliding torque discrimination unit that outputs, based on the speed command value and the torque command value, a sliding torque at a speed indicated by the speed command value; a sliding torque ratio calculation unit that calculates, based on the characteristic information and the speed command value, a sliding torque ratio that indicates a ratio between the sliding torque at the speed indicated by the speed command value and the sliding torque at the normalized speed under the current state; and a speed-weighting calculation unit that calculates, based on the sliding torque ratio and the sliding torque at the speed indicated by the speed command value, the sliding torque at the normalized speed under the current state.
According to the present invention, because it is possible to vary a friction compensation value in accordance with a change in sliding characteristics by using a normalized sliding torque when sliding resistance characteristics of a target system change due to deterioration over time, a temperature change, a lubrication state change of a sliding surface, or the like, processing accuracy can be maintained without resetting (re-adjusting) control parameters of a friction compensation calculation unit.
A preferred embodiment of the present invention will be described in detail by reference to the following figures, wherein:
A sliding torque discrimination unit 11 receives an input of the speed command value V and a torque command value τc; determines, as a sliding torque, a torque command value τc with which a target system 112 travels at a certain speed; further determines a traveling direction from the polarity of the speed command value V; and outputs a sliding torque τc
The sliding torque ratio maximum value Gh is determined by the equation below by using τma which is obtained by subtracting a gravitational torque from the normalized speed sliding torque initial value τa
Gh=τmb/τma (Equation 1)
The sliding torque ratio calculation unit 12 determines the sliding torque ratio G which represents a ratio between a sliding torque at a normalized speed Va under a current state and a sliding torque at a speed indicated by the speed command value V from the equation below by using the above-mentioned parameters with an input of a speed command absolute value |V|, and outputs the determined sliding torque ratio G.
G=1 (where |V|≦Va)
G=(Gh−1)/(Vb−Va)(|V|−Va)+1 (where Va<|V|≦Vb) (Equation 2)
A speed-weighting calculation unit 13 calculates normalized sliding torques τnor
τnor
τnor
As described above, because the normalized sliding torque is obtained by normalizing sliding torques obtained at various speed commands, it becomes possible to compare sliding torques at the same speed (normalized speed Va) without providing an operation mode in which a speed is fixed.
Next, operations of the compensation value amplifying ratio calculation unit 2 are described. The compensation value amplifying ratio calculation unit 2 determines a compensation value amplifying ratio R to be output from the equation below by using an input of normalized speed sliding torque initial values τa
R=(τnor
It should be noted that although the compensation value amplifying ratio R is obtained by using the sliding torques τnor
The multipliers 3, 4 output friction compensation values Vsfc, τsfc by multiplying the friction compensation values Vsfc0, τsfc0 output from the friction compensation calculation unit 113 by the compensation value amplifying ratio R. In this way, it becomes possible to make the friction compensation value variable in accordance with a change in the sliding characteristics.
Number | Date | Country | Kind |
---|---|---|---|
2013-091600 | Apr 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4765573 | Wells | Aug 1988 | A |
5216342 | Torii et al. | Jun 1993 | A |
7560890 | Terada et al. | Jul 2009 | B2 |
8285430 | Yabuuchi et al. | Oct 2012 | B2 |
20030201746 | Eguchi | Oct 2003 | A1 |
20070007927 | Terada et al. | Jan 2007 | A1 |
20090302796 | Minamide | Dec 2009 | A1 |
20100179713 | Yabuuchi et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
3840429 | Nov 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20140320057 A1 | Oct 2014 | US |