Information
-
Patent Grant
-
6807128
-
Patent Number
6,807,128
-
Date Filed
Friday, October 25, 200222 years ago
-
Date Issued
Tuesday, October 19, 200420 years ago
-
Inventors
-
-
Examiners
- Martin; David
- Goodwin; Jeanne-Marguerite
Agents
-
CPC
-
US Classifications
Field of Search
US
- 368 28
- 368 35
- 368 37
- 368 77
- 368 233
- 368 239
- 368 220
-
International Classifications
-
Abstract
A timepiece includes a reference wheel and a target wheel each having one or more reflective members for reflecting a light generated from a light emitting device. The position of the reference wheel may be determined when receiving a starting code, in order to align an orifice of the reference wheel with the light emitting device, for allowing the light to be reflected by the reflective member of the target wheel. The reflective members of the target wheel are arranged in a binary code sequence for determining the position of the target wheel relative to the reference wheel.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a timepiece, and more particularly to a timepiece including a device for detecting and correcting the relative positions of rotary members and/or hands thereof.
2. Description of the Prior Art
Various kinds of typical timepieces have been developed, and may be used for automatically setting or detecting or correcting the time or the rotary members or the hands thereof. In addition, the various kinds of typical timepieces may be used for receiving the time signals from the National Bureau of Standards (NBS), the radio stations, or the like, and may correct or set the time accordingly.
U.S. Pat. No. 4,117,661 to Bryant, Jr., and U.S. Pat. No. 4,204,398 to Lemelson disclose two of the typical timepieces, and comprise a complicated electric circuit for detecting and/or decoding and/or correcting the time of the timepieces.
U.S. Pat. No. 4,358,753 to Cascini, U.S. Pat. No. 5,566,140 to Kohata et al., U.S. Pat. No. 5,640,007 to Talbott et al., and U.S. Pat. No. 5,930,205 to Baba et al. disclose the other four typical timepieces, and each may include a number of illumination devices, scanning devices, photo elements for emitting and receiving lights respectively, to detect and to correct the positions of the wheels and/or hands.
In most of the typical timepieces, a number of rotary wheels are required to be provided and coupled between the hands and the motors, such as the step motors, for allowing the hands to be rotated or driven by the motors. The rotary wheels each may include one or more holes or orifices, and the holes or orifices of all of the three rotary wheels should be aligned with each other for allowing the lights generated by the light or illumination devices to be emitted through the holes or orifices of the rotary wheels.
Accordingly, a complicated mechanism or device or configuration is required to be provided for detecting or determining whether the holes or orifices are aligned with each other. The light may only be emitted through the holes or orifices of the rotary wheels by chance.
U.S. Pat. No. 5,231,612 to Allgaier et al. discloses a further typical timepiece including a reflex barrier or a detecting device disposed on one side of a number of wheels, and having a sending part and a receiving part, and a rear mirror disposed on the other side of the wheels.
The wheels of the typical timepieces each includes a number of holes or orifices formed therein for receiving the lights emitted by the illumination device. The holes of the wheels should be aligned with each other for allowing the light to emit through the holes of the wheels simultaneously, and for allowing the lights to be reflected to the receiving parts of the detecting device.
However, it may take a long time before the holes of the wheels may be aligned with each other. For some of the typical timepieces, it may take twelve hours or even twenty four hours for allowing the holes of the wheels to be aligned with each other, and for allowing the light to emit through the holes of the wheels simultaneously.
Particularly, the first wheel that faces the reflex barrier includes a reflective wheel disk disposed thereon for reflecting the light generated by the light devices. The reflective wheel disk includes a single hole for allowing the light to emit through the hole of the reflective wheel disk. However, no other devices or mechanisms may be provided for positively determining or locating the hole of the reflective wheel disk, such that the timepiece may not readily know whether the light has been aligned with the hole of the reflective wheel disk or not, and should determine the alignment of the hole of the reflective wheel disk with the reflex barrier with try and error methods.
U.S. Pat. No. 4,700,062 to Ernst discloses a further timepiece including a reference mark for determining the zero point of an incremental scale, and for being aligned or scanned through the corresponding scanning aperture of the scanning plate.
However, similarly, the wheels or plates should all include a number of holes provided therein. In addition, a number of illumination devices are required to be provided for generating lights through various holes or orifices of the wheels or plates. Furthermore, the timepiece also should determine the alignment of the hole of the reflective wheel disk with the illumination device with try and error methods.
The present invention has arisen to mitigate and/or obviate the afore-described disadvantages of the conventional timepieces.
SUMMARY OF THE INVENTION
The primary objective of the present invention is to provide a timepiece including a simplified device or configuration for detecting and correcting the relative positions of rotary members and hands of the timepiece.
The other objective of the present invention is to provide a timepiece including an initializing or starting code for positively determining the aperture of the first rotary member and thus for easily and readily detecting and correcting the relative positions of rotary members and hands of the timepiece.
The further objective of the present invention is to provide a timepiece including a code arranged in a circle on a rotary member for determining the relative position between the rotary members.
In accordance with one aspect of the invention, there is provided a timepiece comprising a light emitting device for generating a light, a reference wheel including at least one orifice formed therein for receiving the light generated by the light emitting device, a device for aligning the orifice of the reference wheel with the light emitting device, a target wheel including a binary code sequence having a plurality of digits provided thereon each representing an “on” or “1” signal digit or an “off” or “0” signal digit, a plurality of reflective members arranged on the target wheel and disposed on positions corresponding to the “on” or “1” signal digits of the binary code sequence of the target wheel, for reflecting the light generated by the light emitting device, means for driving the reference wheel and the target wheel separately, and a light receiving device for receiving the light reflected from the reflective members to determine the “on” or “1” signal digits of the binary code sequence of the target wheel. The position of the target wheel may be determined when several digits of the binary code sequence are detected by the light receiving device.
The digits of the binary code sequence are arranged in a circle on the target wheel, and may include such as twenty four digits equally spaced from each other.
The aligning device includes at least one second reflective member provided on the reference wheel for reflecting the light generated by the light emitting device and to determine location of the orifice of the reference wheel.
A processor device may further be used for actuating the driving device to rotate the reference wheel and to align the orifice of the reference wheel with the light emitting device and to allow the light generated by the light emitting device to emit through the orifice of the reference wheel.
A memorizing device may further be provided for storing a time signal, the processor device is provided for actuating the driving device to rotate the reference wheel and the target wheel and to the time signal stored in the memorizing device.
A device may further be used for receiving the time signal and sending the time signal to the memorizing device.
Further objectives and advantages of the present invention will become apparent from a careful reading of a detailed description provided hereinbelow, with appropriate reference to accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a partial perspective view of a timepiece in accordance with the present invention;
FIG. 2
is a partial exploded view of the timepiece;
FIG. 3
is a partial cross sectional view of the timepiece;
FIG. 4
is a top plan schematic view of the timepiece;
FIGS. 5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
are partial perspective views illustrating the operation of the timepiece; and
FIG. 13
is a a diagram illustrating the signals emitted and received by the detecting device.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the drawings, and initially to
FIGS. 1-4
, a timepiece in accordance with the present invention comprises a reference wheel
20
which may be either a second, a minute, or an hour wheel, and a target wheel
30
which may also be either an hour wheel, a minute wheel, or a second wheel. The timepiece includes a housing
10
for receiving and supporting the wheels
20
,
30
.
The timepiece in accordance with the present invention is to provide a device or a mechanism to readily or quickly determine the relative or positive positions of the reference wheel
20
and the target wheel
30
. The reference wheel
20
and the target wheel
30
are coupled to a respective hand
73
,
72
each, for driving or rotating the respective hands
73
,
72
relative to the clock face
71
.
The reference wheel
20
and the target wheel
30
may be rotatably supported in a rotary axis
11
of the housing
10
with an axle
29
and a shaft
39
respectively, and/or rotatably supported on a supporting board
12
of the housing
10
, for allowing the wheels
20
,
30
to be rotated independently and to be rotated relative to each other.
Two driving devices
21
,
31
, such as two step motors
21
,
31
are provided and disposed in the housing
10
, and are coupled to the reference wheel
20
and the target wheel
30
respectively with gear couplings
22
,
32
respectively, or with the other or similar transmission couplings, for allowing the reference wheel
20
and the target wheel
30
to be rotated or driven by the step motors
21
,
31
separately or independently.
A detecting device
40
includes a light emitting part or device
41
for generating lights, and a light receiving part or device
43
for receiving reflective lights. It is to be noted that timepiece in accordance with the present invention requires only a single detecting device
40
which is good enough to determine the relative or positive positions of the reference wheel
20
and the target wheel
30
and the hands
72
,
73
.
The reference wheel
20
includes an initializing or starting code or device having such as a reflective member
23
disposed on the reference wheel
20
for reflecting the light generated by the light emitting device
41
of the detecting device
40
. The reference wheel
20
further includes an orifice
24
formed therein for allowing the light to emit therethrough.
The reference wheel
20
is preferably made of the materials that may not reflect the lights, such as the plastic or synthetic materials. Only the reflective member
23
may be used to reflect the light generated by the light emitting device
41
of the detecting device
40
. The target wheel
30
also includes a number of reflective members
33
to reflect the light to the light receiving device
43
. The reference wheel
20
is arranged between the target wheel
30
and the detecting device
40
.
The reflective members
33
of the target wheel
30
are arranged in series in binary code, including 001, 010, 011, 100, 101, 110, 111, 000. The twenty-four (24) digits of the binary code are arranged continuously in the following sequence: 001010011100101110111000.
The last digit “0” may be arranged or located at the position of “0” or “12” o'clock; or “0” or “60” minute or second, for example. The second “0” may be arranged or located at the position of “1” o'clock; or “5” minute or second. The six digit “0” may be arranged or located at the position of “3” o'clock; or “15” minute or second.
Every six consecutive digits of the code sequence as shown above are different from each other, and include such as 001010, 010100, 101001, 010011, . . . 111000. None of the six consecutive digits of the code sequence as shown above are equal to each other.
The reflective members
33
of the target wheel
30
are arranged in series in the locations corresponding to the “1” or “on” of the code sequence. For example, the twenty-four (24) digits of the binary code may be arranged on the target wheel
30
, and equally spaced for 15° away from each other. The reflective members
33
are preferably arranged in a circle on the target wheel
30
.
The timepiece may include a receiver device
70
, such as the typical time signal receiver device for receiving the time signals from the National Bureau of Standards (NBS), or the radio stations, or the like. A processor device
74
may include a memory device
77
for storing the time signals from the NBS or from the radio stations, and/or for storing the time signals or positions of the wheels
20
,
30
and the motors
21
,
31
.
The processor device
74
may be coupled to the light emitting device
41
and the light receiving device
43
of the detecting device
40
, for receiving the signals, such as the pulse signals therefrom, and may be coupled to the step motors
21
,
31
for actuating or controlling the step motors
21
,
31
to rotate or to drive the wheels
20
,
30
respectively.
The light emitting device
41
of the detecting device
40
may generate or emit lights continuously or intermittently onto the reference wheel
20
and/or the target wheel
30
. For example, as represent by “E” in
FIG. 13
, the light emitting device
41
of the detecting device
40
may generate or emit lights continuously or intermittently onto the reference wheel
20
and/or the target wheel
30
in at least the steps
1
-
8
as shown in FIG.
13
.
In operation, as shown in
FIGS. 5-12
, and initially in
FIG. 5
, when the reflective member
23
of the reference wheel
20
is not aligned with the light emitting device
41
of the detecting device
40
, the reference wheel
20
will not reflect the light, such that the light receiving device
43
of the detecting device
40
will not receive any signal, and may have an “off” signal as shown in step
1
of the receiving part “R” which represents the signals received by the light receiving device
43
of the detecting device
40
.
As shown in
FIG. 6
, when the reflective member
23
of the reference wheel
20
is aligned with the light emitting device
41
of the detecting device
40
, the reflective member
23
may reflect the light, such that the light receiving device
43
of the detecting device
40
will receive a signal, such as a pulse or an “on” signal, as shown in step
2
of the receiving part “R”.
At this moment, when the processor device
74
receives one “off” signal and one “on” signal from the light receiving device
43
, the processor device
74
may then determine and locate the position of the reference wheel
20
. For example, the position or the location of the reflective member
23
of the reference wheel
20
relative to the clock face
71
or relative to the housing
10
may be predetermined and located or stored in such as the memory device
77
.
Once the position or the location of the reflective member
23
of the reference wheel
20
relative to the clock face
71
or relative to the housing
10
has been determined or located, the processor device
74
may actuate the driving device or the step motor
21
to rotate the reference wheel
20
one or more steps forward, and to align the orifice
24
of the reference wheel
20
with the light generated by the light emitting device
41
.
In addition, the orifice
24
of the reference wheel
20
may be maintained at the position aligning with the light emitting device
41
, by the driving device or the step motor
21
and by the processor device
74
, for allowing the light to emit through the orifice
24
of the reference wheel
20
continuously for a period of time (FIGS.
7
-
12
).
The light emitting device
41
of the detecting device
40
may be energized or started to emit the light in order to determine the relative or positive positions between or of the reference wheel
20
and the target wheel
30
and the hands
72
,
73
at any time by the processor device
74
, such that there may have one or more “off” signals to be received before receiving the reflected or “on” signal. However, for illustrating purposes, only one “off” signal has been illustrated or shown in
FIGS. 5 and 6
to determine the position of the orifice
24
of the reference wheel
20
.
The orifice
24
of the reference wheel
20
may be separated from the reflective member
23
of the reference wheel
20
for one or more steps away from each other, such that the reference wheel
20
may be rotated or driven quickly by the step motor
21
, for one or more steps to align the orifice
24
of the reference wheel
20
with the light emitting device
41
.
The reflective member
23
of the reference wheel
20
and/or the one or more “off” signals and the “on” signal from the reference wheel
20
may thus be used as a device or means for determining the location of the orifice
24
of the reference wheel
20
, and for aligning the orifice
24
of the reference wheel
20
with the light emitting device
41
of the detecting device
40
.
As shown in
FIGS. 7-10
, after the light has been determined or located to be emitted through the orifice
24
of the reference wheel
20
continuously, the target wheel
30
is then rotated relative to the reference wheel
20
for allowing the code sequence and/or the reflective members
33
of the target wheel
30
to be aligned with the orifice
24
of the reference wheel
20
, in order to reflect the light to the light receiving device
43
(FIGS.
7
-
12
).
As shown in
FIGS. 7-12
, and in steps
3
-
8
of
FIG. 13
, the six consecutive digits of the code sequence “001010” may be obtained when the target wheel
30
is rotated relative to the reference wheel
20
. The target wheel
30
may now be determined that the position of “3” o'clock; or “15” minute or second is aligned with the orifice
24
of the reference wheel
20
which may be aligned or corresponding to the position of “0” or “12” o'clock; or “0” or “60” minute or second.
The “on” and the “off” signals from the six consecutive digits of the code sequence of the target wheel
30
and/or from the reflective member
33
of the target wheel
30
may thus be provided for precisely determining the relative or positive positions between or of the reference wheel
20
and the target wheel
30
and the hands
72
,
73
relative to the clock face
71
.
After the positions of the reference wheel
20
and the target wheel
30
and/or the hands
72
,
73
have been determined, the processor device
74
may then actuate the step motors
21
,
31
to quickly rotate the wheels
20
,
30
and the hands
73
,
72
to the time memorized or stored in the memory device
77
. The timepiece may thus be easily and quickly corrected.
The timepiece includes a greatly simplified configuration having only one detecting device
40
, and the reference wheel
20
include only one reflective member
23
and an orifice
24
spaced from each other, and the target wheel
30
includes a number of reflective members
33
, for allowing the timepiece to be easily and quickly corrected to the correct or standard time.
The reflective member
23
and the orifice
24
of the reference wheel
20
are spaced from each other, such that the light receiving device
43
may receive one or more “off” signals before or after receiving the one or more “on” signals generated by the reflected light from the reflective member
23
of the reference wheel
20
.
Accordingly, the one or more “on” signals generated by the reflected light from the reflective member
23
of the reference wheel
20
, and the one or more “off” signals before or after the “on” signals from the reflective member
23
of the reference wheel
20
may be used as an initializing or starting code, to determine the location of the reflective member
23
of the reference wheel
20
, and to quickly locate or position or align the orifice
24
of the reference wheel
20
with the detecting device
40
.
Similarly or alternatively, the code sequence may be arranged in two (2) digit binary codes, including 01, 10, 11, 00 which have eight (8) digits and which may be equally spaced from each other for 45°. The code sequence may also be arranged in four (4) digit binary codes, including sixty four (64) digits which may be equally spaced from each other for 5.625°.
Accordingly, the timepiece in accordance with the present invention includes a simplified device or configuration for detecting and correcting the relative positions of rotary members and hands of the timepiece, and includes an initializing or starting code for positively determining the aperture of the first rotary member, and includes a binary code sequence for easily and readily detecting and correcting the relative positions of rotary members and hands of the timepiece.
Although this invention has been described with a certain degree of particularity, it is to be understood that the present disclosure has been made by way of example only and that numerous changes in the detailed construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed.
Claims
- 1. A timepiece comprising:a light emitting device for generating a light, a reference wheel including at least one orifice formed therein for receiving the light generated by said light emitting device, means for aligning said at least one orifice of said reference wheel with said light emitting device, a target wheel including a binary code sequence having a plurality of digits provided thereon each representing an “on” or “1” signal digit or an “off” or “0” signal digit, a plurality of reflective members arranged on said target wheel and disposed on positions corresponding to said “on” or “1” signal digits of said binary code sequence of said target wheel, for reflecting the light generated by said light emitting device, means for driving said reference wheel and said target wheel separately, and a light receiving device for receiving the light reflected from said reflective members to determine said “on” or “1” signal digits of said binary code sequence of said target wheel.
- 2. The timepiece according to claim 1, wherein said digits of said binary code sequence are arranged in a circle on said target wheel.
- 3. The timepiece according to claim 1, wherein said binary code sequence of said target wheel includes twenty four digits equally spaced from each other.
- 4. The timepiece according to claim 1, wherein said aligning means includes at least one second reflective member provided on said reference wheel for reflecting the light generated by said light emitting device and to determine location of said at least one orifice of said reference wheel.
- 5. The timepiece according to claim 1 further comprising processor means for actuating said driving means to rotate said reference wheel and to align said at least one orifice of said reference wheel with said light emitting device and to allow the light generated by said light emitting device to emit through said at least one orifice of said reference wheel.
- 6. The timepiece according to claim 5 further comprising memorizing means for storing a time signal, said processor means being provided for actuating said driving means to rotate said reference wheel and said target wheel and to the time signal stored in said memorizing means.
- 7. The timepiece according to claim 6 further comprising means for receiving the time signal and sending the time signal to said memorizing means.
Priority Claims (1)
Number |
Date |
Country |
Kind |
91117613 A |
Aug 2002 |
TW |
|
US Referenced Citations (12)