The present invention relates to a position estimation apparatus, and more particularly, a position estimation apparatus for estimating a current position in order to navigate a pedestrian.
Recently, navigation apparatuses for a pedestrian has been on the market. In many cases, such a navigation apparatus uses a receiver of GPS (Global Positioning System) and, based on information obtained from a plurality of artificial satellites, periodically identifies a current position of a pedestrian (so-called “radio navigation”). In order to navigate the pedestrian, the navigation apparatus typically superimposes a mark indicating the identified current position on a map image showing a vicinity of the current position, and displays a thus obtained image on a display thereof.
However, a user may move in a place such as underground or indoors where radio waves from an artificial satellite do not reach. In such a case, a conventional navigation apparatus has a problem that a current position of a pedestrian cannot be identified by using radio navigation.
Therefore, an object of the present invention is to provide a position estimation apparatus operable to autonomously estimate a current position of a user without depending on radio waves from an artificial satellite.
To achieve the above object, a first aspect of the present invention is directed to a position estimation apparatus comprising: a receiver for receiving information sent from an artificial satellite and deriving a current position based on the received information; a right-side pressure sensor for detecting a pressure applied from a right foot of a user to a ground; a left-side pressure sensor for detecting a pressure applied from a left foot of the user to the ground; and an information acquisition/storage section for acquiring a piece of predetermined information when the receiver is able to track the artificial satellite. Here, the information acquisition/storage section acquires the current position obtained from the receiver and an output value from each of the pressure sensors, derives a travel speed and a travel direction of the user based on the current position obtained from the receiver, and then stores at least the derived travel speed and travel direction and the obtained output value. The position estimation apparatus further comprises a locator for acquiring an output value from each of the sensors when the receiver is unable to track the artificial satellite. Here, the locator retrieves the travel speed and the travel direction of the user from the information acquisition/storage section based on the output value acquired from each of the sensors and the output value stored in the information acquisition/storage section, and further estimates a current position of the user based on the retrieved travel speed and travel direction.
Preferably, the locator selects, from among output values stored in the information acquisition/storage section, an output value correlating with that acquired from each of the sensors, and then retrieves, together with the selected output value, the travel speed and travel direction stored in the information acquisition/storage section.
Preferably, the locator selects, from among temporal waveforms for output values stored in the information acquisition/storage section, a temporal waveform correlating with that for the output value acquired from each of the sensors.
Typically, the locator respectively integrates the retrieved travel speed and travel direction so as to estimate the current position of the user.
Preferably, the sensors are respectively provided to outsoles of a pair of shoes. Also, each of the sensors typically includes a piezo element.
Further, a second aspect of the present invention is directed to a position estimation method comprising: a position measurement step of receiving information sent from an artificial satellite and deriving a current position based on the received information; a detection step of detecting a pressure applied from a foot of a user to a ground; a first acquisition step of acquiring the current position obtained in the position measurement step and a value of the pressure detected in the detection step when tracking the artificial satellite is possible; a storage step of deriving a travel speed and a travel direction of the user based on the current position obtained in the position measurement step, and then storing at least the derived travel speed and travel direction and the value of the pressure obtained in the first acquisition step; a second acquisition step of acquiring the value of the pressure obtained in the detection step when tracking the artificial satellite is impossible; a third acquisition step of retrieving the travel speed and travel direction, of the user, stored in the storage step, based on the value of the pressure acquired in the second acquisition step and the value of the pressure stored in the storage step; and a position estimation step of estimating the current position of the user based on the travel speed and the travel direction obtained in the third acquisition step.
According to the first and the second aspects, when an artificial satellite can be tracked, a current position is obtained using radio navigation, and also, a value of a pressure applied from each foot of the user to the ground is obtained. With reference to such information, a current position of the user is estimated based on the value of the pressure obtained when an artificial satellite cannot be tracked. Accordingly, it is possible to provide a position estimation apparatus operable to autonomously estimate a current position of the user without depending on radio waves from an artificial satellite.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The receiver 1 derives a current position of the user by using radio navigation. Such a receiver 1 tracks a plurality of GPS satellites and derives the current position of the user by using information sent from each of the tracked GPS satellites, for example. Further, a GPS receiver such as the above can obtain a current time from the information sent from each of the GPS satellites.
Each of the sensors 2R and 2L typically includes a piezo element and outputs a voltage value correlating with a pressure applied thereto. The sensor 2R has a shape of a narrow bar having a predetermined length as exemplarily shown in
Similarly, during the straight-walking time, the waveform VL1 shows a first peak PL11 and a second peak PL12 respectively projecting toward the positive and negative sides from the base level with respect to each substantially constant time interval, as shown in
In the above waveforms VR1 and VL1, the first peaks PR11 and PL11 each indicates one step of the user. Accordingly, the total number of the first peaks PR11 and PL11 in a given time period indicates the number of steps of the user in the given time period. Also, by dividing a distance for which the user moved in the given time period by the number of steps, it is possible to approximately calculate a distance of a stride of the user.
As clearly shown in FIGS. 3 to 6, temporal waveforms for voltages outputted from both of the sensors 2R and 2L have shapes characteristic to each user.
The information acquisition/storage section 3 periodically receives and stores a current position derived in the receiver 1 while the receiver 1 can track the GPS satellite. If the receiver 1 can output a current time, the information acquisition/storage section 3 receives and stores the current time together with the current position. If the receiver 1 cannot output a current time, the information acquisition/storage section 3 acquires a current time from a timer not shown and stores the current time together with the current position obtained from the receiver 1.
Further, with respect to each predetermined time interval, the information acquisition/storage section 3 derives and stores a travel speed and a travel direction (orientation) for a user by using a position and a time previously stored and a position and a time currently stored.
Further, the information acquisition/storage section 3 periodically receives values outputted from both of the sensors 2R and 2L with a predetermined timing, regardless whether or not the receiver 1 can track a GPS satellite. Then, the information acquisition/storage section 3 stores the values outputted from both of the sensors 2R and 2L and the substantially simultaneously obtained travel speed and travel direction (orientation).
However, even in a second time period during which the receiver 1 cannot track a GPS satellite, the locator 4 can periodically obtain values outputted from both of the sensors 2R and 2L as described above. The locator 4 correlates between the output values having predetermined values which are recently obtained from both of the sensors 2R and 2L and the output values which are previously obtained from both of the sensors 2R and 2L and are stored in the information acquisition/storage section 3, whereby it becomes possible to estimate a travel speed and a travel direction of the user. For example, if, in the second time period, the locator 4 obtains from both of the sensors 2R and 2L output values for waveforms correlating with (similar to) the waveforms VR1 and VL1 shown in
In order to precisely measure a position, when the receiver 1 can track a GPS satellite, the locator 4 identifies a current position of the user by using an output from the receiver 1 (so-called “radio navigation”). In such a case, the locator 4 may correct the identified current position using well-known art. Here, the well-known art are: map matching; using an output from an autonomous navigation sensor; and using radio waves from a DGPS (Differential-GPS).
Next, with reference to the flowchart of
If it is determined as “NO” in step S1, the locator 4 repeats step S1 so as to await the passage of t second(s) Conversely, if it is determined as “YES” in step S1, the locator 4 determines whether or not the receiver 1 can track a GPS satellite (step S2).
If it is determined as “YES”, the locator 4 performs a position measurement using the aforementioned radio navigation (step S3).
Also, the information acquisition/storage section 3 receives and stores the current position outputted from the receiver 1 for a position estimation described later (step S4) Note that, if, in step 3, the receiver 1 can output a current time, the information acquisition/storage section 3 receives and stores the current time together with the current position. If the receiver 1 cannot output a current time, the information acquisition/storage section 3 acquires the current time from a timer not shown, and stores the current time together with the current position obtained from the receiver 1.
Further, by using a position and a time previously stored and the current position and the current time currently obtained, the information acquisition/storage section 3 derives a travel speed and a travel direction (orientation) of the user and stores them (step S5).
Further, in order to estimate a position in the future, the information acquisition/storage section 3 acquires values outputted from both of the sensors 2R and 2L, and stores, together with the travel speed and the travel direction (orientation) obtained in step S5, the values outputted from both of the sensors 2R and 2L (step S6). Subsequent to the above step S6, step S1 is performed again. With the aforementioned steps S1 to S6, information (see
If it is determined as “NO” in step S2, the locator 4 acquires and stores values outputted from both of the sensors 2R and 2L (step S7).
Thereafter, the locator 4 selects, from among information stored in the information acquisition/storage section 3, output values having predetermined values which are recently obtained from both of the sensors 2R and 2L, namely, waveforms having shapes similar to temporal waveforms for the output values having predetermined values obtained in step S7. In other words, the locator 4 correlates between the recent output values and the previous output values (step S8).
Thereafter, the locator 4 acquires from the information acquisition/storage section 3 the travel speed and the travel direction of the user, that are stored in combination with the previous output values which form temporal waveforms similar to those for the recent output values (step S9).
Thereafter, the locator 4 integrates the travel speed and the travel direction so as to estimate a current position of the user (step S10). Note that a position estimated as such is relative to a position where it becomes impossible for the receiver 1 to track a GPS satellite. Subsequent to the above step S10, step S1 is performed again.
With the above-described processes, there may be a case where the user must pass, in between a place of departure and a destination, through a section S1 in which the receiver 1 cannot track an artificial satellite, as shown in
As described above, the position estimation apparatus according to the present embodiment collects values outputted from the sensors 2R and 2L during a time period in which a GPS satellite can be tracked, and stores the values, outputted from the sensors 2R and 2L, correlating with a travel speed and a travel direction for a user. Even when it becomes impossible to track a GPS satellite, the position estimation apparatus collects values outputted from the sensors 2R and 2L. Thereafter, the position estimation apparatus searches the information acquisition/storage section 3 for previous output values correlating with temporal waveforms formed with the recent output values. Then, the position estimation apparatus integrates the travel speed and the travel direction which are in combination with the searched output values that are obtained from the sensors 2R and 2L and previously stored, so as to estimate a current position of the user. As clearly described in the above, according to the present position estimation apparatus, a current position of a user can be autonomously estimated without depending on radio waves from a GPS satellite.
Note that a position in the height direction can be estimated by including an acceleration sensor in the position estimation apparatus. Also, in a case where a highly precise map is retained, it is possible that the position estimation apparatus performs well-known map matching so as to enhance precision of a current position of a user autonomously estimated.
Also, it is preferable that, since a large number of pieces of information are stored in the information acquisition/storage section 3 in chronological order, those pieces of information be periodically subjected to a statistical process and a representative temporal waveform for an output value from each of the sensors 2R and 2L be thereby generated with respect to each state of travel of the user.
Also, since the number of steps or the running pace can be detected by using a temporal waveform for a value outputted from each of the sensors 2R and 2L, a position may be estimated based thereon.
While the invention has been described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is understood that numerous other modifications and variations can be devised without departing from the scope of the invention.
A position estimation apparatus according to the present invention can be mounted to a navigation apparatus, a mobile telephone, a personal computer, or the like operable to navigate a pedestrian.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/07301 | 5/21/2004 | WO | 10/13/2006 |