The invention relates to a position measuring device for determining the absolute position in accordance with claim 1, as well as a method for absolute position measuring in accordance with claim 9.
Absolute position measuring devices are increasingly employed in many fields, wherein the absolute position information is derived from a code track with code elements arranged one behind the other in the measuring direction. In this case the code elements are provided in a pseudo-random distribution, so that a defined number of sequential code elements constitutes a bit pattern. In the course of displacing the scanning device with respect to the code track by a single code element, a new bit pattern is already formed, and a sequence of different bit patterns is available over the entire measuring range to be absolutely detected.
Such a sequential code is called a chain code or a pseudo-random code.
It is stated in the publication “Absolute Position Measurement Using Optical Detection of Coded Patterns” by J. T. M. Stevenson and J. R. Jordan in Journal of Physics E/Scientific Instruments 21 (1988), No. 12, pp. 1140 to 1145, that each code element consists of a predetermined sequence of two partial areas with optical properties which are complementary to each other.
Reference is made in the publication to GB 2 126 444 A. For generating the binary information in connection with such a Manchester coding, it is proposed there to compare the analog scanning signals of the code areas with a predetermined trigger threshold and to generate a binary information 0 or 1 as a function thereof.
This comparison with a fixedly predetermined trigger threshold has the disadvantage that fluctuations in the analog scanning signals can lead to an erroneous generation of the binary information.
Thus, the object of the invention is based on creating an absolute position measuring device of high dependability or operational reliability, by means of which the generation of the absolute position as error-free as possible is therefore possible.
This object is attained by means of the characteristics of claim 1.
A further object of the invention is based on disclosing a method for determining an absolute position, by means of which a generation of the binary information, and therefore of the absolute position, as free as possible of errors is made possible.
This object is attained by means of the characteristics of claim 9.
Advantageous embodiments of the invention are recited in the dependent claims.
The invention will be explained in greater detail by means of the drawings, wherein is shown in:
a, analog scanning signals from the incremental track,
b, control signals from the analog scanning signals in accordance with
a, a first scanning position of the position measuring device,
b, a second scanning position of the position measuring device,
c, a third scanning position of the position measuring device, and
d, a fourth scanning position of the position measuring device.
A position measuring device equipped in accordance with the invention is schematically represented in
The code C consists of a sequence of code elements C1, C2, C3 of equal length, arranged one behind the other in the measuring direction X. In turn, each code element C1, C2, C3 consists of two partial areas A and B of equal length, sequentially arranged in the measuring direction immediately following each other, which are designed complementary to each other. In this case complementary means that they have inverse properties, i.e. in case of an optical scanning principle are transparent or not transparent, or in case of incident light scanning are reflecting or non-reflecting.
The sequential code C is scanned by the scanning device AE, which contains a light source L, whose light illuminates, via a collimator lens K, several code elements C1, C2, C3 following each other. The light is modulated as a function of the position by the code C, so that a position-dependent light distribution is created behind the code C, which is detected by a detector unit D of the scanning device AE.
The detector element D is a line sensor with a sequence of detector elements D1 to D11, which are arranged in the measuring direction X. In each relative position, at least one detector element D1 to D11 is unequivocally assigned to each partial area A, B of the code elements C1, C2, C3, so that in every relative position of the detector unit D with respect to the code C a scanning signal S1A to S3B is obtained from each partial area A, B. These scanning signals S1A to S3B are conducted to an evaluation device AW, which compares each of the two scanning signals S1A, S1B, S2A, S2B, S3A, S3B of the two partial areas C1A, C1B, C2A, C2B, C2A, C2B, C3A, C3B of a code element C1, C2, C3 with each other and, by its comparison creates a digital value, or a bit B1, B2, B3 for each code element C1, C2, C3. A sequence of several digital values B1, B2, B3 results in a codeword CW, which defines the absolute position. In case of a displacement of the detector unit D with respect to the code C by a width or length of a code element C1, C2, C3, a new code word CW is generated, and a multitude of different code words CW is formed over the measuring area to be absolutely measured.
This signal distance is now utilized for generating the binary information B1 in that a check is made which of the two scanning signals S1A, S1B of the code element C1 is greater. This check can be made by forming a quotient or by forming a difference. Difference formation is used in the example, wherein in accordance with
Therefore a first digital value is assigned to the first sequence of the partial areas A, B, which are embodied complementary to each other, and a second digital value is assigned to a second sequence of the partial areas A, B, which are embodied complementary to each other. In the example, the value 0 is assigned to the sequence opaque→transparent, and the value 1 to the sequence transparent→opaque.
Since the two partial areas A and B of each code element C1, C2, C3 are complementary to each other, the signal-to-noise ratio of the scanning signals S is very large. A change in the light intensity of the light source L affects the scanning signals S of both partial areas A and B equally.
With the position measuring device correctly operated, because of the complementary embodiment of each of two partial areas A, B of a code element C1, C2, C3, analog scanning signals S, whose difference exceeds a preselected value, must be generated by scanning these partial areas A, B. A good error check is possible by observing this difference value. The basis of this error check is that it is possible to assume that, when the difference value falls by a predetermined value, the binary information B1, B2, B3 is questionable and therefore an error signal F1 is generated in connection with this binary information B1, B2, B3.
The principle of the generation of the error signal F1 is represented in
The arrangement of the two partial areas A and B of each code element C1, C2, C3 sequentially directly next to each other in the measuring direction X has the advantage that the detector elements D1 to D11 can be arranged next to each other at a small distance in the measuring direction X, so that therefore the position measuring device is insensitive to twisting of the detector unit D with respect to the code C, i.e. to Moiré fluctuations. Moreover, the sensitivity against interference because of dirt is low, since it can be assumed that both partial areas A and B of a code element C1, C2, C3 are equally affected.
In connection with the example of the detector elements D1 and D2 it is easy to see in
A preferred method for this is described by means of FIGS. 4 to 6. In accordance with
The length of each code element C1, C2, C3 is interpolated by the incremental measurement. A differentiation between the right and the left partial area of a code element C1, C2, C3 is now possible in a simple manner by means of the interpolation value. A quadruple interpolation, i.e. a one-time triggering of the analog scanning signals SR1, SR2 is sufficient for differentiating the partial areas A and B. The bit combination from the digital signals E1, E2 obtained from this defines the sequence of the partial areas A, B unequivocally, and it is used as the control signal for determining the detector element D1 to D11 from which a correct code word CW can be created. Thus, the digital signals E1, E2 define which scanning signals S must be compared with each other, and from which scanning signals S it is possible to obtain digital values B1, B2, B3 for the code word CW.
Four different positions P1, P2, P3, P4 of the code C with respect to the detector unit D are represented in
The position P1 is represented in
The correct detector elements for forming further bits of the code word CW are determined in the same way. If, for example, the detector elements D1 and D3 were selected for forming the bit B1, the detector elements D5 and D7 are used for forming the bit B2, and the detector elements D9 and D11 for forming the bit B3, as represented in
A further possibility for determining the correct detector elements D1 to D11, or the correct analog scanning signals S, consists in that all detector elements D1 to D11, which are spaced apart from each other at the distance of the length of a partial area A, B, are compared with each other. At the distance of a code element C1, C2, C3 there are the detector pairs D1, D3 and D5, D7—in accordance with the example of the momentary position P4 represented in
The two partial areas A, B of each code word C1, C2, C3 can be embodied to be optically scannable, wherein then one partial area A is embodied transparent or reflecting the scanning light, and the other partial area B opaque or non-reflecting. However, the invention is not limited to the optical scanning principle.
The absolute position measuring device can be employed for measuring linear or rotary movements, wherein the code C is applied to one of the movable objects, and the scanning device AE to the other of the movable objects. In this case the code C can be applied directly to the object to be measured, or on a scale which in turn is coupled with the object to be measured.
Here, the objects to be measured can be the table and the carriage of a machine tool, of a coordinate-measuring machine, or the rotor and the stator of an electric motor.
Number | Date | Country | Kind |
---|---|---|---|
102 01 496.5 | Jan 2002 | DE | national |
102 44 235.5 | Sep 2002 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP02/13547 | 11/30/2002 | WO |