This invention relates to sensing the position of a surface or a datum, and more particularly to position sensors that determine the position and/or motion of a point of contact in relation to the position sensor by detecting the intensity of magnetic flux impinging on a sensing element within the position sensor.
In many mechanical devices, it is desirable or necessary to detect the position or movement of a movable member of the device in relation to another part of the mechanical device. It is also desirable in some cases to provide an output electrical signal that is indicative of the current position or movement of the movable member.
One example of such a mechanical device is a brake booster for a vehicle, in which it is desirable to know the position of a movable diaphragm support located inside of the booster, in relation to a housing of the booster that completely encloses the diaphragm support and makes it impossible to view the diaphragm support external to the booster. It may be desirable to know the position of the diaphragm support in a booster to discern driver intent in a controlled brake system, or for providing a remote indication of a problem with the controlled brake system.
One type of position sensor used for such purposes includes a magnetic flux sensing device, such as a Hall-effect sensor, to generate an electrical signal indicative of the intensity of a magnetic flux impinging on the sensing device. The sensing element is typically attached to a housing of the position sensor, along with a source of magnetic flux in the form of a permanent magnet, or an electromagnet. A movable element inside the position sensor has a connection adapted to bear against or be attached to a point of contact on a surface of a part whose position is to be detected. As the movable element moves with the point of contact, the position of the movable element in relation to the sensing element and the source of magnetic flux causes the magnetic flux impinging on the sensing element to vary as a function of the position of the movable element, in a manner that allows the sensing element to generate an electrical signal indicative of the position of the point of contact in relation to the housing of the sensor.
While such position sensors are widely used, there are several areas in which an improved sensor design is desirable. It is sometimes difficult to achieve a true linear relationship between the position of the point of contact and electrical signal generated by the sensing element. Some prior position sensors addressed this problem by incorporating multiple sensing elements into the position sensor itself, or by using complex signal processing circuitry for converting a non-linear signal from the sensing elements into a signal having a linear relationship to the position of the point of contact.
This has been particularly true in position sensors that are required to provide position detection over a wide range of movement, spanning a range of 0.5 to 2.0 inches or more of travel. The use of such additional sensing elements and signal processing circuitry is undesirable because the physical size and cost of the position sensor is significantly increased, and because the additional sensing elements and circuitry create more potential points of failure, thereby reducing the ruggedness and reliability of the sensor.
What is needed, therefore, is an improved position sensor, and a method of sensing position, that provide a solution to one or more of the problems described above.
Our invention provides an improved position sensor and method for sensing the position of a point of contact through use of a sensor having a movable element, disposed between a sensing element and a source of magnetic flux, and having an aperture therein for allowing a portion of the magnetic flux from the source of magnetic flux to pass through the aperture and impinge on the sensing element. The aperture may have various shapes to provide a desired linear or non-linear relationship between the position of the movable element and the intensity of the flux that passes through the aperture and impinges on the sensing element for a given position of the movable element.
In one form of our invention, a position sensor includes a housing defining an axis of motion. A movable element, a sensing element and a magnet are attached to the housing. The movable element is formed of a ferromagnetic material, and is mounted in the housing for movement along the axis of motion. The movable element includes an aperture extending through the movable element in a direction transverse to the axis of motion, and has a connection thereof adapted for receiving a positional input from a point of contact. The sensing element is fixedly attached to the housing adjacent one side of the movable element for sensing magnetic flux passing through the aperture, and the magnet is fixedly attached to the housing adjacent an opposite side of the movable element.
The movable element may have a width transverse to the axis of motion that varies in a linear or non-linear manner along the axis of motion, with respect to motion of the point of contact, to produce a corresponding desired change in intensity of magnetic flux impinging on the sensing element. The sensing element may be a single Hall-effect sensor, generating an electrical output signal indicative of the intensity of magnetic flux impinging on the sensing element. The magnet may also have a shape that enhances performance of the sensor in a manner that obviates the need for additional sensing elements and signal processing circuitry.
Our invention may also take the form of a method for sensing the position of a point of contact by directing magnetic flux from a source of magnetic flux through an aperture in a movable element of ferromagnetic material operatively attached to the point of contact for movement therewith and onto a sensing element for determining an intensity of a magnetic flux impinging on the sensing element. The method may also include generating an output signal indicative of the intensity of the magnetic flux impinging on the sensing element.
The foregoing and other features and advantages of our invention will become further apparent from the following detailed description of exemplary embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof.
a and 4b show alternate configurations of the shape of an aperture in a movable element of a position sensor, according to our invention.
It should be noted that the terms “translating wall” and “fixed wall” are used herein for illustrative purposes in explaining our invention. Our sensor may be used for sensing relative movement or position of one body to another, i.e. not just walls. Also, in other embodiments contemplated within the scope of the appended claims, the sensor may be attached to a movable body, rather than a fixed body as is the case in the exemplary embodiment disclosed herein, with the point of contact being on either a movable or a fixed body.
The movable element is configured as a vane 16 of ferromagnetic material mounted in the housing 12 for sliding movement along the axis of motion 14. The vane 16 includes an aperture 22 extending through the vane 16 in a direction transverse to the axis of motion 14. A connection, in the form of pin 24, extends from a first axial end 26 of the vane 16 and out of the housing 12 for receiving a positional input from a point of contact 28 with a surface 30 of a translating wall 11 external to the sensor 10.
The sensing element 18 is fixedly attached to the housing 12 adjacent one side of the vane 16 for sensing magnetic flux passing through the aperture 22. In the exemplary embodiments shown, the sensing element is preferably a Hall-effect sensor 18, configured to measure flux impinging on the sensing element 18 in a direction generally normal to the axis of motion 14. The Hall-effect sensor 18 produces an electrical output signal indicative of the intensity of the magnetic flux impinging on the sensing element 18, and delivers the output signal to an external circuit through an electrical connector 19 attached to the outside of the housing 12.
A helical compression spring 32 is operatively attached between an end cap 34 of the housing 12 and the vane 16, for urging the vane 16 to return to an initial position along the axis of motion 14, at a left end of the housing 12 as depicted in
The magnet 20 is fixedly attached to the housing 12 adjacent an opposite side of the vane 16. In the exemplary embodiment shown in
As shown in
The aperture 22 in the vane 16 has a width ‘w’ transverse to the axis of motion 14 that varies along the axis of motion 14. The width ‘w’ can vary in either a linear or a non-linear manner along the axis of motion 14, to allow the intensity of the magnetic flux passing through the aperture from the magnet 20 to the sensing element 18 to vary in relation to the position ‘d’ in a manner that produces a desired relationship between the position ‘d’ and the output electrical signal produced by the sensing element 18.
In the exemplary embodiments shown in
In other embodiments, contemplated within the scope of our invention, the sides of the aperture 22 may be curved in another manner, or may be stepped, as shown in
While the embodiments of our invention disclosed herein are presently considered to be preferred, various changes and modifications can be made without departing from the spirit and scope of the invention. For example, other types of magnetic sensing elements may be used, and the magnet may be an electromagnet rather than a permanent magnet.
It is also contemplated that the movable element of a sensor according our invention may be configured as a disk with an aperture extending along a circumferentially axis of the aperture that turns about a rotational axis to provide a sensor that measures rotational or angular movement. The movable element may also be cylindrical in shape, and capable of both rotational and longitudinal movement. The aperture may also taper in the opposite direction from what is shown in
The connection of the movable element to the point of contact may be made at any point on the movable element, for example on a side or top surface of the movable element, rather than at one axial end as shown in the exemplary embodiment shown in
Those having skill in the art will also appreciate that a single position sensor 10, as described herein may be used in a variety of applications having different length of travel requirements by substituting a vane 16 having a shorter or longer aperture 22. The pin 24 may be attached to the point of contact 28, and the spring 32 may be oriented to urge the vane to move in the opposite direction along the axis of motion back to an initial position that is fully compressed, rather than fully extended as shown in
The scope of the invention is indicated in the appended claims, and all changes or modifications within the meaning and range of equivalents are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
4107604 | Bernier | Aug 1978 | A |
4268814 | Henrion et al. | May 1981 | A |
4471304 | Wolf | Sep 1984 | A |
5115186 | Reinartz et al. | May 1992 | A |
5264896 | Lee et al. | Nov 1993 | A |
5321355 | Luetzow | Jun 1994 | A |
5373740 | Yoshida et al. | Dec 1994 | A |
5670876 | Dilger et al. | Sep 1997 | A |
5955881 | White et al. | Sep 1999 | A |
6057682 | McCurley et al. | May 2000 | A |
6175233 | McCurley et al. | Jan 2001 | B1 |
6215299 | Reynolds et al. | Apr 2001 | B1 |
6310472 | Chass | Oct 2001 | B1 |
6400145 | Chamings et al. | Jun 2002 | B1 |
6424896 | Lin et al. | Jul 2002 | B1 |
6426619 | Pfaffenberger et al. | Jul 2002 | B1 |
6457545 | Michaud et al. | Oct 2002 | B1 |
6576890 | Lin et al. | Jun 2003 | B2 |
6577123 | Schroeder et al. | Jun 2003 | B2 |
6590385 | Valles | Jul 2003 | B2 |
6690158 | Saito et al. | Feb 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040155647 A1 | Aug 2004 | US |