1. Field of the Invention
The present invention pertains to the field of position sensing devices, particularly to rotational position sensing devices for measuring the rotation of a shaft and arm assembly typically used for doors of transit vehicles such as buses and trains.
2. Description of Related Art
Rotational position sensing devices for measuring the rotation of a shaft and arm assembly used for transit vehicle doors are known in the art. Such devices are used in situations where it is desirable to properly determine the position (i.e., open, closed, partially open, or a particular angle) of a vehicle door operating with a shaft and arm assembly.
Transit vehicle doors supporting a shaft and arm assembly may include, but are not limited to, slide-glide doors, plug doors, swing doors and bi-fold doors as are known in the art. Further, it may be desirable to fasten position sensing devices to shaft and arm assemblies used in other contexts (i.e., for doors or other devices utilizing a rotatable shaft) to measure or otherwise determine the axial rotation of a shaft relative to a fixed structure.
In many cases, measuring the rotational position of a shaft of a shaft and arm assembly requires a position sensor (i.e., a potentiometer, rotary encoder, or other like device) to be fixed to the shaft and arm assembly of a door. One method of fixing a position sensor to a shaft and arm assembly involves securing the shaft portion of the sensor to the shaft and arm assembly and securing the housing portion of the sensor with a fastener mounted to the structure (i.e., the vehicle, door, wall or other structure). The disadvantage of this method is that any non-height adjustments of the shaft and arm assembly relative to the structure will require readjustment of the position sensor.
Another method known in the art to fix a position sensor to a shaft and arm assembly of a vehicle door requires fixing the position sensor directly to the adjuster shaft of the shaft and arm assembly. However, if such a method is employed with a traditional position sensing device, the position sensor will require readjustment every time the height of the shaft and arm assembly is adjusted.
It is the object of this invention to provide a rotational position sensor device for a transit door shaft and arm assembly that does not require readjustment after the shaft and arm assembly is adjusted or readjusted relative to the door or other structure, including readjustments of height.
According to one aspect of the present invention, there is provided a rotational position sensing device for sensing rotation of an axially adjustable shaft comprising a fixed bracket supporting a post and a position sensor having an upper portion, a rotating portion and a fork. The fork extends from the upper portion and slidably engages the post such that the upper portion is prevented from axially rotating relative to the fixed bracket. The rotating portion is fastened to the shaft and axially rotates relative to the upper portion.
According to another aspect of the present invention, there is provided a rotational position sensing device for sensing rotation of an axially adjustable shaft, comprising a fixed bracket supporting a post and a position sensor comprising an upper fixed portion, a rotating portion and a forked extension. The forked extension protrudes from the upper portion and slidably engages the post such that the upper portion is prevented from axially rotating relative to the fixed bracket. The rotating portion is configured to be fastened to the shaft.
According to a further aspect of the present invention, there is provided a rotational position sensing device for sensing rotation of an axially adjustable shaft, comprising a fixed bracket supporting an extended member and a position sensor comprising a housing portion, an extended portion, and a rotating portion. The extended portion extends laterally from the housing portion and engages the extended member of the fixed bracket such that the position sensor is unable to rotate relative to the fixed bracket. The rotating portion is adapted to be fixed to a top part of a shaft such that the rotating portion axially rotates in correspondence with the shaft and relative to the housing portion.
These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures.
Further features and other objects and advantages will become apparent from the following detailed description made with reference to the drawings in which:
For purposes of the description hereinafter, the terms “end”, “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal” and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention. Hence, specific dimensions and other physical characteristics related to the embodiments disclosed herein are not to be considered as limiting. Further, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary.
The position sensor 9 may be any device capable of sensing, measuring or detecting the axial rotation (angular position) of one of its components or that of another object. Possible but non-limiting examples of capable devices include potentiometers, rotary encoders (shaft encoders) and other electro-mechanical devices that convert the angular position or motion of a shaft to an analog or digital code. It will be appreciated by one skilled in the art that the position sensor 9 is not limited to electro-mechanical devices and may include, for example, optical and inductive sensors and other non-contact or contact angular measurement devices.
Referring now to
In the embodiment shown in
The rotatable axle 13 is engaged by a rotating portion 8 adapted to be received by, or otherwise coupled with, the top of a shaft 10. The rotating portion 8 is fixed or coupled to the shaft 10 such that the rotating portion 8 of the position sensor 9 axially rotates in correspondence with the axial rotation of the shaft 10. Further, the rotating portion 8 is able to be rotated relative to the bracket 7, the main (or housing) portion of the position sensor 9 and the extended portion (forked extension) 2 of the position sensor 9. When assembled, the post 4 supported by or extending from the bracket 7 fits between the prongs of the forked extension 2, or is otherwise engaged by the extended portion 2, slidably engaging the post 4 and preventing the post 4 and the bracket 7 from rotating relative to the forked extension 2 or the position sensor 9. In such a configuration, the axial position of the rotating portion 8 (and the rotatable axle 13 of the position sensor 9, in embodiments where the sensor is a potentiometer or like electro-mechanical device) changes in accordance with the axial position of the shaft 10, while the position sensor 9 (except for the rotatable axle 13 in certain embodiments) remains in a fixed axial position corresponding to that of the bracket 7 and post 4, bearing 3 and lower bracket 11 of the shaft and arm assembly.
In a preferred but non-limiting embodiment of the present invention, the extended portion 2 that extends from the position sensor 9 has a forked end adapted for receiving the post 4. Further non-limiting embodiments of the extended portion 2 may include means for engaging and/or constraining the post 4 such as an aperture, latch, clasp or other like mechanism or design.
Referring now to
In a preferred but non-limiting embodiment of the present invention, bolts 5 fasten the bracket 7 to an object or structure (i.e., the bearing 3 and lower bracket 11) through apertures in the bracket 7 which receive the bolts 5. Once fastened to the shaft 10, the rotating portion 8 rotates in correspondence with the axial rotation of the shaft 10, relative to the position sensor 9, bracket 7, bearing 3, lower bracket 11, and other fixed components.
By being fixed to a shaft and arm assembly, the shaft 10 may be adjusted without requiring readjustment of the position sensing device. If, for example, the height of the shaft 10 is adjusted, the position sensor 9 will remain axially fixed because the forked extension 2 will remain slidably engaged with the post 4 of the fixed bracket 7, at a varying linear position along the post 4.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/057013 | 9/25/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/048998 | 4/4/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3838234 | Peterson | Sep 1974 | A |
4016381 | Rodseth | Apr 1977 | A |
4049934 | Newlon | Sep 1977 | A |
4066857 | Suska | Jan 1978 | A |
4132890 | Garcia | Jan 1979 | A |
4168409 | McNinch | Sep 1979 | A |
4211990 | Gwozdz | Jul 1980 | A |
4284861 | Senften | Aug 1981 | A |
4841283 | Bubliewicz | Jun 1989 | A |
5717380 | Zehrung | Feb 1998 | A |
5942890 | Reicks et al. | Aug 1999 | A |
6261182 | Chino et al. | Jul 2001 | B1 |
6373006 | Toki | Apr 2002 | B1 |
6667449 | Wecke et al. | Dec 2003 | B2 |
7610684 | Steinich | Nov 2009 | B2 |
20040263159 | Herbert et al. | Dec 2004 | A1 |
20070084122 | Watanabe et al. | Apr 2007 | A1 |
20080309118 | Kohlstrand | Dec 2008 | A1 |
20100295542 | Pellegrini | Nov 2010 | A1 |
20110144867 | Tezak et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
10109141 | Sep 2001 | DE |
10024230 | Nov 2001 | DE |
10252205 | Jun 2004 | DE |
0985910 | Mar 2000 | EP |
1293998 | Sep 2010 | EP |
115555 | Jan 1999 | JP |
0985910 | Mar 2000 | JP |
2003177035 | Jun 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20140340071 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61541131 | Sep 2011 | US |