The present invention relates to an apparatus and method for validating a fastener connection by analyzing output signals from a rotation sensor and a torque sensor in accordance with a control program.
All assembly operations that incorporate threaded fasteners as clamping devices require that the amount of applied torque be controlled to some tolerance. A low torque condition may not provide enough friction to keep the fastener in place. Application of too much torque can cause an immediate or eventual failure of the fastener. In either case serious safety issues may exist. The most frequently used tools for torque process verification are the dial torque wrench and the click wrench. The dial torque wrench contains either a mechanically driven rotary dial or a strain gauge electronic circuit with a digital display. Although these systems may be very accurately calibrated, use of these tools is a subjective process. While using a dial torque wrench, the operator must engage the already tightened fastener and apply enough force to resume fastener rotation. The dial on the wrench will indicate the peak torque applied to the fastener during the test and not necessarily the actual torque that was applied by the process tooling. The final result is only as good as the operator's ability to sense rotation and then stop immediately. It is therefore possible to test a fastener that was within specification and cause an over torque condition. A click wrench uses a cam mechanism that reports an audible “Click” as the preset torque set point is exceeded. This test requires the operator to engage a previously tightened fastener and apply torque until the “Click” indicates that the residual torque on the fastener is greater than the set point defined by the process specification. The concern with this type of minimum torque test is that a dangerously high final torque will not be detected.
Therefore, the present invention provides means for sensing fastener rotation during torque verification processes. The present invention can incorporate a solid state, single axis gyro circuit into a torque-testing wrench that can include at least one strain gauge, an instrumentation amplifier and a data collection microprocessor. Programming the “High” and “Low” limits are accomplished by data entry at the control panel on the tool. With a rotation signal available, data collection can be timed with actual movement of the fastener. The collected data can be compared against high and low torque limits two times during each test. The first compare can be executed as the fastener begins rotation. This torque value can be the actual break-away torque required to exceed the force applied by the assembly tooling. The resultant torque can be displayed on the readout panel of the tool. Lamps can indicate status such as a yellow lamp can indicate “Low”, a green lamp can indicate “Good” and a red lamp can indicate “High” torque. The second compare can be executed as the fastener stops rotating. This torque value can be the final test torque. The resultant torque can be displayed on the readout panel of the tool. Lamps can indicate status such as a yellow lamp can indicate “Low”, a green lamp can indicate “Good” and a red lamp can indicate “High” torque. The final test torque can be available to the operator. This can warn of a situation where the actual torque applied by the assembly tooling may have been within tolerance, while the test applied a final torque over the “High” limit.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
Referring to
Referring now to
An apparatus according to the present invention can be used for validating or verification of a fastener connection. The apparatus can include a tool or wrench 42 engagable with a fastener to be tested. The rotation sensor 28 can be operably associated with the tool 42 for sensing rotation of the fastener and for generating a first output signal 46. The torque sensor 56 can be operably associated with the tool 42 for generating a second output signal 58 corresponding to torque being generated by the tool 42 against the fastener. A processor, by way of example and not limitation, such as a microprocessor 24, can be in communication with the rotation sensor 28 to receive the first output signal 46 and in communication with the torque sensor 56 to receive the second output signal 58. The processor 24 can be used for analyzing the first and second output signals 46, 58 in accordance with a control program 62. The control program 62 can monitor a torque reading or signal 58 from the torque sensor 56 until a value occurs greater than a threshold torque value 14 (seen in
An apparatus according to the present invention can validate or verify a fastener connection using a torque wrench in combination with means for detecting motion of a fastener. The motion detecting means can be fully contained and devoid of any external reference hardware. The motion detecting means can be used for detecting at least one parameter selected from a group including movement of the fastener with respect to a reference starting position and a relative position of the fastener with respect to the reference starting position, and for generating a corresponding output signal. The motion detecting means according to the present invention can detect when a fastener initiates rotation. Processor means can be provided for capturing both an initial torque value at a moment of initial fastener rotation, and a final peak torque value when fastener rotation ceases. Additionally, the processor, in conjunction with the motion sensor, may process the data received and display an angle displacement value from selected program parameters including but not limited to either the point of initial fastener break away rotation, or from a threshold low torque value, to the point where fastener rotation ceases or to the point of peak captured torque. The apparatus according to the present invention can include a housing, and a battery enclosed within the housing for powering the motion detecting means. Signal conditioning means can be provided and enclosed within the housing for conditioning the output signal and digitizing collected data. A display can be provided for displaying torque readings and data, as well as torque limit values set by the operator. Storage means can be provided for storing collected data. Communication hardware and software can be provided for communicating through a network to an external device 64. The network can be selected from a group consisting of a wired local area network, a wired wide area network, a wireless local area network, a wireless wide area network, and any combination thereof. The external device can be selected from a group consisting of a personal digital assistant, a computer, a data collection device, a data storage device, and any combination thereof.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
| Number | Date | Country | |
|---|---|---|---|
| 60491088 | Jul 2003 | US |