This disclosure relates to a medical device system and method for therapeutic electrical stimulation of the lingual muscles for treatment of obstructive sleep apnea. More particularly this disclosure is directed to systems and methods for determining a patient's position and utilization of this determination to initiate therapy.
Implantable medical devices capable of delivering electrical stimulation pulses have been proposed or are available for treating a variety of medical conditions, such as cardiac arrhythmias and chronic pain as examples. Obstructive sleep apnea (OSA), which encompasses apnea and hypopnea, is a serious disorder in which breathing is irregularly and repeatedly stopped and started during sleep, resulting in disrupted sleep and reducing blood oxygen levels. OSA is caused by complete or partial collapse of the pharynx during sleep. In particular, muscles in a patient's throat intermittently relax thereby obstructing the upper airway while sleeping. Airflow into the upper airway can be obstructed by the tongue or soft pallet moving to the back of the throat and covering a smaller than normal airway. Loss of air flow also causes unusual inter-thoracic pressure as a person tries to breathe with a blocked airway. Lack of adequate levels of oxygen during sleep can contribute to abnormal heart rhythms, heart attack, heart failure, high blood pressure, stroke, memory problems and increased accidents. Additionally, loss of sleep occurs when a person is awakened during an apneic episode. Implantable medical devices capable of delivering electrical stimulation pulses have been proposed for treating OSA by electrically stimulating muscles around the upper airway that may block the airway during sleep.
One aspect of the disclosure is directed to an implantable neurostimulator (INS) including: an electrical lead having formed thereon at least a pair of bi-polar electrodes, where the electrical lead is configured for placement of the pair of bi-polar electrodes proximate protrusor muscles of a patient; a pulse generator electrically connected to the electrical lead and configured to deliver electrical energy to the pair of bi-polar electrodes, the pulse generator having mounted therein a sensor and a control circuit, where the sensor is configured to generate signals representative of an orientation of the pulse generator and communicate the signals to the control circuit and the control circuit is configured to determine the orientation of the pulse generator and deliver electrical energy to the bi-polar electrodes when the determined orientation correlates to a pre-determined orientation. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods and systems described herein.
Implementations of this aspect of the disclosure may include one or more of the following features. The implantable neurostimulator where the sensor is a three-axis accelerometer. The implantable neurostimulator where the determined orientation is indicative a patient in which the INS is implanted is supine. The implantable neurostimulator further including a memory storing therein a correlation of the signals from the sensor to orientations of the pulse generator. The implantable neurostimulator where the memory stores therein a plurality of stimulation control parameters. The implantable neurostimulator where each stimulation control parameter is associated with an orientation of the pulse generator. The implantable neurostimulator where the sensor is further configured to detect one or more of motion, heartrate, or sound. The implantable neurostimulator where the control circuit delivers electrical energy to the bi-polar electrodes when the determined orientation correlates to a pre-determined orientation and one or more of a detected motion, heartrate, or sound correspond to a determination that the patient is asleep or in need of therapy. The implantable neurostimulator where the sensor and control circuit are configured to detect electromyography signals of the protrusor muscles. The implantable neurostimulator where the control circuit is configured to determine a fatigue of the protrusor muscles based on the detected electromyography signals.
A further aspect of the disclosure is directed to a method including: correlating the postures of a patient to an orientation of an implanted neurostimulator (INS), receiving sensor data indicative of the INS being in an orientation that correlates to a posture in which the patient is likely to experience obstructive sleep apnea, determining whether the patient is in a sleep state or in need of therapy, and delivering electrical energy to a pair of bi-polar electrodes to activate a patient's protrusor muscles. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods and systems described herein.
Implementations of this aspect of the disclosure may include one or more of the following features. The method where the sensor is a three-axis accelerometer. The method where the detected orientation of the INS is indicative of a posture in which the patient is supine. The method further including storing in memory in the INS a correlation of the received sensor data to postures of the patient. The method further including storing in memory a plurality of stimulation control parameters. The method where each stimulation control parameter is associated with an orientation of the INS. The method further including detecting one or more of motion, heartrate, or sound. The method further including determining the patient is in a sleep state or in need of therapy based on the sensor data indicative of the INS orientation and one or more of the detected motion, heartrate, or sound. The method further including detecting electromyography signals of the protrusor muscles. The method further including the control circuit determining fatigue of the protrusor muscles based on the detected electromyography signals. Implementations of the described techniques may include hardware, a method or process, or computer software on a computer-accessible medium, including software, firmware, hardware, or a combination of them Installed on the system that in operation causes or cause the system to perform the actions. One or more computer programs can be configured to perform particular operations or actions by virtue of including Instructions that, when executed by data processing apparatus, cause the apparatus to perform the actions.
A medical device system for delivering electrical stimulation to the lingual muscles of the tongue, specifically the protrusor muscles, for the treatment of OSA is described herein. Electrical stimulation is delivered to cause the tongue of a patient to be in a protruded state, during sleep, to avoid or reduce upper airway collapse and obstruction. As used herein, the term, “protruded state” with regard to the tongue refers to a position that is moved forward and/or downward compared to the non-stimulated position or a relaxed position. Those of skill in the art will recognize that to be in a protruded state does not require the tongue to be coming out of the mouth of the patient, indeed it is preferable that the tongue not extend out of the mouth of the patient, but only be advanced forward to a point where obstruction of the airway is mitigated or eliminated. The protruded state is a state associated with the recruitment of protrusor muscles of the tongue (also sometimes referred to as “protruder” muscles of the tongue) including the genioglossus and geniohyoid muscles. A protruded state is the opposite of a retracted and/or elevated position associated with the recruitment of the retractor muscles, e.g., styloglossus and hyoglossus muscles, which retract and elevate the tongue. Electrical stimulation is delivered to cause the tongue to move to and maintain a protruded state to prevent collapse, open or widen the upper airway of a patient to promote unrestricted or at least reduced restriction of airflow during breathing.
OSA is known to be position dependent in many subjects when sleeping. The supine (face up) position is most commonly associated with anterior/posterior collapse of the airway where the tongue falls back against the posterior aspect of the retro-lingual airway thus closing of the airflow path between the mouth/nose and lungs. Conversely, the prone (face down) position is least associated with OSA with other sleeping positions being more/less common for OSA occurrence dependent on the individual subject.
One aspect of the disclosure is directed to the use of a sensor such as an accelerometer to determine the patient's posture. Once the patient's posture is determined, a control circuit in the INS can initiate electrical stimulation to the patient's lingual muscles to prevent airway collapse when the subject is in sleeping positions known to be prone to having airway collapse.
Subjects who have OSA and are candidates for neurostimulation will typically undergo an assessment of their proneness to airway collapse based on sleeping position during their initial meetings with medical professionals or during a sleep study. Those with a high correlation of OSA to sleeping position will benefit from having their INS programmed to become active when the subject is in the position(s) that have a high correlation. Similarly, the INS may be programmed to become inactive or less active when there is little or low correlation of position to incidence of OSA, thus reducing the potential for fatigue of the protrusor muscles by application of unnecessary therapy. A sensor in the INS will sense position of the patient and respond with a pre-programmed simulation pattern to prevent OSA as defined by the surgical and assessment team, when it is determined the patient is in a position in need of therapy application.
Lead 20 includes a flexible, elongate lead body 22 that extends from a lead proximal end 24 to a lead distal end 26. At least two electrodes 30 are carried along a lead distal portion adjacent lead distal end 26 that are configured for insertion within the protrusor muscles 42a, 42b and 46 of the patient's tongue 40. The electrodes 30 are configured for implantation within soft tissue such as musculature proximate to the medial branches of one or both hypoglossal nerves (HGN) that innervate the protrusor muscles of the tongue. The electrodes may be placed approximately 5 mm (e.g., from 2 mm to 8 mm) from a major trunk of the HGN. As such, the electrodes 30 may be referred to herein as “intramuscular electrodes,” in contrast to an electrode that is placed on or along a nerve trunk or branch, such as a cuff electrode, used to directly stimulate the nerve trunk or branch. Lead 20 may be referred to herein as an “intramuscular lead” since the lead distal end and electrodes 30 are configured for advancement through the soft tissue, which may include the protrusor muscle tissue, to anchor electrodes 30 in proximity of the HGN branches that innervate the protrusor muscles 42a, 42b and 46. The term “intramuscular” with regard to electrodes 30 and lead 20 is not intended to be limiting, however, since the electrodes 30 may be implanted in connective tissue or other soft tissue proximate the medial HGN and its branches. One or more electrodes 30 may be placed in an area of protrusor muscles 42a, 42b and 46 that include motor points, where each nerve axon terminates in the muscle (also called the neuro-muscular junction). The motor points are not at one location but spread out in the protrusor muscles. Leads 20 may be implanted such that one or more electrodes 30 may be generally in the area of the motor points (e.g., such that the motor points are within 1 to 10 mm from one or more electrodes 30).
The protrusor muscles are activated by electrical stimulation pulses generated by pulse generator 12 and delivered via the intramuscular electrodes 30 to move tongue 40 forward, to promote a reduction in obstruction or narrowing of the upper airway 6 during sleep. As used herein, the term “activated” with regard to the electrical stimulation of the protrusor muscles refers to electrical situation that causes depolarization or an action potential of the cells of the nerve (e.g., hypoglossal nerve(s)) innervating the protrusor muscles and motor points and subsequent depolarization and mechanical contraction of the protrusor muscle cells. In some cases, the muscles may be activated directly by the electrical stimulation pulses. The protrusor muscles that may be activated by stimulation via intramuscular electrodes 30 may include at least one or both of the right and/or left genioglossus muscle (GG) 42, which includes the oblique compartment (GGo) 42a and the horizontal compartment (GGh) 42b (referred to collectively as GG 42) and/or the right and/or left geniohyoid muscle (GH) 46. The GG muscle and GH muscle are innervated by a medial branch of the HGN (also referred to as the XIIth cranial nerve), while the hyoglossus and styloglossus muscles, which cause retraction and elevation of the tongue, are innervated by a lateral branch of the HGN.
The multiple distal electrodes 30 may be used to deliver bilateral or unilateral stimulation to the GG 42 and/or the GH 46 muscles via the medial branch of the HGN or branches thereof, also referred to herein as the “medial HGN.” Distal electrodes 30 may be switchably coupled to output circuitry of pulse generator 12 to enable delivery of electrical stimulation pulses in a manner that selectively activates the right and left protrusor muscles in a cyclical or alternating pattern to avoid muscle fatigue while maintaining upper airway patency. Additionally or alternatively, electrical stimulation may be delivered to selectively activate the GG 42 and/or GH 46 muscles or portions thereof during unilateral stimulation of the left or right protrusor muscles.
The lead proximal end 24 includes a connector (not shown in
The functional blocks shown in
Control circuit 80 communicates, e.g., via a data bus, with memory 82, therapy delivery circuit 84, telemetry circuit 88 and sensor 86 (when included) to control OSA therapy delivery and other pulse generator functions. As disclosed herein, control circuit 80 may pass control signals to therapy delivery circuit 84 to cause therapy delivery circuit 84 to deliver electrical stimulation pulses via electrodes 30 according to a therapy protocol that may include selective stimulation patterns of right and left portions of the GG and GH muscles and/or proximal and distal portions of the GG and GH muscles. Control circuit 80 may further be configured to pass therapy control signals to therapy delivery circuit 84 including stimulation pulse amplitude, stimulation pulse width, stimulation pulse number and frequency of a stimulation pulse train.
Memory 82 may store instructions for execution by a processor included in control circuit 80, stimulation control parameters, and other device-related or patient-related data. Control circuit 80 may retrieve therapy delivery control parameters and a therapy delivery protocol from memory 82 to enable control circuit 80 to pass control signals to therapy delivery circuit 84 for controlling the OSA therapy. Memory 82 may store historical data relating to therapy delivery for retrieval by a user via telemetry circuit 88. Therapy delivery data or information stored in memory 82 may include therapy control parameters used to deliver stimulation pulses as well as delivered therapy protocol(s), hours of therapy delivery or the like. When sensor 86 is included, patient related data determined from a sensor signal may be stored in memory 82 for retrieval by a user.
Therapy delivery circuit 84 may include a charging circuit 92, an output circuit 94, and a switching circuit 96. Charging circuit 92 may include one or more holding capacitors that are charged using a multiple of the battery voltage of power source 90, for example. The holding capacitors are switchably connected to output circuit 94, which may include one or more output capacitors that are coupled to a selected bipolar electrode pair via switching circuit 96. The holding capacitor(s) are charged to a programmed pacing pulse voltage amplitude by charging circuit 92 and discharged across the output capacitor for a programmed pulse width. Charging circuit 92 may include capacitor charge pumps or an amplifier for the charge source to enable rapid recharging of holding capacitors included in charging circuit 92. Therapy delivery circuit 84 responds to control signals from control circuit 80 for generating and delivering trains of pulses to produce sustained tetanic contraction of the GG and/or GH muscles or portions thereof to move the tongue forward and avoid upper airway obstruction.
Output circuit 94 may be selectively coupled to bipolar pairs of electrodes 30a-30d via switching circuit 96. Switching circuit 96 may include one or more switches activated by timing signals received from control circuit 80. Electrodes 30a-30d may be selectively coupled to output circuit 94 in a time-varying manner to deliver stimulation to different portions of the protrusor muscles at different time to avoid fatigue, without requiring stimulation to be withheld completely. Switching circuit 96 may include a switch array, switch matrix, multiplexer, or any other type of switching device(s) suitable to selectively couple therapy delivery circuit 84 to bipolar electrode pairs selected from electrodes 30. Bipolar electrode pairs may be selected one at a time or may be selected two or more at time to allow overlapping stimulation of two or more different portions of the protrusor muscles. Overlapping stimulation times of two portions of the protrusor muscles, for example left and right or proximal and distal may maintain a forward position of the tongue and allow a ramping up and ramping down of the electrical stimulation being delivered to two different portions of the protrusor muscles.
Telemetry circuit 88 is optional but may be included to enable bidirectional communication with an external programmer 50. A user, such as the patient 8, may manually adjust therapy control parameter settings, e.g., as described in Medtronic's Patient Programmer Model 37642, incorporated by reference in its entirety. The patient may make limited programming changes such as small changes in stimulation pulse amplitude and pulse width. The patient may turn the therapy on and off or to set timers to turn the therapy on or off using external programmer 50 in wireless telemetric communication with telemetry circuit 88.
In other examples, a user, such as a clinician, may interacts with a user interface of an external programmer 50 to program pulse generator 12 according to a desired OSA therapy protocol. For example, a Physician Programmer Model 8840 available from Medtronic, Inc., Minneapolis, Minn., may be used by the physician to program pulse generator 12 for delivering electrical stimulation.
Programming of pulse generator 12 may refer generally to the generation and transfer of commands, programs, or other information to control the operation of pulse generator 12. For example, external programmer 50 may transmit programs, parameter adjustments, program selections, group selections, or other information to control the operation of pulse generator 12, e.g., by wireless telemetry. As one example, external programmer 50 may transmit parameter adjustments to support therapy changes. As another example, a user may select programs or program groups. A program may be characterized by an electrode combination, electrode polarities, voltage or current amplitude, pulse width, pulse rate, therapy duration, and/or pattern of electrode selection for delivering patterns of alternating portions of the protrusor muscles that are being stimulated. A group may be characterized by multiple programs that are delivered simultaneously or on an interleaved or rotating basis. These programs may adjust output parameters or turn the therapy on or off at different time intervals.
In some cases, external programmer 50 may be characterized as a physician or clinician programmer if it is primarily intended for use by a physician or clinician. In other cases, external programmer 50 may be characterized as a patient programmer if it is primarily intended for use by a patient. A patient programmer 50 is generally accessible to patient 12 and, in many cases, may be a portable device that may accompany the patient throughout the patient's daily routine. In general, a physician or clinician programmer may support selection and generation of programs by a clinician for use by pulse generator 12, whereas a patient programmer may support adjustment and selection of such programs by a patient during ordinary use.
External programmer 50 may present patient related and/or device related data retrieved from memory 82 via telemetry circuit 88. Additionally or alternatively external programmer 50 may present sleep sound or motion data stored in memory 82 as determined from signals from sensor 86. As explained in greater detail below, the time periods in which the patient is lying down can be acquired based on patient posture detection using sensor 86 and a history of such data can be stored into memory 82 and retrieved and displayed by external programmer 50.
Each electrode 30a-30d is shown have equivalent electrode lengths. In other examples, however, electrodes 30a-30d may have electrode lengths that are different from each other in order to optimize placement of the electrodes 30 or the resulting electrical field of stimulation relative to targeted stimulation sites corresponding to left and right portions of the HGN or branches thereof and/or motor points of the GG and GH muscles. The interelectrode spacings between electrodes 30a, 30b, 30c, and 30d are shown to be approximately equal in
In some examples, electrodes 30a and 30b form an anode and cathode pair for delivering bipolar stimulation in one portion of the protrusor muscles, e.g., either the left or right GG and/or GH muscles or either a proximal or distal portion of the GG and/or GH muscles. Electrodes 30c and 30d may form a second anode and cathode pair for delivering bipolar stimulation in a different portion of the protrusor muscles (e.g., the other of the left or right portions or the other of the proximal or distal portions). Accordingly, the interelectrode spacing between the two bipolar pairs 30a-30b and 30c-30d may be different than the interelectrode spacing and between the anode and cathode within each bipolar pair 30a-30b and 30c-30d.
In one example, the total distance encompassed by electrodes 30a-30d along the lead body 22 may be about 20 millimeter, 25 millimeters, or 30 millimeters as examples. In one example, the total distance is between 20 and 22 millimeters. The interelectrode spacings between a proximal electrode pair 30c-30d and a distal electrode pair 30a-30b, respectively, may be between 2 and 6 mm, including all integer values therebetween. The interelectrode spacing separating the distal and proximal pairs 30a-30b and 30c-30d may be the same or different from each other and the spacing between individual electrodes of any such pair.
In the example shown, each of electrodes 30a-30d is shown as a circumferential ring electrode which may be uniform in diameter with lead body 22. In other examples, electrodes 30 may include other types of electrodes such as a tip electrode, a helical electrode, a coil electrode, a segmented electrode, a button electrode as examples. For instance, the distal most electrode 30a may be provided as a tip electrode at the lead distal end 26 with the remaining three electrodes 30b, 30c and 30d being ring electrodes. When electrode 30a is positioned at the distal end 26, electrode 30a may be a helical electrode configured to screw into the muscle tissue at the implant site to additionally serve as a fixation member for anchoring the lead 20 at the targeted therapy delivery site. In other examples, one or more of electrodes 30a-d may be a hook electrode or barbed electrode to provide active fixation of the lead 20 at the therapy delivery site.
Lead 20 may include one or more fixation member 32 for minimizing the likelihood of lead migration. In the example shown, fixation member 32 includes multiple sets of tines which engage the surrounding tissue when lead 20 is positioned at the target therapy delivery site. The tines of fixation member 32 may extend radially and proximally at an angle relative to the longitudinal axis of lead body 22 to prevent or reduce retraction of lead body 22 in the proximal direction. Tines of fixation member 32 may be collapsible against lead body 22 when lead 20 is held within the confines of a lead delivery tool, e.g., a needle or introducer, used to deploy lead 20 at the target implant site. Upon removal of the lead delivery tool, the tines of fixation member 32 may spread to a normally extended position to engage with surrounding tissue and resist proximal and lateral migration of lead body 22. In other examples, fixation member 32 may include one or more hooks, barbs, helices, or other fixation mechanisms extending from one or more longitudinal locations along lead body 22 and/or lead distal end 26. Fixation member 32 may partially or wholly engage the GG, GH muscles and/or other muscles below the tongue, and/or other soft tissues of the neck, e.g., fat and connective tissue, when proximal end of lead body 20 is tunneled to an implant pocket of pulse generator 12. In other examples, fixation member 32 may include one or more fixation mechanisms located at other locations than the location shown in
In some examples, electrical stimulation is delivered by pulse generator 12 by sequentially selecting different electrode pairs from among the available electrodes 30 to sequentially recruit different bilateral anterior and bilateral posterior portions of the HGNs 104L and 104R. This electrode selection may result in recruitment of different anterior and posterior portions of the protrusor muscles. The sequential selection of different electrode pairs may be overlapping or non-overlapping. The electrical stimulation is delivered throughout an extended time period encompassing multiple respiratory cycles independent of the timing of respiratory cycles to maintain a protruded state of tongue 40 from the beginning of the time period to the end of the time period. The electrodes 30 may be selected in bipolar pairs comprising the most distal pair 30a and 30b, the outermost pair 30a and 30d, the innermost pair 30b and 30c, the most proximal pair 30c and 30d or alternating electrodes along lead body 22, e.g., 30a and 30c or 30b and 30d. Sequential selection of two or more different electrode pairs allows for sequential recruitment of different portions of the protrusor muscles to reduce the likelihood of fatigue.
In some examples, electrical stimulation delivered using an electrode pair, e.g., 30a and 30b, that is relatively more distal along distal lead portion 28 and implanted relatively anteriorly along tongue 40 may recruit a greater portion of anterior muscle fibers, e.g., within the GG muscle. Electrical stimulation delivered using an electrode pair, e.g., 30c and 30d, that is relatively more proximal along distal lead portion 28 and implanted relatively posteriorly along tongue 40 may recruit a greater portion of posterior muscle fibers, e.g., within the GH muscle. Sequential selection of electrodes 30 for delivering electrical stimulation pulses allows sequential recruitment in overlapping or non-overlapping patterns of anterior and posterior portions of the protrusor muscles to sustain the tongue in a protruded state throughout the extended time period while reducing or avoiding muscle fatigue.
In the example shown, relatively more localized control of the recruitment of left, right, anterior and posterior portions of the protrusor muscles may be achieve by selecting different electrode pairs from among the electrodes 30a through 30d and 230a through 230d. For example, any combination of electrodes 30a through 30d may be selected for delivering electrical stimulation pulses to the left portions of the protrusor muscles. More distal electrodes 30a and 30b may be selected for stimulation of more anterior portions of the left protrusor muscles (corresponding to electrical field 144) and more proximal electrodes 30c and 30d may be selected for stimulation of more posterior portions of the left protrusor muscles (corresponding to electrical field 142). Any combination of electrodes 230a through 230d may be selected for delivering electrical stimulation pulses to the right portions of the protrusor muscles. More distal electrodes 230a and 230b may be selected for stimulation of more anterior portions of the right protrusor muscles (corresponding to electrical field 154) and more proximal electrodes 230c and 230d may be selected for stimulation of more posterior portions of the right protrusor muscles (corresponding to electrical field 152).
Switching circuit 96 may be configured to select electrode pairs that include one electrode on one of leads 20 or 220 and another electrode on the other lead 20 or 220 to produce an electrical field (not shown) that encompasses portions of both the left target region 106L and the right target region 106R simultaneously for bilateral stimulation. Any combination of the available electrodes 30a through 30d and electrodes 230a through 230d may be selected as two or more bipolar pairs, which are selected in a repeated, sequential pattern to sequentially recruit different portions of the two target regions 106L and 106R. The sequential selection of electrode pairs may be overlapping or non-overlapping, but electrical stimulation pulses are delivered without interruption at one or more selected frequencies throughout an extended time period to maintain tongue 40 in a protruded state from the beginning of the time period to the end of the time period, encompassing multiple respiratory cycles.
In the example of
It is to be understood that more or fewer than the four electrodes shown in the examples presented herein may be included along the distal portion of a lead used in conjunction with the OSA therapy techniques disclosed herein. A lead carrying multiple electrodes for delivering OSA therapy may include 2, 3, 5, 6 or other selected number of electrodes. When the lead includes only two electrodes, a second lead having at least one electrode may be included to provide at least two different bipolar electrode pairs for sequential stimulation of different portions of the right and/or left medial HGNs. Furthermore, while the selected electrode pairs are generally referred to herein as “bipolar pair” including one cathode and one return anode, it is recognized that three or more electrodes may be selected at a time to provide desired electrical field or stimulation vector for recruiting a desired portion of the protrusor muscles. Accordingly the cathode of a bipolar “pair” may include one or more electrodes selected simultaneously from the available electrodes and/or the anode of the bipolar “pair” may include one or more electrodes selected simultaneously from the available electrodes.
A first train of electrical pulses 406 is shown starting at the onset 403 or therapy time period 401. The first train of electrical pulses 406 is delivered using bipolar electrode pair 402 for a duty cycle time interval 404. The first train of electrical pulses 406 has a pulse amplitude 405 and pulse frequency, e.g., 20 to 50 Hz, defined by the interpulse intervals 407. The first train of electrical pulses 406, also referred to as “pulse train” 406, may have a ramp on portion 408 during which the pulse amplitude is gradually increased from a starting voltage amplitude up to pulse voltage amplitude 405. In other examples, the pulse width may be gradually increased. In this way the delivered pulse energy is gradually increased to promote a gentle transition from the relaxed, non-stimulated state to the protruded state of the tongue.
The train of electrical pulses 406 may include a ramp off portion 410 during which the pulse amplitude (and/or pulse width) is decremented from the pulse voltage amplitude 405 to an ending amplitude at the expiration of the duty cycle time interval 404. In other examples, pulse train 406 may include a ramp on portion 408 and no ramp off portion 410. In this case, the last pulse of pulse train 406 delivered at the expiration of duty cycle time interval 404 may be delivered at the full pulse voltage amplitude 405. Upon expiration of the duty cycle time interval 404, electrical stimulation delivery via bipolar electrode pair 402 is terminated.
In the example shown, a second electrode pair 412 is selected when of duty cycle time interval 404 is expiring. The second electrode pair 412 may be selected such that delivery of electrical stimulation pulse train 416 starts a ramp on portion 418 that is simultaneous with the ramp of portion 410 of train 406. In other examples, the ramp on portion 418 of pulse train 416 may start at the expiration of the first duty cycle time interval 404. When pulse train 406 does not include a ramp off portion 410, the pulse train 416 may be started such that the ramp on portion 418 ends just before, just after or coincidentally with the expiration of duty cycle time interval 404. The second pulse train 416 has a duration of duty cycle time interval 414 and may end with an optional ramp off portion 420, which may overlap with the ramp on portion of the next pulse train delivered using the first electrode pair 402.
In this example, pulse trains 406 and 416 are shown to be equivalent in amplitude 405 and 415, pulse width, pulse frequency (and inter pulse interval 407), and duty cycle time interval 404 and 414. It is contemplated, however, that each of the stimulation control parameters used to control delivery of the sequential pulse trains 406 and 416 may be separately controlled and set to different values as needed to achieve a desired sustained protrusion of tongue 40 while avoiding or minimizing fatigue.
The sequential pulse trains 406 and 416 are delivered using two different electrode pairs 402 and 412 such that different portions of the protrusor muscles are recruited by the pulse trains 406 and 416 allowing one portion to rest while the other is being stimulated. However, pulse trains 404 and 406 occur in a sequential overlapping or non-overlapping manner such that electrical pulses are delivered at one or more selected frequencies for the entire duration of the therapy time period 401 to sustain the tongue in a protruded state throughout time period 401. It is to be understood that the relative down and/or forward position of the protruded tongue may shift or change as different electrode pairs are selected but the tongue remains in a protruded state throughout therapy time period 401.
At times, the pulse trains 404 and 406 may be overlapping to simultaneously recruit the left and right GG and/or GH muscles to create a relatively greater force (compared to recruitment of a single side) to pull the tongue forward to open an obstructed upper airway. In some cases, the overlapping pulse trains 404 and 406 may cause temporary fatigue of the protrusor muscles along the left or right side but the temporary fatigue may improve the therapy effectiveness to ensure an open upper airway during an apneic episode. Recovery from fatigue will occur between duty cycles and at the end of an apneic episode. Duty cycle lengths may vary between patients depending on the fatigue properties of the individual patient. Control circuit 80 may control the duty cycle on time in a manner that minimizes or avoids fatigue in a closed loop system using a signal from sensor 86, e.g., a motion sensor signal and or EMG signal correlated protrusor muscle contraction force and subsequent fatigue.
In this example, four different bipolar pairs are selected in sequence. The four different bipolar electrode pairs may differ by at least one electrode and/or the polarity of another bipolar electrode pair. For example, when a single quadripolar lead 20 is used, the four bipolar pairs may include 30a-30b, 30b-30c, 30c-30d and 30a-30d. The portions of the protrusor muscles recruited by the four different pairs may not be mutually exclusive since the electrical fields of the four different pairs may stimulate some of the same nerve fibers. Four different portions of the protrusor muscles may be recruited, which may include overlapping portions. The relatively long recovery periods 540, 542, 544 and 546 between respective duty cycle time intervals allows each different portion of the protrusor muscles to recover before the next duty cycle. When recruited muscle portions overlap between selected electrode pairs, the bipolar electrode pairs may be selected in a sequence that avoids stimulating the overlapping recruited muscle portions consecutively. All recruited muscle portions are allowed to recover during at least a portion of each respective recovery period 540, 542, 544 and/or 546. For example, if the bipolar electrode pair 502 and the bipolar electrode pair 522 recruit overlapping portions of the protrusor muscles, the recruited portions may still recover during the second duty cycle time interval 514 and during the fourth duty cycle time interval 534.
The duration of each duty cycle time interval, 504, 514, 524 and 534, may be the same or different from each other, resulting in the same or different overall duty cycles. For example, when four bipolar electrode pairs are sequentially selected, stimulation delivery for each individual pair may be a 25% duty cycle. In other examples, a combination of different duty cycles, e.g., 30%, 10%, 40% and 20%, could be selected in order to promote sustained protrusion of the tongue with adequate airway opening while minimizing or avoiding fatigue. The selection of duty cycle may depend on the particular muscles or muscle portions being recruited and the associated response (position) of the tongue to the stimulation for a given electrode pair selection.
The stimulation control parameters used during each of the duty cycle time intervals 504, 514, 524, and 534 for delivering electrical pulses using each of the different bipolar electrode pairs 502, 512, 522 and 532 may be the same or different. As shown, a different pulse voltage amplitude and a different interpulse interval and resulting pulse train frequency may be used. The pulse amplitude, pulse width, pulse frequency, pulse shape or other pulse control parameters may be controlled according to settings selected for each bipolar electrode pair.
In the example shown, one ramp on portion 506 of the stimulation protocol is shown at the onset of the therapy delivery time period 501. Once the stimulation is ramped up to position the tongue in a protruded position, no other subsequent duty cycle time intervals 504 (other than the first one), 514, 524 and 534 may include or be proceeded by a ramp on portion. In other examples, a ramp on portion may precede each duty cycle time interval (or be included in the duty cycle time interval as shown in
Following implantation as depicted in
As will be appreciated, manual switching is not always a desirable feature in an implantable device associated with sleeping. In a further aspect of the disclosure, OSA therapy may be started and stopped at scheduled times of day. Control circuit 80 may include a clock for scheduling the time that OSA therapy is started and stopped by therapy delivery circuit 84. Many patients, however, are not as rigorous regarding their schedules as would be desired to make the scheduling most effective. Further, the patient my find themselves at a social gathering or other affair at a time where they are normally scheduled for sleeping. Additionally, or alternatively, the patient may find themselves taking an unscheduled nap in a motor vehicle, plane, or train, and not have an opportunity to initiate or schedule therapy. Since OSA is often co-morbid with heart related diseases any instances of experiencing OSA can have complicating factors affecting the patient's heart. Thus, improved sensing of sleeping conditions and initiation of therapy are desirable.
One aspect of the disclosure is directed to a mechanism of initiating therapy based on a determination of the patient's posture. As noted above sensor 86 may include one or more separate sensors for monitoring a patient condition. These sensors may include one or accelerometers, inertial measurement units (IMU), fiber-Bragg gratings (e.g., shape sensors), optical sensors, acoustic sensors, pulse oximeters, and others without departing from the scope of the disclosure. In one aspect of the disclosure sensor 86 is configured as, among other things, as a patient posture sensor.
To achieve a patient posture sensor, the sensor 86 may be, for example, a three-axis accelerometer. A three-axis accelerometer can be employed to detect when the patient is in a reclined or sleeping position and even whether the patient is laying prone or supine or laying on their right or left sides. The effect of 1 G of gravitational acceleration applied directly along an axis of a stationary accelerometer provides a characteristic output voltage signal having an amplitude that can be referenced or scaled as +1 for angular computation purposes. The effect of 1 G of gravitational acceleration applied in precisely the opposite or negative direction to the sensitive axis provides a characteristic output voltage signal amplitude that is referenced or scaled as −1. If the axis is oriented transverse to the direction of the gravitational force, a bias voltage level output signal should be present, and that voltage signal level is referenced or scaled as 0. The degree to which the axis is oriented away or tilted from the direction of the gravitational force can also be detected by the magnitude and polarity of the output voltage signal level deviating from the bias level scaled to 0 and below the output signal level values scaled to +1 and −1. Other scales may be employed, depending on the signal polarities and ranges employed. The sensor 82 may include its own microprocessor with autocalibration of offset error and drift (possibly caused by temperature variation or other things).
Table 1 sets forth the ideal, scaled amplitudes of the output signals, ax, ay, and az, respectively, of a three-axis accelerometer employed in sensor 86 and incorporating into INS 10. (The units in the ideal example would be in gravity or “g”). One axis of the accelerometer (ay) is aligned to earth's gravitational field when the pulse generator 12 is implanted. Thus, when standing upright and remaining still, the amplitude or level of the output signal ay of three-axis accelerometer should be at +1. In this orientation, the scaled amplitudes of the output signals az and ax of the three-axis accelerometer, respectively, should approach 0.
The scaled amplitude of the output signal az of the DC three-axis accelerometer should approach +1 or −1, respectively, when the patient lies still and is either supine or prone on their back or stomach and if the INS 10 is implanted with the z-axis of the three axis accelerometer aligned in a posterior-anterior position. In these positions, the amplitudes of the output signals ay and ax of the three-axis accelerometer, respectively, should approach 0. In the same fashion, the patient lying on the right and left sides will orient the sensitive axis of the three-axis accelerometer with earth's gravitational field to develop the scaled amplitude of either −1 or +1 of the output signal ax. The amplitudes of the output signals ay and az of the three-axis accelerometer should approach 0. In these ideal orientations of Table I, there is no rotation of the axes of the INS 10 with respect to earth's gravitational field.
As will be appreciated, the determination described above identifies the pose of the pulse generator 12 and not necessarily the patient in which it is implanted. In practice the INS 10 will rarely if ever be implanted in the patient such that the three axes of the three-axis accelerometer precisely align the idea orientations of Table 1. Accordingly, following implantation of the INS 10, a series of calibration tests can be undertaken during which the patient is alternated from standing to lying, from prone to supine, and from right to left sides. By acquiring a series of such values, the sensor 86 can be calibrated for the implantation, to determine the voltage output values of each of the three axes of the accelerometer in each of the positions. Further, though not described in detail herein, similar analyses may be undertaken to determine when a person is in a slightly reclined position such as when sitting in an airplane seat or other position where a person might expect to sleep and may be need of therapy.
As described above, an individual patient may be assessed to determine whether particular postures are triggers for experiencing OSA, and the severity of the experience in each position. These data can be correlated to a specific a stimulation pattern, such as one depicted in
As will be appreciated, the sensing of a patient's posture alone might not provide sufficient data alone to initiate therapy. Accordingly, the detection of a patient's posture may be just one factor derived from the sensors 86 and other data to determine when to automatically initiate therapy. As one example, a further accelerometer may be employed to determine whether the patient is in motion. The same or an additional accelerometer may be employed to detect other motions and vibrations of the patient including heartbeat, coughing, and snoring as well as vibrations and sounds of the patient's airways associated with sleep apnea. In accordance with one example, the control circuit 80 collects the data from sensors 86 and determines that the patient's posture is not standing, that the patient is not moving, and that the detected heart rate is within a range that is consistent with sleeping or resting. The control circuit 80 thus concludes that the patient is sleeping and therapy delivery circuit 84 may respond to a sleep detection signal from control circuit 80 by initiating the OSA therapy delivery.
Additionally or alternatively, the sensor 86 may detect a signal that is correlated to the movement of the patient's tongue into and out of a protruded state. This signal may be used to detect adequate protrusion and/or fatigue of the stimulated muscle for use in controlling the duty cycle, pulse amplitude and/or stimulating electrode vector of the electrical stimulation therapy delivered by therapy delivery circuit 84. As an example, the sensor 86 can be configured to detect electromyography (EMG) signals. Electromyography is a technique of evaluating and recording the electrical activity produced by skeletal muscles. An electromyograph detects the electrical potential generated by muscle cells when the cells are electrically or neurologically activated.
In accordance with a further aspect of the disclosure, when a stimulation pulse is not being delivered by an electrodes 30a-30d, the electrodes can be employed to detect the electrical potential of muscles. In other examples, dedicated EMG sensing electrodes may be carried by housing 15 and/or lead body 22 and coupled to sensor 86 for EMG signal monitoring. EMG signal monitoring by control circuit 80 may allow detection of a low tonal state of the GG and/or GH muscles indicating a susceptibility to upper airway collapse. Detection of low tonal state of the protrusor muscles may be a trigger for delivering OSA therapy, particularly if combined with a detection of the pose of the patient indicating that they are in a reclined position. Thus, the EMG signals may be used by control circuit 80 for detecting a sleep state and/or low tonal state of the protrusor muscles for use in controlling therapy delivery circuit 84 for delivering stimulation pulses to cause protrusion of the patient's tongue.
EMG monitoring may further be used in monitoring for fatigue of the stimulated GG and/or GH muscles. If fatigue of the muscles is detected, control circuit 80 may alter to control the duty cycle of electrical stimulation pulse trains delivered by therapy delivery circuit 84 to minimize or avoid fatigue and/or allow adequate fatigue recovery time between duty cycle on times. In this manner, Sensor 86 may be configured to produce a signal that is correlated to protrusor muscle tonal state for use by control circuit 80 for detecting a low tonal state predictive of upper airway obstruction, detecting protrusor muscle fatigue, and/or detecting a protruded state of tongue 40. Therapy delivery circuit 84 may be configured to respond to a detection of the protrusor muscle tonal state by control circuit 80 by adjusting one or more control parameters used to control stimulation pulse delivery.
Once the rules are stored in the memory, the INS is ready to begin delivering therapy based on the sensed posture of the patient. At step 708 output from the sensor 86 is delivered to the control circuit 80 and a determination of the posture of the patient is made at step 710. Following a determination of the posture of the patient, a determination is made at step 712 regarding whether the INS 10 is already delivering therapy. If the INS is already delivering therapy the process moves to step 714 where a determination is made as to whether the therapy being delivered requires adjustment. If adjustment is needed the process moves to step 716 where the therapy is adjusted. Therapy adjustment can range from stopping delivery altogether because the patient is determined to be awake (e.g., with input from a motion sensor) to changing any of the therapy delivery parameters (e.g., the amplitude, pulse width, frequency, bi-polar pairs, and order of pairs for therapy) as outlined in the look-up table of rules in memory 82. The process then returns to step 708, where output from the sensor 86 is received.
If at step 712 therapy is not being currently delivered, the inquiry is whether the detected posture from step 710 requires delivery of therapy at step 718. If no, then the process returns to step 708, where output from the sensor 86 is received. If the detected posture from step 710 does require therapy at step 718, the process moves to step 720 where the appropriate therapy for the detected position is determined. The appropriate therapy may be read from the look-up table stored in memory 82 by control circuit 80 so that it can direct the therapy delivery circuit 84 accordingly. Once therapy is initiated at step 722, the process returns to step 708 and the output of the sensor 86 is monitored for changes in posture.
In the method above, the starting and stopping of therapy can become automated requiring little to no input from the patient. However, the patient will always have the ability to override therapy delivery through use of the external programmer 50.
It should be understood that, depending on the example, certain acts or events of any of the methods described herein can be performed in a different sequence, may be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the method). Moreover, in certain examples, acts or events may be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors, rather than sequentially. In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.
In one or more examples, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include computer-readable storage media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer).
Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as used herein may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein. Also, the techniques could be fully implemented in one or more circuits or logic elements.
Thus, an implantable medical device system has been presented in the foregoing description with reference to specific examples. It is to be understood that various aspects disclosed herein may be combined in different combinations than the specific combinations presented in the accompanying drawings. It is appreciated that various modifications to the referenced examples may be made without departing from the scope of the disclosure and the following claims.
This application claims priority to U.S. Provisional Application No. 62/814,398 filed Mar. 6, 2019 and entitled INTRAMUSCULAR HYPOGLOSSAL NERVE STIMULATION FOR OBSTRUCTIVE SLEEP APNEA THERAPY, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2999232 | Wilson | Sep 1961 | A |
3032029 | Cunningham | May 1962 | A |
3480010 | Crossley | Nov 1969 | A |
3593703 | Gunn et al. | Jul 1971 | A |
3696377 | Wall | Oct 1972 | A |
3998209 | Macvaugh | Dec 1976 | A |
4220142 | Rosen et al. | Sep 1980 | A |
4304227 | Samelson | Dec 1981 | A |
4551473 | Schossow | Nov 1985 | A |
4593686 | Lloyd et al. | Jun 1986 | A |
4655213 | Rapoport et al. | Apr 1987 | A |
4830008 | Meer | May 1989 | A |
4989617 | Memberg et al. | Feb 1991 | A |
5065756 | Rapoport | Nov 1991 | A |
5123425 | Shannon, Jr. et al. | Jun 1992 | A |
5146918 | Kallok et al. | Sep 1992 | A |
5335654 | Rapoport | Aug 1994 | A |
5365945 | Halstrom | Nov 1994 | A |
5522862 | Testerman et al. | Jun 1996 | A |
5540733 | Testerman et al. | Jul 1996 | A |
6041784 | Halstrom | Mar 2000 | A |
6044297 | Sheldon et al. | Mar 2000 | A |
6161542 | Halstrom | Dec 2000 | A |
6212435 | Lattner et al. | Apr 2001 | B1 |
6251126 | Ottenhoff et al. | Jun 2001 | B1 |
6269269 | Ottenhoff et al. | Jul 2001 | B1 |
6536439 | Palmisano | Mar 2003 | B1 |
6587725 | Durand et al. | Jul 2003 | B1 |
6618627 | Lattner et al. | Sep 2003 | B2 |
6635021 | Sullivan et al. | Oct 2003 | B1 |
6666830 | Lehrman et al. | Dec 2003 | B1 |
6770037 | Sullivan et al. | Aug 2004 | B2 |
6818665 | Wennerholm et al. | Nov 2004 | B2 |
6935335 | Lehrman et al. | Aug 2005 | B1 |
7004908 | Sullivan et al. | Feb 2006 | B2 |
7212862 | Park et al. | May 2007 | B2 |
7225021 | Park et al. | May 2007 | B1 |
7311103 | Jeppesen | Dec 2007 | B2 |
7322356 | Critzer et al. | Jan 2008 | B2 |
7469698 | Childers et al. | Dec 2008 | B1 |
7473227 | Hsu et al. | Jan 2009 | B2 |
7509164 | Jensen et al. | Mar 2009 | B2 |
7520277 | Grady | Apr 2009 | B1 |
7540843 | Backer | Jun 2009 | B2 |
7678058 | Patangay et al. | Mar 2010 | B2 |
7711438 | Lattner et al. | May 2010 | B2 |
7725195 | Lima et al. | May 2010 | B2 |
7789837 | Lehrman et al. | Sep 2010 | B2 |
7819823 | Lehrman et al. | Oct 2010 | B2 |
7926486 | Childers | Apr 2011 | B2 |
7937159 | Lima et al. | May 2011 | B2 |
8187200 | Jensen et al. | May 2012 | B2 |
8220457 | Berthon-Jones et al. | Jul 2012 | B2 |
8220467 | Sanders | Jul 2012 | B2 |
8307831 | Rousseau | Nov 2012 | B2 |
8333696 | Levendowski et al. | Dec 2012 | B2 |
8359097 | Alt et al. | Jan 2013 | B2 |
8359108 | McCreery | Jan 2013 | B2 |
8413661 | Rousseau et al. | Apr 2013 | B2 |
8428727 | Bolea et al. | Apr 2013 | B2 |
8486947 | Schwartz et al. | Jul 2013 | B2 |
8545231 | Lloyd et al. | Oct 2013 | B2 |
8545416 | Kayyali et al. | Oct 2013 | B1 |
8561616 | Rousseau et al. | Oct 2013 | B2 |
8569374 | Veasey | Oct 2013 | B2 |
8574164 | Mashiach | Nov 2013 | B2 |
8577464 | Mashiach | Nov 2013 | B2 |
8577465 | Mashiach | Nov 2013 | B2 |
8577466 | Mashiach | Nov 2013 | B2 |
8577467 | Mashiach et al. | Nov 2013 | B2 |
8577468 | Mashiach et al. | Nov 2013 | B2 |
8577472 | Mashiach et al. | Nov 2013 | B2 |
8577478 | Mashiach et al. | Nov 2013 | B2 |
8585617 | Mashiach et al. | Nov 2013 | B2 |
8588941 | Mashiach | Nov 2013 | B2 |
8644939 | Wilson et al. | Feb 2014 | B2 |
8644947 | Zhu et al. | Feb 2014 | B2 |
8700183 | Mashiach | Apr 2014 | B2 |
8718776 | Mashiach et al. | May 2014 | B2 |
8740805 | Lehrman et al. | Jun 2014 | B2 |
8751005 | Meadows et al. | Jun 2014 | B2 |
8753327 | Fan | Jun 2014 | B2 |
8781587 | Alt et al. | Jul 2014 | B2 |
8783258 | Jacobs et al. | Jul 2014 | B2 |
8808158 | Harrison et al. | Aug 2014 | B2 |
8812113 | Mashiach | Aug 2014 | B2 |
8812135 | Mashiach | Aug 2014 | B2 |
8813753 | Bhat et al. | Aug 2014 | B2 |
8831730 | Mashiach et al. | Sep 2014 | B2 |
8838256 | Mashiach et al. | Sep 2014 | B2 |
8886322 | Meadows et al. | Nov 2014 | B2 |
8892205 | Miller, III et al. | Nov 2014 | B2 |
8897880 | Mashiach | Nov 2014 | B2 |
8903515 | Mashiach | Nov 2014 | B2 |
8909341 | Gelfand et al. | Dec 2014 | B2 |
8925551 | Sanders | Jan 2015 | B2 |
8948871 | Mashiach et al. | Feb 2015 | B2 |
8958893 | Mashiach | Feb 2015 | B2 |
8999658 | Gozal et al. | Apr 2015 | B2 |
9011341 | Jensen et al. | Apr 2015 | B2 |
9031653 | Mashiach | May 2015 | B2 |
9061162 | Mashiach et al. | Jun 2015 | B2 |
9072613 | Shantha | Jul 2015 | B2 |
9077022 | Howard et al. | Jul 2015 | B2 |
9078634 | Gonzales et al. | Jul 2015 | B2 |
9095471 | Iyer et al. | Aug 2015 | B2 |
9095725 | Mashiach | Aug 2015 | B2 |
9114256 | Achhab et al. | Aug 2015 | B2 |
9144511 | Rousseau et al. | Sep 2015 | B2 |
9155899 | Mashiach et al. | Oct 2015 | B2 |
9186504 | Gross | Nov 2015 | B2 |
9254219 | Shantha | Feb 2016 | B2 |
9295670 | Fan | Mar 2016 | B2 |
9326886 | Rousseau | May 2016 | B2 |
9402563 | Thakur et al. | Aug 2016 | B2 |
9403009 | Mashiach | Aug 2016 | B2 |
9409013 | Mashiach et al. | Aug 2016 | B2 |
9415215 | Mashiach | Aug 2016 | B2 |
9415216 | Mashiach | Aug 2016 | B2 |
9435814 | Gozal et al. | Sep 2016 | B2 |
9492086 | Ewers et al. | Nov 2016 | B2 |
9526652 | Harrison et al. | Dec 2016 | B2 |
9533114 | Kayyali et al. | Jan 2017 | B1 |
9545331 | Ingemarsson-Matzen | Jan 2017 | B2 |
9561012 | Hirabayashi | Feb 2017 | B2 |
9655767 | Harrison et al. | May 2017 | B1 |
9662045 | Skelton et al. | May 2017 | B2 |
9687383 | Ngemarsson-Matzen | Jun 2017 | B2 |
9744354 | Bolea et al. | Aug 2017 | B2 |
9855164 | Weadock et al. | Jan 2018 | B2 |
9883847 | Wolf et al. | Feb 2018 | B2 |
9889299 | Ni et al. | Feb 2018 | B2 |
10022262 | Irwin et al. | Jul 2018 | B2 |
10029098 | Papay | Jul 2018 | B2 |
10111774 | Gonzales et al. | Oct 2018 | B2 |
10123900 | Mohan et al. | Nov 2018 | B2 |
10149621 | Yoon et al. | Dec 2018 | B2 |
10166268 | Mendelowitz et al. | Jan 2019 | B2 |
10172920 | Braley et al. | Jan 2019 | B2 |
10195428 | Scheiner | Feb 2019 | B2 |
10206571 | Ewers et al. | Feb 2019 | B2 |
10231650 | Skelton et al. | Mar 2019 | B2 |
10314736 | Catalano | Jun 2019 | B2 |
10368800 | Qiu | Aug 2019 | B2 |
10406306 | Whiting et al. | Sep 2019 | B2 |
10500086 | Harrison et al. | Dec 2019 | B1 |
10543119 | Ingemarsson-Matzen | Jan 2020 | B2 |
10569037 | O'Day | Feb 2020 | B2 |
10575981 | Rayek et al. | Mar 2020 | B2 |
10617694 | Hedner et al. | Apr 2020 | B2 |
10632009 | Goff et al. | Apr 2020 | B2 |
10675467 | Papay | Jun 2020 | B2 |
20020049479 | Pitts | Apr 2002 | A1 |
20030069626 | Lattner et al. | Apr 2003 | A1 |
20070150006 | Libbus et al. | Jun 2007 | A1 |
20080103407 | Bolea et al. | May 2008 | A1 |
20090078274 | Bhat et al. | Mar 2009 | A1 |
20100010385 | Skelton et al. | Jan 2010 | A1 |
20100087896 | McCreery | Apr 2010 | A1 |
20100174341 | Bolea et al. | Jul 2010 | A1 |
20100204614 | Lindquist et al. | Aug 2010 | A1 |
20110093036 | Mashiach | Apr 2011 | A1 |
20110152965 | Mashiach et al. | Jun 2011 | A1 |
20130030497 | Karamanoglu | Jan 2013 | A1 |
20130042876 | Hermanson et al. | Feb 2013 | A1 |
20130072747 | Mashiach | Mar 2013 | A1 |
20130072999 | Mashiach | Mar 2013 | A1 |
20130079843 | Mashiach | Mar 2013 | A1 |
20130085537 | Mashiach | Apr 2013 | A1 |
20130085540 | Mashiach et al. | Apr 2013 | A1 |
20130085541 | Mashiach | Apr 2013 | A1 |
20130085542 | Mashiach | Apr 2013 | A1 |
20130085543 | Mashiach et al. | Apr 2013 | A1 |
20130085544 | Mashiach | Apr 2013 | A1 |
20130085545 | Mashiach | Apr 2013 | A1 |
20130085558 | Mashiach | Apr 2013 | A1 |
20130085559 | Mashiach | Apr 2013 | A1 |
20130085560 | Mashiach | Apr 2013 | A1 |
20130085561 | Mashiach | Apr 2013 | A1 |
20140031840 | Mashiach | Jan 2014 | A1 |
20140031889 | Mashiach | Jan 2014 | A1 |
20140031890 | Mashiach et al. | Jan 2014 | A1 |
20140031891 | Mashiach | Jan 2014 | A1 |
20140031892 | Mashiach | Jan 2014 | A1 |
20140031913 | Mashiach | Jan 2014 | A1 |
20140031914 | Mashiach | Jan 2014 | A1 |
20140031915 | Mashiach et al. | Jan 2014 | A1 |
20140031916 | Mashiach | Jan 2014 | A1 |
20140039579 | Mashiach et al. | Feb 2014 | A1 |
20140052212 | Mashiach et al. | Feb 2014 | A1 |
20140107727 | Mashiach | Apr 2014 | A1 |
20140135868 | Bashyam | May 2014 | A1 |
20140228905 | Bolea | Aug 2014 | A1 |
20140323839 | McCreery | Oct 2014 | A1 |
20140358189 | Mashiach et al. | Dec 2014 | A1 |
20140371822 | Mashiach et al. | Dec 2014 | A1 |
20140371823 | Mashiach et al. | Dec 2014 | A1 |
20140371824 | Mashiach et al. | Dec 2014 | A1 |
20150190630 | Kent et al. | Jul 2015 | A1 |
20150224307 | Bolea | Aug 2015 | A1 |
20160030739 | Mashiach | Feb 2016 | A1 |
20160030740 | Mashiach | Feb 2016 | A1 |
20160354603 | Keenan | Dec 2016 | A1 |
20170197075 | Bruggen et al. | Jul 2017 | A1 |
20170290699 | Radmand | Oct 2017 | A1 |
20170296815 | Papay | Oct 2017 | A1 |
20180221660 | Suri et al. | Aug 2018 | A1 |
20190117967 | Scheiner | Apr 2019 | A1 |
20200281763 | Scheiner | Sep 2020 | A1 |
20200282215 | Scheiner et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
3355984 | Aug 2018 | EP |
9215364 | Sep 1992 | WO |
2010090852 | Aug 2010 | WO |
2011016864 | Feb 2011 | WO |
2017059072 | Apr 2017 | WO |
Entry |
---|
PCT Search Report and Written opinion issued in PCT Application No. PCT/US2020/021245 dated Jun. 16, 2020, 15 pages. |
Sanders et al., “Three-Dimensional Atlas of Human Tongue Muscles,” The Anatomical Record 296:1102-1114 (2013), 14 pages. |
International Preliminary Report on Patentability from International Application No. PCT/US202/021245, dated Sep. 16, 2021, 9 pp. |
Number | Date | Country | |
---|---|---|---|
20200282219 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62814398 | Mar 2019 | US |