POSITION SENSOR FOR MRT DETECTION

Abstract
Allows the specificity of an automatic MRT detection to be increased in a simple manner. This is achieved using an automatically calibrating position sensor, so that the user does not have to perform additional calibration of this sensor. Incorrect sensor calibrations are thus eliminated as well.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the invention relate a device and a method for detecting electromagnetic fields which occur in tests using magnetic resonance tomography imaging devices. (“MRT” or “MRI” stand for magnetic resonance tomography and magnetic resonance imaging respectively, wherein these two acronyms are used interchangeably herein).


2. Description Of The Related Art


Although MRI testing is becoming increasingly important in diagnostic medicine, it is contraindicated for some patients. Such contraindication may result from an at least partially implanted medical device (also referred to below as “implant” or “IMD”).


In order to still allow MRI testing, various approaches are known which relate either to performing the MRI testing or to the implantable medical device.


Although the prior art provides methods for detecting MRI fields, these methods are frequently based on single measuring methods.


US 2008/0154342 describes a method which uses a giant magnetoresistance (GMR) sensor to detect problematic magnetic fields from MRT devices. Thus, this method relies on a single parameter, the measured field intensity.


BRIEF SUMMARY OF THE INVENTION

The object of one or more embodiments of the invention is to provide a device and a method for medical devices and implantable medical devices which eliminate the disadvantages of the prior art and allow the detection of MRI fields to be verified. The object is achieved by use of an implantable medical device (IMD) having the features as claimed herein.


The IMD contains at least one unit for detecting MRI interference fields, the unit having at least one sensor and/or indicator for electromagnetic interference fields or magnetic fields typical for MRI, at least one control unit which may be connected to the unit for detecting electromagnetic interference fields or magnetic fields, containing at least one diagnostic unit and/or at least one treatment unit, wherein the unit for detecting MRI interference fields also has a position sensor, and the unit for detecting MRI interference fields detects interference from MRI interference fields only when, in addition to at least one sensor and/or at least one indicator for electromagnetic interference fields or magnetic fields typical for MRI, the position sensor indicates a prone posture of the patient.


The term “prone posture” is understood to mean a horizontal position of the patient. The term “indicators for MRI interference fields” refers to measurements which indicate electromagnetic interference fields.


“MRI interference fields” refers to electromagnetic fields produced in the surroundings of an MRI device by the MRI device. Examples of “interference fields typical for MRI” include, but are not limited to, a static magnetic field, a gradient field, and an electromagnetic radio frequency (RF) field. The diagnostic unit may be, for example, but is not limited to, a unit for determining physical and/or chemical and/or biological parameters, and the treatment unit may be, for example, but is not limited to, a unit for delivering electrical pulses and/or chemical substances and/or mechanical forces.


However, if the specificity of the MRT detection is limited, there is considerable risk that the implant will be switched, also outside the MRT surroundings, to an MRT mode by other environmental influences, likewise resulting in endangerment of the patient.


In a prone position (during sleep), however, many of the environmental conditions which may be confused with MRT are excluded, so that the additional evaluation of the position information greatly increases specificity for the MRT detection.


It is preferred that the position sensor is self-calibrating, whereby a prone posture is automatically detected, and/or the calibration is triggered via an external device, such as a patient device and/or programming device, and/or the prone posture is verified via an external device, such as a patient device and/or programming device.


It is particularly preferred that the calibration of the position sensor, preferably calibration during night sleep, is carried out after evaluation of the time of day.


It is further preferred that for identification of a prone posture the diurnal phases with minimum heart rate are evaluated. In this manner, for example, night sleep which is preferably used for a calibration may be identified.


It is also preferred that night sleep is identified by the evaluation of the heart rate variability and the circadian rhythm thereof


It is also preferred that night sleep is identified by evaluating the respiratory rate.


It is also preferred that night sleep is identified by evaluating the patient activity.


It is also preferred that night sleep is identified by evaluating at least one EEG parameter. EEG is also known as electroencephalography.


It is further preferred that detection of MRI interference fields initiates a predeterminable reaction of the IMD only within a predeterminable time window.


It is also preferred that the unit for detecting MRI interference fields includes at least one of the following sensors and/or indicators: a GMR sensor, a MagFET sensor, a Hall sensor, an electro-optical converter as indicator, monitoring of battery voltages during capacitor charging processes as indicator, detection of RF fields as indicator, detection of magnetic gradient fields as indicator, and detection of currents induced by electromagnetic fields as indicator.


It is also preferred that at least one of the following measures is initiated with the identification of electromagnetic interference fields by the unit for detecting MRI interference fields: changing to an MRI-safe state, remaining for a prolonged period of time in an MRI-safe state or a state that is insensitive to electromagnetic interference fields, emission of electromagnetic pulses for signaling that an IMD is present in the electromagnetic field, for signaling to an MRI device, with the possibility of thus transmitting information as well as the interference and displaying same on the screen of the MRI device, and allowing the administration of treatment and/or the detection of electrical states of the tissue only in time windows in which no electromagnetic interference fields are detected and/or a reconstruction of a measurement is carried out for the regions in which the detection is not allowed on account of detected electromagnetic interference fields.


The object is further achieved by use of a method for increasing the specificity in the detection of MRI interference fields as claimed herein, wherein for detection of an MRI interference field, in addition to the detection by at least one sensor and/or at least one indicator for electromagnetic interference fields typical for MRI, the prone posture of the implant carrier is also detected. The method may be carried out, for example, using an IMD as described above.





BRIEF DESCRIPTION OF THE DRAWINGS

Several aspects of the invention are illustrated in FIGS. 1 through 3.



FIG. 1 shows a schematic illustration of the sequence of an MRI test;



FIG. 2 shows a simplified block diagram of an IMD according to the invention; and



FIG. 3 shows a variant of a simplified block diagram of an electronic implant according to the invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates the starting situation, using an ICD (implantable defibrillator/cardioverter) as an example. The ICD patient 100 receives follow-up care from a cardiologist before the planned MRT test, and the ICD is switched off 110. After a time delay of hours to days the MRT test is performed by a radiologist 120. After a further delay the patient is once again under the care of the cardiologist 130, and the ICD is switched back on. During the entire time from 110 to 130 the patient is without the protection of the implanted defibrillator, and is essentially without rhythm monitoring. This residual risk is currently accepted in return for the benefits of the MRT test. In addition, the economic and logistic expenditure for such a procedure is very high, and in many cases rules out emergency use of MRT.



FIG. 2 shows a simplified block diagram of an electronic implant 200, for example a single-chamber cardiac pacemaker. This implant has a sensing and stimulation unit 220, connected to the right ventricular electrode terminal 210, and a timer unit 230 for demand-controlled stimulation of the heart.


The electronic implant also contains at least one unit for detecting MRT surroundings 240, such as but not limited to a giant magnetoresistance (GMR) sensor 240.


According to the invention, this block diagram is supplemented by a three-dimensional position sensor 250. The two sensor signals are evaluated in a specialized control unit, and when the MRT sensor 240 indicates MRT surroundings and the position sensor 250 signals a prone position of the patient, the control unit 260 switches the timer unit 230 to a preprogrammed MRT-safe operating mode, for example but not limited to V00 or D00 for patients dependent on a pacemaker.



FIG. 3 illustrates an expanded block diagram of electronic implant 300. In this case an additional calibration unit 390 is introduced. This calibration unit is used to automatically determine the prone position of the patient. For this purpose the calibration unit is connected to the three-dimensional position sensor 350, a unit 360 for analyzing the cardiac rhythm, a unit 370 for determining the respiratory rate, and the implant clock 380.


The calibration unit 390 stores and updates reference data of the position sensor 350 whenever the parameters from the heart rate analysis unit 360 (minimum heart rate, heart rate variability), the respiratory rate analysis unit 370, and the implant time 380 (comparison with day/night switchover parameters) suggest night sleep.


The calibration unit 390 continuously compares this current reference value to the current value of the position sensor 350, and signals a prone position of the control unit 260′ whenever the current value and reference value match.


Embodiments of the invention allow the specificity of an automatic MRT detection to be increased in a simple manner. This is achieved using an automatically calibrating position sensor, so that the user does not have to perform additional calibration of this sensor. Incorrect sensor calibrations are thus eliminated as well.


It will be apparent to those skilled in the art that numerous modifications and variations of the described examples and embodiments are possible in light of the above teaching. The disclosed examples and embodiments are presented for purposes of illustration only. Therefore, it is the intent to cover all such modifications and alternate embodiments as may come within the true scope of this invention.

Claims
  • 1. An implantable medical device comprising: a unit configured to detect magnetic resonance imaging interference fields, comprising at least one sensor and/or indicator for electromagnetic interference fields typical for magnetic resonance imaging or magnetic fields typical for magnetic resonance imaging;at least one control unit coupled to the unit configured to detect magnetic resonance imaging interference fields comprising at least one diagnostic unit and/orat least one treatment unit;wherein the unit is configured to detect magnetic resonance imaging interference fields further comprises a position sensor; and,wherein the unit is further configured to detect magnetic resonance imaging interference fields is configured to detect interference from magnetic resonance imaging interference fields only when, in addition to at least one sensor and/or at least one indicator for electromagnetic interference fields typical for magnetic resonance imaging, the position sensor indicates a prone posture of a patient associated with said implantable medical device.
  • 2. The implantable medical device according to claim 1, wherein the position sensor is self-calibrating, wherein the prone posture is automatically detected, and/or the calibration is triggered via an external device, such as a patient device and/or programming device, and/or the prone posture is verified via an external device, such as a patient device and/or programming device.
  • 3. The implantable medical device according to claim 2, wherein the calibration of the position sensor is carried out after evaluation of a time of day.
  • 4. The implantable medical device according to claim 1, wherein for identification of the prone posture, diurnal phases with minimum heart rate are evaluated.
  • 5. The implantable medical device according to claim 1, wherein the at least one control unit is configured to identify night sleep by an evaluation of a heart rate variability and a circadian rhythm thereof
  • 6. The implantable medical device according to claim 1, wherein the at least one control unit is configured to identify night sleep by an evaluation of a respiratory rate.
  • 7. The implantable medical device according to claim 1, wherein the at least one control unit is configured to identify night sleep by an evaluation of patient activity.
  • 8. The implantable medical device according to claim 1, wherein the at least one control unit is configured to identify night sleep by an evaluation at least one EEG parameter.
  • 9. The implantable medical device according to claim 1, wherein detection of magnetic resonance imaging interference fields initiates a predeterminable reaction of the implantable medical device only within a predeterminable time window.
  • 10. The implantable medical device according to claim 1, wherein the unit configured to detect magnetic resonance imaging interference fields includes at least one of the following sensors and/or indicators: GMR sensor,MagFET sensor,Hall sensor,electro-optical converter,battery voltage sensor configured to monitor voltage during capacitor charging,RF field detector,magnetic gradient field detector,current detector for currents induced by electromagnetic fields,
  • 11. The implantable medical device according to claim 1, wherein upon identification of electromagnetic interference fields by the unit configured to detect magnetic resonance imaging interference fields, the at least one control unit is configured to: change to an magnetic resonance imaging-safe state,remain for a prolonged period of time in the magnetic resonance imaging-safe state or a state that is insensitive to electromagnetic interference fields.emit electromagnetic pulses to signal that the implantable medical device is present in an electromagnetic field, and transmit information as well as an interference and display said interference on a screen of a magnetic resonance imaging device, andallow administration of treatment and/or detection of electrical states of tissue only in time windows in which no electromagnetic interference fields are detected and/or carry out a reconstruction of a measurement for the regions in which the detection is not allowed on account of detected electromagnetic interference fields.
  • 12. A method comprising: increasing the specificity in the detection of magnetic resonance imaging interference fields with an implantable medical device comprising: a unit configured to detect magnetic resonance imaging interference fields, comprising at least one sensor and/or indicator for electromagnetic interference fields typical for magnetic resonance imaging or magnetic fields typical for magnetic resonance imaging;at least one control unit coupled to the unit configured to detect magnetic resonance imaging interference fields comprising at least one diagnostic unit and/orat least one treatment unit;wherein the unit is configured to detect magnetic resonance imaging interference fields further comprises a position sensor; and,detecting via unit is further configured to detect magnetic resonance imaging interference fields, interference from magnetic resonance imaging interference fields only when, in addition to at least one sensor and/or at least one indicator for electromagnetic interference fields typical for magnetic resonance imaging, the position sensor indicates a prone posture of a patient associated with said implantable medical device.
Parent Case Info

This application claims the benefit of United States Provisional Patent Application 61/288,864, filed on Dec. 22, 2009, which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
61288864 Dec 2009 US