1. Field of the Invention
The present invention relates to a position sensor and to parts therefor. The invention has particular although not exclusive relevance to x-y digitising tablets which operate with a cordless stylus. The invention is particularly useful for embedding behind the display of a hand-held electronic device such as a personal digital assistant (PDA), mobile telephone, web browser or products embodying combinations of these.
2. Related Art
U.S. Pat. No. 4,878,533 discloses an x-y digitising tablet which uses a resonant stylus. The digitising tablet comprises a large number of overlapping, but separate, loop coils which are arrayed in the x-y direction. These loop coils are connected through a switching circuit and a multiplexing circuit to an excitation circuit and a receiving circuit. This system is arranged so that the multiplexing circuit connects each of the loop coils in sequence to the switching circuit which firstly connects the connected loop coil to the excitation circuit and then to the receiving circuit. When a loop coil is connected to the excitation circuit, a current is applied to the loop coil which energises the resonant stylus. When the loop coil is connected to the receiving circuit, the receiving circuit detects the electromotive force (EMF) induced in the connected loop coil by the resonant stylus. This system identifies the current position of the stylus by detecting the loop coil which provides the greatest output signal level.
A problem with the digitising tablet described in U.S. Pat. No. 4,878,533 is that it consumes a large amount of power in order to energise and detect the signals in each of the loop coils, which makes it unsuitable for hand-held battery-powered devices such as PDAs and mobile telephones.
An aim of the present invention is to provide components for use in an alternative form of position sensor in which a magnetic field is generated and coupled to a resonant stylus.
According to one aspect of the invention, there is provided a position detector in which a series of excitation pulses is applied across an excitation winding with the duration of the excitation pulses being less than a decay time of a current loop incorporating the excitation winding. The long decay time enables current to flow in the excitation winding for a significant amount of time after each excitation pulse which means that shorter excitation pulses can be used thereby drawing less power from the power supply.
According to another aspect of the invention, there is provided a position detector in which a number of excitation sequences are applied across an excitation winding, each excitation sequence comprising a series of excitation pulses whose durations have been arranged to reduce any slowly-varying components in the excitation sequence. By reducing the slowly-varying components, the power drawn from the power supply is reduced.
Various features and aspects of the present invention will become apparent from the following description of exemplary embodiments which are described with reference to the accompanying drawings in which:
a schematically illustrates an approximation of the way in which the peak amplitude of the signals induced in x-sensor windings of the digitising system vary with the x-coordinate of the position of the stylus relative to the liquid crystal display;
b schematically illustrates an approximation of the way in which the peak amplitude of the signals induced in y-sensor windings of the digitising system vary with the y-coordinate of the position of the stylus relative to the liquid crystal display;
a illustrates the form of the excitation winding of the digitising system which forms part of the personal digital assistant shown in
b illustrates the form of a sin x sensor winding of the digitising system which forms part of the personal digital assistant shown in
c illustrates the form of a cos x sensor winding of the digitising system which forms part of the personal digital assistant shown in
d illustrates the form of a sin y sensor winding of the digitising system which forms part of the personal digital assistant shown in
e illustrates the form of a cos y sensor winding of the digitising system which forms part of the personal digital assistant shown in
f shows a top layer of a printed circuit board which carries the windings shown in
g shows a bottom layer of the printed circuit board which carries the windings shown in
a is a timing diagram illustrating the form of an excitation voltage applied to the excitation winding by the excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the form of an excitation voltage applied to the excitation winding by the excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation winding shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the form of the end of the excitation sequence applied to the excitation winding by the excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the end of an excitation voltage sequence applied by the excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the form of an excitation voltage sequence applied by the excitation winding of excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the form of an excitation voltage sequence applied by the excitation winding of the excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the form of an excitation voltage applied by the excitation winding of the excitation and processing electronic shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the form of an excitation voltage sequence applied by the excitation winding of the excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is timing diagram illustrating the form of an excitation voltage sequence applied by the excitation winding of the excitation and processing electronics shown in
b is a timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
a is a timing diagram illustrating the form of an excitation voltage sequence applied by the excitation winding of the excitation and processing electronics shown in
b is timing diagram illustrating the form of the excitation current flowing through the excitation winding as a result of the applied excitation voltage shown in
c is a timing diagram illustrating the form of the current drawn from the power supply in order to generate the excitation voltage shown in
d is a timing diagram illustrating the form of an electromotive force induced in a sensor winding by the resonant stylus when the excitation voltage shown in
Overview of Digitising System
As shown in
The excitation winding and the sensor windings are connected to digitiser electronics 49 (indicated by the dashed block in
The excitation current flowing in the excitation winding 29 generates a corresponding electromagnetic field which magnetically couples, as indicated by the arrow 39-1, with the resonant circuit 41 and causes it to resonate. In this embodiment, the excitation winding 29 is arranged to keep the magnetic coupling between it and the resonator as constant as possible with the x-y position of the stylus relative to the LCD 3. When the resonator 41 is resonating, it generates its own electromagnetic field which magnetically couples, as represented by the arrows 39-2, 39-3, 39-4 and 39-5, with the sensor windings 31, 33, 35 and 37 respectively. As will be explained in more detail below, the sensor windings 31, 33, 35 and 37 are designed so that the coupling between them and the resonant stylus varies with the x or y position of the stylus and so that there is minimum direct coupling between them and the excitation winding 29. Therefore, the signal received in the sensor windings should only vary with the magnetic coupling between the resonator 41 and the respective sensor winding. Consequently, by suitable processing of the signals received in the sensor windings, the x-y position of the resonator 41, and hence of the resonant stylus 5, can be determined relative to the sensor windings.
In this embodiment, in order to reduce the effect of any breakthrough from the excitation winding 29 to the sensor windings on the x-y position measurement, the excitation current is not continuously applied to the excitation winding 29 but instead bursts of the excitation current are applied, and the signals induced in the sensor windings are only detected between the bursts of the excitation current. This mode of operation is referred to as pulse echo and works because the resonator 41 continues to resonate after the burst of excitation current has ended.
As mentioned above, the sensor windings are periodic and are in spatial phase quadrature. Therefore, the four signals induced in the four sensor windings from the resonant circuit 41 can be approximated by:
where A is a coupling coefficient which depends upon, among other things, the distance of the stylus from the windings and the number of turns in the sensor windings; x is the x-position of the resonant stylus relative to the sensor windings; y is the y-position of the resonant stylus relative to the sensor windings; Lx is a spatial wavelength of the sensor windings in the x-direction and is typically slightly greater than the width of the board in the x-direction (and in this embodiment is 70 mm); Ly is a spatial wavelength of the sensor windings in the y-direction and is typically slighter greater than the width of the board in the y-direction (and in this embodiment is 50 mm); e−t/τ is the exponential decay of the resonator signal after the burst of excitation signal has ended, with τ being a resonator constant which is equal to the quality factor of the resonant circuit 41 divided by the product of pi (π) and the resonant frequency of the resonant circuit 41; and ø is an electrical phase shift caused by a difference between the fundamental frequency of the excitation current and the resonant frequency of the resonator 41. In this embodiment, the resonant stylus 5 is designed so that its resonant frequency changes with the pressure applied to the tip of the stylus. This change in frequency causes a change in the phase shift ø and therefore by measuring the phase shift ø it can be determined whether or not the tip of the resonant stylus 5 is pressed into contact with the LCD 3.
As can be seen from equations (1) to (4), the peak amplitude of the signals induced in the sensor windings vary as the sin or cos of either the x or y position. This is illustrated in
Therefore, as those skilled in the art will appreciate, both the x-y position information of the resonant stylus 5 and the phase shift ø can be determined from the signals induced in the sensor windings by suitable demodulation and processing. As shown in
where A1 is a constant which varies with, among other things, the constant A, the resonator constant τ and the integration period. Similar signals are obtained from integrators 71-5 to 71-8, except these vary with the y-position rather than with the x-position.
As shown in
As shown in
After the digital processing and signal generation unit 59 has determined the current x-y position of the resonant stylus and determined whether or not the stylus has been brought into contact with the LCD 3, it outputs this information to the PDA electronics through the interface unit 77. This information is then used by the PDA electronics to control information displayed on the LCD 3 and the PDA's mode of function. In this embodiment, the excitation and position determining circuitry 49 performs the above calculations five hundred times per second.
A brief description has been given above of the way in which the digitiser system of the present embodiment determines the x-y position of the resonant stylus relative to the sensor windings. The particular form of excitation and sensor windings used and the particular resonant stylus, digital processing and excitation signals used in this embodiment will now be described in more detail.
Digitiser Windings
a illustrates the form of the excitation winding 29 used in this embodiment. The winding 29 is formed by five turns of rectangular conductor on each side of the sensor PCB 13 which are connected in series at through holes or vias, some of which are labelled 97. In
b shows the printed conductors which form the sin x sensor winding 31. Again, the printed conductors on the top layer of the sensor PCB 13 are shown as solid lines whilst those on the bottom layer are shown as dashed lines. As shown, the conductor tracks which extend substantially in the y-direction are provided on the top layer of the sensor PCB 13 and those which extend substantially in the x-direction are provided on the bottom layer of the sensor PCB 13 and the ends of the conductor tracks on the top layer are connected to the ends of the conductor tracks on the bottom layer at the via holes, some of which are labelled 97.
As shown, the conductor tracks of the sin x sensor winding 31 are connected to form two sets of loops 32-1 and 32-2 which are arranged in succession along the x-direction. As those skilled in the art will appreciate, if a point magnetic field source (or something similar such as the resonant stylus) is moved across the sensor winding 31, then the magnetic coupling between the point source and the sensor winding 31 will vary approximately sinusoidally with the x-position of the point source. There will be little or no variation with the y-position.
c shows the printed conductors which form the cos x sensor winding 33. Again, the printed conductors on the top layer of the sensor PCB 13 are shown as solid lines whilst those on the bottom layer are shown as dashed lines.
As with the sin x sensor winding, when the resonant stylus 5 is moved across the sensor winding 33, the magnetic coupling between the resonant stylus 5 and the cos x sensor winding 33 varies approximately sinusoidally with the x-position of the stylus 5. However, since the sets of loops of the cos x sensor winding 33 are shifted in the x-direction by a quarter of the winding pitch (Lx), the sinusoidal variation will be in phase quadrature to the variation of the sin x sensor winding 31. As a result, the signal induced in the sensor winding 33 by the resonant stylus 5 has a peak amplitude which approximately varies as the cosine of the x-position of the stylus 5.
d and 5e show the printed conductors which form the sin y sensor winding 35 and the cos y sensor winding 37. As shown in these figures, these sensor windings are similar to the sin x and cos x sensor windings except they are rotated through 90°. As shown in
Stylus
A more detailed description and explanation of the layout of the excitation and sensor windings and of the stylus used in this embodiment can be found in International Patent Application No. PCT/GB99/03989, the whole contents of which are hereby incorporated by reference.
Digital Processing and Signal Generation Unit
As shown schematically in
The processor 171 sends control parameters to a digital waveform generator 179 which, in accordance with the control parameters, generates the control signals TXA and TXB for the excitation driver 51 and the in-phase and quadrature-phase mixing signals for the mixers 69-1 to 69-8. In this embodiment, the digital waveform generator 179 is software-based with the timings at which TXA, TXB, in-phase out and quadrature out are switched between a +1 state, a −1 state and a 0 state being determined using the control parameters sent by the processor 171. An analog to digital interface 181 receives the digital signals from the analog to digital converter 73 and transfers them to the processor 171 where they are processed to obtain the x-position and the y-position of the stylus and the phase information (ø) for the stylus as described above.
Excitation Driver
The excitation voltage applied across the excitation winding 29 is the voltage between the output terminals 195-1 and 195-2 of the amplification circuits 191-1 and 191-2 respectively and will therefore vary according to the drive signals TXA and TXB as indicated in table 1.
Excitation Signals
The performance of the x-y digitising system illustrated in
In example 1, Lex is 25 μH, Rex is 10 ohms, Rn is 1 ohm and Rp is 3 ohms.
b shows a timing diagram for the form of the excitation current, that is the current flowing through the excitation winding 29, as a result of the excitation voltage shown in
In this example, the EMF across the excitation winding 29 is turned to zero by switching on both the n-channel MOSFET switches N1 and N2, rather than the p-channel MOSFET switches P1 and P2, by setting TXA and TXB equal to 1. Therefore, when the EMF across the excitation winding 29 is set to zero the excitation current decays whilst circulating through N1, N2 and the excitation winding 29. The decay time constant, which corresponds to the time required for the amplitude of the excitation current to reduce to 37% of its maximum value, is given by:
Inserting the values used in this example into equation 9 gives a value for the decay time constant of 2 μs.
Although the same decay time constant could be achieved using p-channel MOSFET switches having an on-resistance of 1 ohm and setting the excitation voltage to zero by switching these p-channel MOSFET switches on (by setting TXA and TXB to zero), it costs approximately three times more to manufacture a p-channel MOSFET with the same resistance as a n-channel MOSFET because p-channel devices require approximately three times the area of silicon compared with n-channel devices. A useful measure of driver cost is therefore:
Inserting the values of Rn and Rp for example 1 into equation 10 gives a relative_driver_size of 2.
c shows the current drawn from the power supply during the excitation sequence. As shown, current is only drawn from the power supply when the excitation pulses are applied. Further, except for the first excitation pulse, when an excitation pulse is applied current initially flows in the reverse direction, returning power to the supply. This is because the decaying excitation current from the previous excitation pulse has not reduced to zero and therefore some of the remaining energy contained in the electromagnetic field generated by the excitation winding 29 is returned to the power supply.
d illustrates the EMF induced into one of the sensor windings. As shown in
The second mechanism is not present after the last pulse of the excitation sequence and therefore, in the pulse-echo system, is not present when the EMFs induced in the sensor windings are measured in order to determine the position of the resonant stylus 5.
A measure of the sensed power can be determined by calculating the power that would be dissipated through a load of 10 ohms connected across a sensor winding during the period between excitation sequences multiplied by the excitation-echo sequence repetition rate, which for this example gives a sensed power of 9.435 μW. The supply power, which corresponds to the energy drawn from the power supply during an excitation sequence multiplied by the excitation-echo sequence repetition rate, is calculated to be 0.713 mW. Therefore, a measure of the power-efficiency of this example, determined by dividing the sensed power by the supply power, is 1.32%.
This power efficiency represents an order of magnitude improvement over the power-efficiency obtainable in conventional x-y positioning devices utilising the coupling of electromagnetic energy such as that described in U.S. Pat. No. 4,878,553 discussed above.
Further, if the excitation sequence illustrated in
In this example, by reducing the resistive component of the load, the decay time constant is increased compared to the x-y positioning device described in U.S. Pat. No. 4,878,553 which has the effect of increasing the amplitude of the component of the excitation current at the fundamental frequency, resulting in an improved coupling between the excitation winding and the resonant circuit in the resonant stylus.
As will be described in more detail hereinafter, the duration of the last pulse of the excitation sequence is shorter than the middle pulses so that the excitation current flowing through the excitation winding 29 is driven to zero, thereby reducing any slowly-varying component from the signal induced in the sensor windings after the last excitation pulse. As will also be described hereinafter, the duration of the first pulse of the excitation sequence is reduced in comparison with the middle pulses in order to reduce any slowly-varying component in the excitation current flowing while the excitation pulses are applied which may also persist after the excitation sequence during the period when the induced signals in the sensor windings are measured.
In the first example the resistance of the n-channel MOSFET switches is less than the resistance of the p-channel MOSFET switches, which is preferential because it provides a low cost way of increasing the decay time constant of the excitation circuit. A second example will now be described to illustrate that this feature is not essential to obtain a significant advantage over conventional position sensing systems using inductive coupling.
The parameters for the second example are identical to those of the first example except that Rn and Rp are both set to 2 ohms. Referring to equation (10), this gives a relative_driver_size of 2 which is identical to that of the first example and therefore the cost of implementing the first and second examples is not significantly different. In the second example, a supply power of 0.724 mW gives a sensed power of 8.328 μW and therefore the power efficiency is 1.15%. Although the power efficiency in the second embodiment is over 10% reduced from that of the first embodiment due to increased power dissipation in N1 and N2, this power efficiency still represents a significant improvement over conventional systems.
In the first example the power supply applies an EMF of 3.3 volts across the excitation winding 29 when the excitation pulses are applied. A third example will now be described with reference to
As shown in
For the third example, a sensed power of 9.8 μW is calculated for a supply power of 0.727 mW which gives a power efficiency of 1.35%, comparable to that of the first example.
From the third example it can be seen that the resolution of the digitiser system can be maintained approximately constant for different supply voltage levels without significantly changing the power efficiency by varying the duration of the excitation pulses, in particular by making the pulse width inversely proportional to the supply voltage.
In the first to third examples, the last excitation pulse was shortened so that the excitation current is driven to zero when the last excitation pulse ends. A fourth example will now be described with reference to
a shows the excitation voltage sequence applied across the excitation winding 29 for the last four excitation pulses and
As shown in
A fifth example will now be described with reference to
a illustrates the last five excitation pulses of the excitation sequence for this example and shows that the duration of the final excitation pulse is less than half that of the previous excitation pulses.
d shows the EMF induced in the sensor winding for this example. A sensed power of 14.321 μW is calculated for a supply power of 0.347 mW giving a power efficiency of 4.13%. This power efficiency is significantly larger than that of the first to fourth examples because the increase in the time decay constant (caused by the reduction in the resistance of the excitation winding 29) causes a greater proportion of the excitation current to be at the fundamental frequency. In practice, this reduction of the resistance of the excitation winding 29 can be achieved by increasing the thickness and/or width of the conductors printed on the sensor PCB 13. However, as the gap between the printed conductors cannot be reduced below a set figure, increasing the width of the printed conductors also requires an increased size of the sensor PCB 13, which for many applications is not desirable.
a to 13d illustrate a sixth example in which the load of the excitation circuit is made almost entirely inductive. For this example, the inductance of the excitation winding 29 is set to 50 μH and the resistance of the excitation winding 29, the n-channel MOSFET switches and the p-channel MOSFET switches are all set to 0.1 ohms. The remaining parameters are identical to those of the first embodiment.
a illustrates the last five excitation pulses of the excitation sequence for this example. As shown, the length of each of the excitation pulses apart from the last is 2.5 μs, which is also the duration of the zero applied EMF period between the excitation pulses. The middle_pulse_ratio is therefore 0.5. As shown in
Although it would be impracticable to build an excitation circuit or an excitation winding for a real device having the system parameters used in this example, it does illustrate clearly the dynamics of the excitation current in the excitation winding 29 and how a final pulse can be added to the excitation sequence whose duration is set to drive the excitation current to zero.
As described previously, it is preferred that the duration of the first excitation pulse of the excitation sequence is also reduced compared to the middle pulses.
a illustrates the excitation voltage for an excitation sequence. The middle_pulse_ratio for this excitation sequence is 0.3.
From the seventh example it can be seen that if all the excitation pulses in the excitation sequence have the same duration then a slowly-varying component is added to the excitation current which causes additional power to be drawn from the power supply.
An eighth example will now be described with reference to
c illustrates the current drawn from and returned to the power supply and, as shown, apart from the first excitation pulse and the last excitation pulse, the net current drawn from the power supply is substantially zero due to the inductive nature of the load.
As described previously, the excitation current can be returned more rapidly to zero at the end of the excitation sequence by setting the duration of the last excitation pulse to be less than that of the previous excitation pulses. An alternative technique for returning the excitation current to zero more quickly is to reduce the time decay constant of the excitation circuit after the last excitation pulse has been applied. An excitation driver which implements this alternative technique will now be described with reference to
As shown in
In the previous examples the excitation sequence has consisted of alternating single positive excitation pulses and single negative excitation pulses.
a illustrates the excitation voltage applied across the excitation winding 29 and, as shown, the sign of the excitation pulses changes every other pulse. The excitation current, as shown in
The excitation drivers previously described provide both positive and negative excitation pulses across the excitation winding 29. However, this is not essential and excitation pulses which are all of the same sign can also be used.
A single-ended excitation driver can be made by modifying the excitation driver shown in
As described above, in the tenth example the excitation current decays almost to zero between excitation pulses. This is advantageous because otherwise the amplitude of the excitation current will gradually increase giving rise to a slowly-varying component in the excitation current which draws additional current from the power supply compared to the tenth example. An eleventh example will now be described with reference to
The following conclusions can be derived from the above examples:
The skilled person will appreciate from the above that the form of the excitation sequence will depend upon the application, in particular upon the supply power and the resonant frequency of the resonant stylus. From a manufacturing point of view it is advantageous if the digitising electronics 49 can be used for many different applications. This can be achieved with the digital processing and signal generation unit 59 described with reference to
For battery-powered devices a nominal value for the power supply voltage may not be sufficient because the voltage of a battery can vary significantly over its lifetime. A solution to this problem is for the digital processing and signal generation unit 59 to monitor directly the battery voltage and adjust the pulse duration accordingly. In one embodiment, the battery voltage is monitored by connecting the battery to the A to D converter 73 which converts the voltage into a digital signal which can then be monitored on a regular basis by the processor 171 via the A to D interface 181.
Another technique of improving the power efficiency is to reduce the power drawn from the power supply when the stylus is not in the vicinity of the LCD 3. This could be done by reducing the repetition rate at which the excitation sequences are applied. Alternatively, this can also be done by keeping this repetition rate constant but by varying the duration of the excitation pulses. In particular, it is possible to use shorter pulses when the stylus is away from the LCD 3 because good position accuracy is not required until the stylus is close to the LCD 3. It can be determined using these short pulses when the stylus is close to the LCD 3 and then longer pulses can be used for accurate position detection. Varying the duration of the excitation pulses is preferred over varying the repetition rate at which the excitation sequences are applied because the amount of time taken to detect the presence of the stylus in the vicinity of the LCD 3 can be reduced.
Modifications and Alternative Embodiments
In the above embodiment, a hand-held personal digital assistant was described which includes an x-y digitising tablet which operates with a resonant stylus. Various novel features of the excitation circuitry have been described which make the system particularly suitable for battery-powered operation. In particular, the reduction in the power drawn from the power supply while maintaining sensed signal levels is advantageous for battery-powered devices because it increases the battery lifetime without affecting the resolution of the devices. The skilled person in the art will appreciate that many of the novel aspects of the system described above are independent of each other.
A number of modifications and alternative embodiments will now be described.
As those skilled in the art will appreciate, the digitising system described above can be used for various applications. It is particularly useful, however, for low cost high volume consumer products such as PDAs, web browsers and mobile telephones and the like.
In the above embodiments, the digitiser system employed a number of sensor windings, an excitation winding and a resonant stylus. In an alternative embodiment, rather than using a resonant stylus, a stylus having either a short-circuit coil or a magnetic field concentrator (such as a piece of ferrite) could be used. However, in such embodiments, lower signal levels would be induced in the sensor windings and the system could not operate in the pulse-echo mode of operation since the non-resonant elements do not continue to “ring” after the excitation signal has ended. However, the excitation circuitry and waveforms described above will still provide significant power savings in such “continuous” excitation systems.
Although the circuitry for analysing the signals induced in the sensor windings in the above-described examples used mixers and integrators, alternatively an analog-to-digital converter can be used to directly detect the induced signals and a digital processor can be used to determine the pen position from, for example, the amplitudes and phases of the induced signals. Alternatively, an analogue processing scheme, such as that described in International Patent Application No. WO99/34171, could be utilised to determine the position of the stylus.
A skilled person will recognise that the exact form of the mixing signals used to demodulate the induced signals in the sensor windings can be varied from that described above. For example, the two mixing signals used to demodulate the induced signals in the sensor windings need not be in phase quadrature, although this would increase the complexity of the processing circuit used to determine the position of the stylus.
In the above examples the repetition frequency of the excitation pulses is matched with the resonant frequency of the stylus. This is preferred since it enables an efficient coupling of energy to the resonant circuit. However, other excitation sequences could be used provided that the timing of the excitation pulses is such that the energy stored in the resonant stylus increases during an excitation sequence. For example, one of the positive or negative excitation pulses in the excitation sequence shown in
In the above examples it has been shown that it is advantageous to shorten the duration of the first and last excitation pulses of an excitation sequence compared to the middle pulses. The skilled person will appreciate that alternatively the duration of the pulse could gradually increase from the beginning of the excitation sequence and gradually decrease towards the end of the excitation sequence.
The excitation circuits described above have been based on MOSFET switching device technology. Bipolar transistors could, however, be used instead, although bipolar devices usually have a significant collector-emitter voltage when conducting current resulting in a disadvantageously high on-resistance. Further, bipolar devices are not typically good conductors in the reverse direction of their normal operating mode which is necessary if a significant amount of current is to be returned to the power supply, although reverse protection diodes, such as Schottky diodes, could be utilised at significant additional expense.
The resonant frequency and the quality factor of the stylus do not need to be fixed, as these can be determined form the signals induced in the sensor windings. In this way additional information, for example which of a plurality of styluses is being used, can be determined. This is particularly advantageous when different users have different styluses.
The techniques described above are equally applicable to position sensors having styluses which contain an active device in addition to the resonant circuit such as the stylus described in U.S. Pat. No. 5,600,105.
The skilled person will recognise that the excitation circuitry and waveforms described above can be applied to other forms of position sensors in which a position is determined by energising an excitation winding and measuring a signal induced in a sensor winding. For example, the position sensor may measure position in one dimension, which can be either linear or rotary. Alternatively, the position sensor may measure position in six dimensions, namely x, y, z, yaw, pitch and roll. In the above embodiments a resonant stylus 5 is used to couple energy from the excitation winding to the sensor winding. In alternative embodiments, the relative position of a first member carrying an excitation winding and a second member carrying a sensor winding can be determined by energising the excitation winding and detecting a signal induced in the sensor winding through coupling of electromagnetic energy.
The skilled person will also recognise that the excitation circuitry and waveforms described above are not limited to the particular types of windings described, but could also be used with traditional Inductosyn type windings.
Number | Date | Country | Kind |
---|---|---|---|
9924846 | Oct 1999 | GB | national |
0013882 | Jun 2000 | GB | national |
PCT/GB00/04030 | Oct 2000 | WO | international |
This is a continuation-in-part of my commonly assigned application 09/220,354 filed Dec. 24, 1998 now U.S. Pat. No. 6,788,221.
Number | Name | Date | Kind |
---|---|---|---|
2145742 | Wechsung | Jan 1939 | A |
2867783 | Childs | Jan 1959 | A |
2942212 | Mynall | Jun 1960 | A |
3219956 | Newell et al. | Nov 1965 | A |
3297940 | Mulligan et al. | Jan 1967 | A |
3482242 | Hargrove | Dec 1969 | A |
3647963 | Bailey | Mar 1972 | A |
3772587 | Ferrand et al. | Nov 1973 | A |
3812481 | Stednitz | May 1974 | A |
3851242 | Ellis | Nov 1974 | A |
3895356 | Kraus | Jul 1975 | A |
3898635 | Kulterman | Aug 1975 | A |
3906436 | Kurauchi et al. | Sep 1975 | A |
3962663 | Visser | Jun 1976 | A |
4005396 | Fujiwara et al. | Jan 1977 | A |
4014015 | Gundlach | Mar 1977 | A |
4065850 | Burr et al. | Jan 1978 | A |
4081603 | Davis et al. | Mar 1978 | A |
4092852 | Fowler et al. | Jun 1978 | A |
4094572 | Burr et al. | Jun 1978 | A |
4097684 | Burr | Jun 1978 | A |
4150352 | Pomella et al. | Apr 1979 | A |
4156192 | Schedrovitsky et al. | May 1979 | A |
4210775 | Rodgers et al. | Jul 1980 | A |
4223300 | Wiklund | Sep 1980 | A |
4255617 | Carau, Sr. et al. | Mar 1981 | A |
4341385 | Doyle et al. | Jul 1982 | A |
4423286 | Bergeron | Dec 1983 | A |
4425511 | Borsh | Jan 1984 | A |
4482784 | Whetstone | Nov 1984 | A |
4504832 | Conte | Mar 1985 | A |
4507638 | Brosh | Mar 1985 | A |
4532376 | Rockwell | Jul 1985 | A |
4577057 | Blesser | Mar 1986 | A |
4577058 | Collins | Mar 1986 | A |
4593245 | ViertI et al. | Jun 1986 | A |
4609776 | Murakami et al. | Sep 1986 | A |
4642321 | Schoenberg et al. | Feb 1987 | A |
4693778 | Swiggett et al. | Sep 1987 | A |
4697144 | Howbrook | Sep 1987 | A |
4697244 | Murakami et al. | Sep 1987 | A |
4704501 | Taguchi et al. | Nov 1987 | A |
4709209 | Murakami et al. | Nov 1987 | A |
4711026 | Swiggett et al. | Dec 1987 | A |
4711977 | Miyamori et al. | Dec 1987 | A |
4723446 | Saito et al. | Feb 1988 | A |
4734546 | Landmeier | Mar 1988 | A |
4737698 | McMullin et al. | Apr 1988 | A |
4786765 | Yamanami et al. | Nov 1988 | A |
4820961 | McMullin | Apr 1989 | A |
4848496 | Murakami et al. | Jul 1989 | A |
4868443 | Rossi | Sep 1989 | A |
4878553 | Yamanami et al. | Nov 1989 | A |
4891590 | Hammel et al. | Jan 1990 | A |
4893077 | Auchterlonie | Jan 1990 | A |
4902858 | Yamanami et al. | Feb 1990 | A |
4963703 | Phillips | Oct 1990 | A |
4975546 | Craig | Dec 1990 | A |
4985691 | Pulyer et al. | Jan 1991 | A |
4999461 | Murakami et al. | Mar 1991 | A |
5013047 | Schwab | May 1991 | A |
5028745 | Yamanami et al. | Jul 1991 | A |
5041785 | Bogaerts et al. | Aug 1991 | A |
5066833 | Zalenski | Nov 1991 | A |
5082286 | Ryan et al. | Jan 1992 | A |
5088928 | Chan | Feb 1992 | A |
5129654 | Bogner | Jul 1992 | A |
5136125 | Russell | Aug 1992 | A |
5177389 | Schalk | Jan 1993 | A |
5188368 | Ryan | Feb 1993 | A |
5381091 | Kobayashi et al. | Jan 1995 | A |
5406155 | Persson | Apr 1995 | A |
5434372 | Lin | Jul 1995 | A |
5486731 | Masaki et al. | Jan 1996 | A |
5557076 | Wieczorek et al. | Sep 1996 | A |
5619431 | Oda | Apr 1997 | A |
5625239 | Persson et al. | Apr 1997 | A |
4878553 | Yamanami et al. | Sep 1997 | A |
5693993 | Ito et al. | Dec 1997 | A |
5748110 | Sekizawa | May 1998 | A |
5783940 | Kolomeitsev | Jul 1998 | A |
5815091 | Dames | Sep 1998 | A |
5818091 | Lee et al. | Oct 1998 | A |
6124708 | Dames | Sep 2000 | A |
6249234 | Ely et al. | Jun 2001 | B1 |
6489899 | Ely et al. | Dec 2002 | B1 |
6522128 | Ely et al. | Feb 2003 | B1 |
6534970 | Ely et al. | Mar 2003 | B1 |
6788221 | Ely et al. | Sep 2004 | B1 |
Number | Date | Country |
---|---|---|
1134848 | Aug 1962 | DE |
3500121 | Jul 1986 | DE |
3620412 | Dec 1987 | DE |
0159191 | Oct 1985 | EP |
0182085 | May 1986 | EP |
0182085 | May 1986 | EP |
0209513 | Jun 1986 | EP |
0218745 | Apr 1987 | EP |
0313046 | Apr 1989 | EP |
0537458 | Apr 1993 | EP |
0552001 | Jul 1993 | EP |
0554900 | Aug 1993 | EP |
0607694 | Jul 1994 | EP |
0657917 | Jun 1995 | EP |
0675581 | Oct 1995 | EP |
0680009 | Nov 1995 | EP |
0709648 | May 1996 | EP |
0716390 | Jun 1996 | EP |
0743508 | Nov 1996 | EP |
0772149 | May 1997 | EP |
1325017 | Mar 1962 | FR |
2298082 | Aug 1976 | FR |
2682760 | Apr 1993 | FR |
851543 | Oct 1960 | GB |
1122763 | Aug 1968 | GB |
1452132 | Oct 1976 | GB |
2012431 | Jul 1979 | GB |
2021273 | Nov 1979 | GB |
2042183 | Sep 1980 | GB |
2059593 | Apr 1981 | GB |
2064125 | Jun 1981 | GB |
2074736 | Nov 1981 | GB |
1604824 | Dec 1981 | GB |
2103943 | Mar 1983 | GB |
2141235 | Dec 1984 | GB |
287267 | Jan 1996 | TW |
347542 | Nov 1998 | TW |
WO 9212401 | Jul 1992 | WO |
WO 9425829 | Nov 1994 | WO |
WO 9531696 | Nov 1995 | WO |
WO 9603188 | Feb 1996 | WO |
9714935 | Apr 1997 | WO |
WO 9800921 | Jan 1998 | WO |
WO 0033244 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20010006369 A1 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09220354 | Dec 1998 | US |
Child | 09776908 | US |