The present invention relates to a positioning element for a guide vane arrangement of a guide vane stage of a gas turbine, with at least one base section curved in the peripheral direction; a plurality of uptake openings that are arranged next to each other in the peripheral direction on the base section and whose aperture axis runs substantially in the radial direction and that are designed to accommodate a respective radially inner guide vane section; a coupling section provided on the base section, which is coupled or can be coupled to a seal carrier of a seal arrangement.
Directional indications such as “axially” or “axial” and “radially” or “radial” and “peripheral” should basically be understood as referring to the machine axis of the gas turbine, unless otherwise indicated explicitly or implicitly from the context. Such a guide vane stage may be arranged in the region of a compressor or in the region of the turbine. The feature of a coupling section should be construed broadly and comprises, for example, a section enabling a form-fitting connection with a mating piece of a seal carrier. Yet the coupling section can also be simply a region or a face of the base section on which a sealing element can be arranged directly.
Such a positioning element can also be called a positioning ring or positioning half-ring. As a rule, the circular arrangement in a gas turbine is accomplished by two semicircular positioning half-rings, which abut against one another in a common parting plane. It has been found that because of the thermal relations a radial temperature gradient forms in the positioning half-rings, wherein the positioning half-rings are subject to a greater strain radially outside than radially inside in the peripheral direction. This greater radially outside peripheral strain leads in particular to strong deformations of the positioning element also in the region of the parting plane, and of the seal carrier coupled to it. These deformations may also be described as constrictions and are known under the concept of the cording effect. This has the consequence, in particular, that the seal carrier or its sealing elements come into contact with sealing fins rotating relative to them, so that strong wear and tear occurs on the sealing elements. The cording effect in the region of the parting plane, in particular, leads to a narrowing or local reduction in the diameter when the gas turbine is accelerated, and to a widening or local increase in the diameter when the gas turbine is decelerated.
The object of the invention is to provide a positioning element in which the cording effect is lessened.
For this, it is proposed that at least one recess is provided in the base section, which is arranged between two neighboring uptake openings and runs from inside to outside at least in the radial direction. The providing of such recesses makes it possible for the positioning element to have a shorter effective radial height in the region of the recess, which is acted upon by the temperature gradient, and which exerts an influence on the strain in the positioning element. When such recesses are provided at several places along the periphery between respective uptake openings, the cording effect can be influenced, since the deformations occurring are less than in the case of a continuous positioning element without recesses. The recesses in the positioning element also lead to a reduced bending stiffness of the positioning element. Besides the thermal effects, the cording effect is also influenced by the ratio of the bending stiffnesses of positioning element and seal carrier. It is advantageous in this case for the positioning element to be “softer” or less stiff, because then the cording effect is less. Moreover, with a less bending-stiff positioning element, a stiffer seal carrier can counteract the constriction of the positioning element.
The positioning element can be formed as a ring and have two semicircular base sections.
A reduction of the cording effect and thus of constrictions at the positioning element also leads to a reduction of local inflows at a parting plane of the semicircularly shaped base sections. Due to fewer constrictions, the formation of gaps and leaks can also be avoided, which has a positive impact on the efficiency and the surge limit, especially because leaks at the sealing elements can be reduced.
Moreover, thanks to the smaller inflows, a lower load on the sealing elements can also be achieved, especially at rotor sealing fins and their coating. This leads to an improved or longer durability, so that the maintenance and repair effort and expense can be reduced.
The coupling section may comprise at least one axially front groove and one axially rear groove, which run on the base section along the peripheral direction. The two encircling grooves serve, in particular, for coupling a seal carrier to the positioning element.
According to a first embodiment, the axially front groove and the axially rear groove may have substantially the same distance in the radial direction from a radially inner side of the base section. In other words, the two grooves lie at roughly the same level or have substantially the same distance (radius) from a machine axis.
In the first embodiment, moreover, the recess may run in the axial direction between two uptake openings and extend from an axially front face of the base section to an axially rear face of the base section. The recess may be formed as a slot in the base section.
Moreover, in the first embodiment, the recess may have a varying radial height or a uniform height along the axial direction. Furthermore, the recess may have a varying width along the axial direction in the peripheral direction or it may have a uniform width. Thanks to an appropriate design or dimensioning of the recesses or of the slot, the cording effect can be influenced in a targeted manner, in particular when considering the fact that the radial temperature gradient also changes over the axial length.
According to a second embodiment the recess may run in peripheral direction in an axially rear region of the base section, so that, from the axial rear, substantially cylindrical outer walls of the uptake openings are visible. The recess may be bounded in the axial direction by an axially front wall section in this case. Thus, there is a continuous recess in an axially rear region, which extends to the front in the axial direction between the uptake openings and ends at the axially front wall section.
In the second embodiment, the axially front groove and the axially rear groove may have a different distance from a radially inner side of the base section.
The positioning element of the second embodiment can be produced by an additive manufacturing process, especially by selective laser melting.
The invention further relates to a seal carrier for a seal arrangement with a bottom section curved in the peripheral direction, on which there is provided a sealing element radially inside; a mating coupling section which is coupled or can be coupled to a coupling section of a positioning element radially inside, wherein the mating coupling section has an axially front spring section and an axially rear spring section, which are introduced or can be introduced with corresponding grooves of the coupling section of the positioning element. It is proposed here that the axially front spring section and the axially rear spring section have a different distance from a radial inner side of the bottom section. Such a seal carrier is especially suited for coupling with a positioning element of the second embodiment.
The spring sections may be arranged at an axially front carrier wall and at an axially rear carrier wall, in such a way that the two spring sections face each other in the axial direction.
The bottom section can have, radially outside, a cover section which is inclined with respect to the axial direction and the radial direction. Such an inclined cover section serves, in particular, for covering the recess in a coupled state on the positioning element.
In the bottom section, especially in its cover section, a plurality of openings can be provided next to each other in the peripheral direction.
Finally, the invention also relates to a guide vane carrier arrangement for a gas turbine, especially an aircraft gas turbine, with at least one positioning element according to the first embodiment and at least one corresponding seal carrier or with at least one positioning element according to the second embodiment and at least one above-described seal carrier.
The invention shall be described by way of an example and not in limiting fashion with reference to the appended figures.
Whereas a recess 18 is arranged between every two neighboring uptake openings 14 in
It becomes clear from the variants of
In the base section 12 of
It is evident from
The base section likewise has a coupling section 118, comprising an axially front groove 122 and an axially rear groove 124. Contrary to the first embodiment, the axially rear groove 124 is arranged radially outside on the base section 112. This altered arrangement of the axially rear groove 124 is due to the larger recesses 116 and lack of material radially inside where an axially rear groove could be formed as in the first embodiment. The axially rear groove 124 is located further radially outward in regard to the machine axis of the gas turbine than the axially front groove 122. The recesses 116 are bounded at the axial front side by an axially front wall section 117. The axially front wall section 117 here also forms the rear side or facing away side of a bottom of the axially front groove 122.
The configuration shown here for the base section 112 with the recesses 116 and the coupling section 118 with the two grooves 122, 124 is optimized in that the base section 112 can be produced by an additive manufacturing process, especially by selective laser melting. The semicircular base section 112 for example can be constructed layer by layer from axial front to axial rear.
Due to the altered design of the base section 112,
The seal carrier 130 in the assembled state comprises the bottom section 138 arranged opposite (radially on the inside) the uptake openings 114. This bottom section passes into or surrounds an inclined cover section 140. The cover section 140 serves in particular to enable a manufacturing by selective laser melting. In the inclined cover section 140, a plurality of openings 142 are provided. These openings 142 likewise serve to enable a manufacturing by selective laser melting. Hence, the seal carrier 130 is designed such in terms of its configuration that it can be produced by an additive manufacturing process, especially by selective laser melting.
What is common to both embodiments is that recesses 16, 116 are provided in the base section 12, 112, which serve to reduce the cording effect at the positioning element 10, 110. In particular, the recesses act to provide interruptions so that a radial temperature gradient cannot display its full effect along the entire circumference of the positioning element 10, 110. Moreover, the recesses serve to lessen the bending stiffness of the positioning element, which likewise reduces the cording effect.
It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be covered by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 215 784.1 | Aug 2016 | DE | national |