1. Field of the Disclosure
The present invention relates generally to electrophotographic image forming devices and more particularly to positioning features for electrical contacts of a replaceable unit of an electrophotographic image forming device.
2. Description of the Related Art
During the electrophotographic printing process, an electrically charged rotating photoconductive drum is selectively exposed to a laser beam. The areas of the photoconductive drum exposed to the laser beam are discharged creating an electrostatic latent image of a page to be printed on the photoconductive drum. Toner particles are then electrostatically picked up by the latent image on the photoconductive drum creating a toned image on the drum. The toned image is transferred to the print media (e.g., paper) either directly by the photoconductive drum or indirectly by an intermediate transfer member. The toner is then fused to the media using heat and pressure to complete the print.
The electrophotographic image forming device typically includes one or more customer replaceable units that have a shorter lifespan than the image forming device. For example, the image forming device may include replaceable unit(s) that replenish the image forming device's toner supply and/or that replace worn imaging components, such as the photoconductive drum, etc. It is desired to communicate various operating parameters and usage information of the replaceable unit(s) to the image forming device for proper operation. For example, it may be desired to communicate such information as replaceable unit serial number, replaceable unit type, toner color, toner capacity, amount of toner remaining, license information, etc. The replaceable unit(s) typically include processing circuitry configured to communicate with and respond to commands from a controller in the image forming device. The replaceable unit(s) also include memory associated with the processing circuitry that stores program instructions and information related to the replaceable unit. The processing circuitry and associated memory are typically mounted on a circuit board that is attached to the replaceable unit. The replaceable unit also includes one or more electrical contacts that mate with corresponding electrical contacts in the image forming device upon installation of the replaceable unit in the image forming device in order to facilitate communication between the processing circuitry of the replaceable unit and the controller of the image forming device. It is important to accurately position the electrical contacts of the replaceable unit relative to the corresponding electrical contacts of the image forming device in order to ensure a reliable connection between the processing circuitry of the replaceable unit and the controller of the image forming device when the replaceable unit is installed in the image forming device.
Accordingly, positioning features that provide precise alignment of the electrical contacts of the replaceable unit with corresponding electrical contacts of the image forming device are desired.
A replaceable unit for an electrophotographic image forming device according to one example embodiment includes a housing having a top, a bottom, a first side and a second side formed between a first end and a second end of the housing. A pocket is formed on the first side of the housing. A bottom end of the pocket is open for receiving an electrical connector during insertion of the replaceable unit along a downward insertion direction into the image forming device. An electrical contact is positioned within the pocket. The electrical contact is electrically connected to processing circuitry mounted on the housing. An outer guide is positioned on the first side of the housing. The outer guide is positioned ahead of the pocket along the downward insertion direction. At least a portion of the outer guide inclines inward toward the first side of the housing as the outer guide extends upward. An inner guide is positioned within the pocket on a first inner surface of the pocket. The first inner surface of the pocket faces inward toward the first side of the housing. At least a portion of the inner guide inclines inward toward the first side of the housing as the inner guide extends upward.
A replaceable unit for an electrophotographic image forming device according to another example embodiment includes a housing having a top, a bottom, a first side and a second side formed between a first end and a second end of the housing. A photoconductive drum is mounted on the housing and has a rotational axis that runs from the first end to the second end. A downward facing pocket is formed on the first side of the housing. A bottom end of the pocket is open for receiving an electrical connector when the replaceable unit is installed in the image forming device. An electrical contact is positioned within the pocket on a first inner surface of the pocket that is positioned against the first side of the housing. The electrical contact is electrically connected to processing circuitry mounted on the housing. A pair of outer guides is positioned on the first side of the housing. The outer guides are spaced below the bottom end of the pocket and are spaced from each other along an axial dimension of the photoconductive drum. At least a portion of each of the outer guides inclines inward toward the first side of the housing as said outer guide extends upward. An inner guide is positioned within the pocket on a second inner surface of the pocket. The second inner surface of the pocket faces inward toward the first side of the housing and is spaced opposite the first inner surface of the pocket. At least a portion of the inner guide inclines inward toward the first side of the housing as the inner guide extends upward.
A replaceable unit for an electrophotographic image forming device according to another example embodiment includes a housing having a top, a bottom, a first side and a second side formed between a first end and a second end of the housing. A photoconductive drum is mounted on the housing and has a rotational axis that runs from the first end to the second end. A downward facing pocket is formed on the first side of the housing. A bottom end of the pocket is open for receiving an electrical connector when the replaceable unit is installed in the image forming device. An electrical contact is positioned within the pocket. The electrical contact is electrically connected to processing circuitry mounted on the housing. An outer guide is positioned on the first side of the housing. The outer guide is spaced below the bottom end of the pocket. At least a portion of the outer guide inclines inward toward the first side of the housing as the outer guide extends upward. A protruding portion of the housing protrudes from the first side of the housing below the outer guide. The protruding portion of the housing houses a channel for moving toner cleaned from an outer surface of the photoconductive drum.
The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present disclosure, and together with the description serve to explain the principles of the present disclosure.
In the following description, reference is made to the accompanying drawings where like numerals represent like elements. The embodiments are described in sufficient detail to enable those skilled in the art to practice the present disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and mechanical changes, etc., may be made without departing from the scope of the present disclosure. Examples merely typify possible variations. Portions and features of some embodiments may be included in or substituted for those of others. The following description, therefore, is not to be taken in a limiting sense and the scope of the present disclosure is defined only by the appended claims and their equivalents.
Image forming device 20 includes an image transfer section that includes one or more imaging stations 50. In the example embodiment illustrated, each imaging station 50 includes a toner cartridge 100, a developer unit 200 and a photoconductor unit 300. Each toner cartridge 100 includes a reservoir 102 for holding toner and an outlet port in communication with an inlet port of a corresponding developer unit 200 for periodically transferring toner from reservoir 102 to developer unit 200 in order to replenish the developer unit 200. One or more agitating members may be positioned within reservoir 102 to aid in moving the toner. In the example embodiment illustrated, image forming device 20 utilizes what is commonly referred to as a single component development system. In this embodiment, each developer unit 200 includes a toner reservoir 202 and a toner adder roll 204 that moves toner from reservoir 202 to a developer roll 206. Each photoconductor unit 300 includes a charge roll 304, a photoconductive (PC) drum 302 and a cleaner blade or roll (not shown). PC drums 302 are mounted substantially parallel to each other. For purposes of clarity, developer unit 200 and photoconductor unit 300 are labeled on only one of the imaging stations 50. Each imaging station 50 may be substantially the same except for the color of toner used.
Each charge roll 304 forms a nip with the corresponding PC drum 302. During a print operation, charge roll 304 charges the surface of PC drum 302 to a specified voltage such as, for example, −1000 volts. A laser beam from a printhead 52 associated with each imaging station 50 is then directed to the surface of PC drum 302 and selectively discharges those areas it contacts to form a latent image on the surface of PC drum 302. In one embodiment, areas on PC drum 302 illuminated by the laser beam are discharged to approximately −300 volts. Developer roll 206, which forms a nip with the corresponding PC drum 302, then transfers toner to the latent image on the surface of PC drum 302 to form a toner image. The toner is attracted to the areas of PC drum 302 surface discharged by the laser beam from the printhead 52. A metering device, such as a doctor blade, can be used to meter toner onto developer roll 206 and apply a desired charge on the toner prior to its transfer to PC drum 302.
An intermediate transfer mechanism (ITM) 54 is disposed adjacent to the imaging stations 50. In this embodiment, ITM 54 is formed as an endless belt trained about a drive roll 56, a tension roll 58 and a back-up roll 60. During image forming operations, ITM 54 moves past imaging stations 50 in a clockwise direction as viewed in
A media sheet advancing through simplex path 34 receives the toner image from ITM 54 as it moves through the second transfer nip 64. The media sheet with the toner image is then moved along the media path 32 and into a fuser area 68. Fuser area 68 includes fusing rolls or belts 70 that form a nip 72 to adhere the toner image to the media sheet. The fused media sheet then passes through exit rolls 74 that are located downstream from the fuser area 68. Exit rolls 74 may be rotated in either forward or reverse directions. In a forward direction, exit rolls 74 move the media sheet from simplex path 34 to an output area 76 on top 24 of image forming device 20. In a reverse direction, exit rolls 74 move the media sheet into duplex path 36 for image formation on a second side of the media sheet.
While the example image forming device 20 shown in
While the example image forming device 20 shown in
With reference to
Developer unit 200K includes a housing 210 having a top 212, a bottom 213, an inner side 214 that faces photoconductor unit 300K and an outer side 215 that faces away from photoconductor unit 300K. Top 212, bottom 213, inner side 214 and outer side 215 are positioned between a first end 216 and a second end 217 of housing 210. Reservoir 202 is enclosed within housing 210. A toner inlet port 218 is positioned at the top 212 of housing 210 on end 217 for receiving toner from toner cartridge 100 to replenish reservoir 202. Developer roll 206 runs axially from end 216 to end 217 and is exposed on inner side 214. Developer unit 200K includes an input drive coupler 220 exposed on end 216 of housing 210 to mate with and receive rotational motion from a drive system in image forming device 20 when developer unit 200K is installed in image forming device 20. Drive coupler 220 is operatively coupled to developer roll 206 through a drive train 221 on end 216 in order to rotate developer roll 206 when drive coupler 220 rotates. Drive train 221 also transfers rotational motion received by drive coupler 220, via developer roll 206, to toner adder roll 204 and to agitating members positioned within reservoir 202 that aid in moving toner therein. In the example embodiment illustrated, a drive train 222 is operatively connected to drive coupler 220 and positioned on end 217 of housing 210. Drive train 222 includes an output gear 224 positioned to mate with a corresponding input gear on toner cartridge 100 in order to transfer rotational motion to the components of toner cartridge 100.
Photoconductor unit 300K includes a housing 310 having a top 312, a bottom 313, an inner side 314 that faces developer unit 200K and an outer side 315 that faces away from developer unit 200K. Top 312, bottom 313, inner side 314 and outer side 315 are positioned between a first end 316 and a second end 317 of housing 310. PC drum 302 runs axially from end 316 to end 317 and is exposed on inner side 314. PC drum 302 includes an input drive coupler 320 on one axial end of PC drum 302. Drive coupler 320 is exposed on end 316 of housing 310 to mate with and receive rotational motion from a drive system in image forming device 20 when photoconductor unit 300K is installed in image forming device 20 in order to rotate PC drum 302. Charge roll 304 is biased against the outer surface of PC drum 302 and may be driven by friction between the surfaces of charge roll 304 and PC drum 302 or by a gear train connected to drive coupler 320. In the embodiment illustrated, a charge roll cleaner roll 305 is in contact with the outer surface of charge roll 304 and removes toner remnants from the outer surface of charge roll 304. Charge roll cleaner roll 305 may be driven by friction between the surfaces of charge roll cleaner roll 305 and charge roll 304 or by a gear train connected to drive coupler 320.
Photoconductor unit 300K may also include a waste toner path that includes a toner conveying member, such as an auger, therein that moves toner cleaned from PC drum by the cleaner blade/roll to a waste toner compartment in image forming device 20. In the example embodiment illustrated, the waste toner path includes a tube 322 that extends outward in a cantilevered manner from end 317 of housing 310. Tube 322 includes a waste toner outlet port 324 positioned to exit waste toner from the waste toner path into a corresponding waste toner inlet in image forming device 20 when photoconductor unit 300K is installed in image forming device 20. Waste toner outlet port 324 may include a shutter 325 that is movable between a closed position blocking waste toner outlet port 324 to prevent toner from leaking from waste toner outlet port 324 when photoconductor unit 300K is removed from image forming device 20 and an open position unblocking waste toner outlet port 324 to permit toner to pass from the waste toner path in photoconductor unit 300K to the waste toner compartment in image forming device 20 when photoconductor unit 300K is installed in image forming device 20.
In the example embodiment illustrated, developer unit 200K and photoconductor unit 300K are fixed to one another such that developer unit 200K and photoconductor unit 300K are replaceable as a single unit. Developer unit 200K and photoconductor unit 300K may be attached to each other by any suitable method. Further, in other embodiments, developer unit 200K and photoconductor unit 300K are not fixed to each other and are separately replaceable.
With reference to
As shown in
In the example embodiment illustrated, imaging basket 400 also includes a pair of vertical positioning guides or ribs 440 that protrude forward from frame 401 toward positioning slot 404. Ribs 440 are positioned just past the ends 416, 417 of electrical connector 410. Ribs 440 extend downward below electrical connector 410.
With reference to
With reference to
This sequence is reversed when photoconductor unit 300K is removed from imaging basket 400. As photoconductor unit 300K moves upward, the incline of guides 340 and the corresponding taper of the bottoms of front surfaces 422 of guides 420 force electrical connector 410 rearward against the bias on electrical connector 410 so that electrical contacts 418 do not drag or scrape along housing 310. The protruding auger channel portion 326 of housing 310 contacts guides 420 as photoconductor unit 300K is removed further from imaging basket 400 causing electrical connector 410 to move further rearward clear of the removal path of the protruding auger channel portion 326 of housing 310. As the protruding auger channel portion 326 of housing 310 passes, the bias on electrical connector 410 causes electrical connector 410 to return forward, toward positioning slot 404.
As desired, photoconductor units 300M, 300Y, 300C may be removable from imaging basket 400 and may have the same construction as photoconductor unit 300K, each including a respective electrical connector 330 that mates with a corresponding electrical connector 410 in imaging basket 400. Similarly, developer units 200M, 200Y, 200C may have the same construction as developer unit 200K and may be fixed to or replaceable separate from their corresponding photoconductor units 300M, 300Y, 300C. Further, in another embodiment, imaging stations 50 do not include toner cartridges 100 and, instead, developer units 200K, 200M, 200Y, 200C include in their respective reservoirs 202 the main toner supply of each toner color.
While the example embodiment illustrated includes electrical connector 330 on photoconductor unit 300K, it will be appreciated that an electrical connector having the features of electrical connector 330 could be included on one or more of developer units 200 or toner cartridges 100. Further, some or all of the features of electrical connector 330 could be shifted to electrical connector 410 or vice versa. For example, electrical connector 330 could be movable and include features such as those shown on electrical connector 410 and electrical connector 410 could be fixed and include features such as those shown on electrical connector 330. Further, although the example embodiment illustrated includes a downward insertion and upward removal of photoconductor unit 300K, various other insertion and removal paths may be used as desired, e.g., a forward, rearward or sideways insertion or a rotating insertion, with the orientations of electrical connectors 330 and 410 modified to reflect the modified insertion and removal directions.
The foregoing description illustrates various aspects of the present disclosure. It is not intended to be exhaustive. Rather, it is chosen to illustrate the principles of the present disclosure and its practical application to enable one of ordinary skill in the art to utilize the present disclosure, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the present disclosure. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/279,921, filed Jan. 18, 2016, entitled “Positioning Features for Electrical Contacts of a Replaceable Unit of an Electrophotographic Image Forming Device,” the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4824388 | Pickel | Apr 1989 | A |
4839691 | Tagawa et al. | Jun 1989 | A |
4891017 | Kuhn et al. | Jan 1990 | A |
5002497 | Plocek et al. | Mar 1991 | A |
5259779 | Ooya et al. | Nov 1993 | A |
5392371 | Morlion et al. | Feb 1995 | A |
5490802 | Plyler et al. | Feb 1996 | A |
5605150 | Radons et al. | Feb 1997 | A |
5716234 | Phillips | Feb 1998 | A |
5746617 | Porter, Jr. et al. | May 1998 | A |
5937239 | Watanabe et al. | Aug 1999 | A |
5946531 | Miura et al. | Aug 1999 | A |
5997329 | Kosmala | Dec 1999 | A |
6014533 | Kawana | Jan 2000 | A |
6014536 | Ban et al. | Jan 2000 | A |
6097908 | Uchiyama et al. | Aug 2000 | A |
6168262 | Clark et al. | Jan 2001 | B1 |
6186809 | Kung | Feb 2001 | B1 |
6254408 | Hattori et al. | Jul 2001 | B1 |
6349182 | Otsubo et al. | Feb 2002 | B2 |
6361350 | Johnson | Mar 2002 | B2 |
6386899 | Ushio et al. | May 2002 | B1 |
6502917 | Shinada et al. | Jan 2003 | B1 |
6582039 | Johnson et al. | Jun 2003 | B2 |
6652309 | Sukagawa | Nov 2003 | B2 |
6773283 | Yoshimatsu et al. | Aug 2004 | B2 |
6786750 | Itoh | Sep 2004 | B2 |
6848925 | Nishide | Feb 2005 | B2 |
7074084 | Shuey et al. | Jul 2006 | B2 |
7086872 | Myer et al. | Aug 2006 | B2 |
7258558 | Dawson et al. | Aug 2007 | B1 |
7272336 | Dawson et al. | Sep 2007 | B1 |
7831168 | Allen et al. | Nov 2010 | B2 |
8200126 | Chaudhuri et al. | Jun 2012 | B2 |
8862016 | Oda | Oct 2014 | B2 |
8867966 | Acosta et al. | Oct 2014 | B2 |
8867970 | Acosta et al. | Oct 2014 | B2 |
8879953 | Amann et al. | Nov 2014 | B2 |
8938179 | Amann et al. | Jan 2015 | B2 |
9170559 | Amann et al. | Oct 2015 | B2 |
9360834 | Payne et al. | Jun 2016 | B1 |
9429899 | Amann et al. | Aug 2016 | B2 |
9482989 | Payne et al. | Nov 2016 | B1 |
9551974 | Martin | Jan 2017 | B1 |
9746815 | Carpenter | Aug 2017 | B2 |
20020025725 | Ushio et al. | Feb 2002 | A1 |
20020057319 | Saruta et al. | May 2002 | A1 |
20030035016 | Tanaka | Feb 2003 | A1 |
20030118367 | Omata et al. | Jun 2003 | A1 |
20030123896 | Goto et al. | Jul 2003 | A1 |
20030215261 | Karakama et al. | Nov 2003 | A1 |
20030223775 | Yoshino et al. | Dec 2003 | A1 |
20050135838 | Miller | Jun 2005 | A1 |
20060067725 | Miyabe et al. | Mar 2006 | A1 |
20060103701 | Chan | May 2006 | A1 |
20070086806 | Burchette et al. | Apr 2007 | A1 |
20070098437 | Kaiga | May 2007 | A1 |
20070230999 | Shimomura | Oct 2007 | A1 |
20080159772 | Koishi et al. | Jul 2008 | A1 |
20090196647 | Nishimoto | Aug 2009 | A1 |
20100104312 | Kawai et al. | Apr 2010 | A1 |
20100221039 | Kawai et al. | Sep 2010 | A1 |
20130273768 | Peng | Oct 2013 | A1 |
20140017932 | Ohyama | Jan 2014 | A1 |
20140169824 | Seto et al. | Jun 2014 | A1 |
20170205762 | Amann | Jul 2017 | A1 |
20170277119 | Sakai | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
1841231 | Oct 2006 | CN |
102262387 | Nov 2011 | CN |
1411598 | Apr 2004 | EP |
2005195884 | Jul 2005 | JP |
2010020219 | Jan 2010 | JP |
2011155642 | Dec 2011 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority dated Apr. 4, 2017 for PCT Application No. PCT/US2017/013639. |
U.S. Appl. No. 15/384,379, filed Dec. 20, 2016 (Amann et al. ). |
Number | Date | Country | |
---|---|---|---|
20170205752 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62279921 | Jan 2016 | US |