The present application relates to the field of communications, and in particular to a positioning method and apparatus based on a binary periodic sequence.
The binary sequence has been widely used in the engineering field, especially in wireless communications and navigation positioning.
Let Fq be a finite field of q elements, and let q be a prime power (power of a prime number). A set of all nonzero elements in Fq is denoted as Fq*. Let F be a set of binary sequences, each binary sequence having a length of n. Then, for each sequence s=(s0, s1, . . . , sn-1)∈F, where si ∈{1,−1}, it is defined that an auto-correlation coefficient of s at delay t(1≤t≤n−1) is:
where i+t=(i+t) mod n. Then, for two different sequences u=(u0, uq, . . . , un-1) and v=(v0, v1, . . . , vn-1)∈F, ui, vj∈{1, −1}, define a cross-correlation coefficient of u and v at delay t(1≤t≤n−1) as:
The correlation of a sequence cluster is defined as:
Among the known sequences, the Gold sequence is widely applied due to better correlation. The Gold sequence is a pseudo-random sequence with good characteristics. There are various methods for constructing the Gold sequence. One of the typical construction methods is to make use of a trace function. Let q=2n and let γ be a generator of Fq*. Then the Gold sequence may be represented by:
where Tr is the trace function from Fq to F2. Since the correlation of the Gold sequence depends on rational points on a curve y2+y=c3+dx, the correlation of the Gold sequence may be estimated with a Hasse-Weil bound.
However, no solution has been proposed yet for the following problem in the related art: although the constructed binary sequence has a good correlation mean value, the peak of correlation coefficient of the positioning signal generated in the positioning application is large.
Embodiments of the present disclosure provide a positioning method and apparatus based on a binary periodic sequence to solve at least the following problem in the related art: although the constructed binary sequence has a good correlation mean value, the peak of correlation coefficient of the positioning signal generated in the positioning application is large.
According to an embodiment of the disclosure, there is provided a positioning method based on a binary periodic sequence, including: selecting one polynomial from each equivalence class of a quadratic polynomial set (set of quadratic polynomials) S to determine a set T; constructing a binary periodic sequence cluster according to the set T; generating a positioning signal according to the binary periodic sequence cluster; and performing positioning processing according to the positioning signal.
According to another aspect of the embodiment of the present disclosure, there is further provided a positioning apparatus based on a binary periodic sequence, including: a first selection module configured to select one polynomial from each equivalence class of a quadratic polynomial set S to determine a set T; a construction module configured to construct a binary periodic sequence cluster according to the set T; a generating module configured to generate a positioning signal according to the binary periodic sequence cluster; and a positioning processing module configured to perform positioning processing according to the positioning signal.
According to still another embodiment of the disclosure, there is further provided a storage medium having a computer program stored thereon, wherein the computer program is configured to be executed to cause steps of any one of the above method embodiments to be implemented.
According to still another embodiment of the disclosure, there is further provided an electronic apparatus, including a memory and a processor, wherein the memory has a computer program stored thereon, and the processor is configured to execute the computer program to implement steps of any of the method embodiments as described above.
According to the present disclosure, a polynomial determination set T is selected from each equivalence class of a quadratic polynomial set S; a binary periodic sequence cluster is constructed according to the set T; a positioning signal is generated according to the binary periodic sequence cluster; and positioning processing is performed according to the positioning signal, thereby solving the following problem in the related art: although the constructed binary sequence has a good correlation mean value, the peak of correlation coefficient of the positioning signal generated in the positioning application is large. Since the constructed binary sequence with a new length has good correlation coefficient, the peak of positioning correlation coefficient generated in the positioning application is relatively small.
The drawings described herein are intended to provide a further understanding of the present disclosure, and are intended to be a part of the present disclosure. The exemplary embodiments of the present disclosure and the description thereof are for explaining the present disclosure and do not constitute an undue limitation of the present disclosure. In the drawings:
The disclosure will be described in detail below with reference to the drawings in conjunction with the embodiments. It should be noted that embodiments of the disclosure and features therein may be combined with each other in any manner as long as they are not contradictory.
It should be also noted that terms “first”, “second”, and the like in the description, claims and drawings of the disclosure are used for the purpose of distinguishing similar objects instead of indicating a specific order or sequence. In addition, sets T1, T1′, T2, T2′ and the like are examples of the above set T, sets S1, S1′, S2′ and the like are examples of the above quadratic polynomial set S, and 1,1′,2,2″ and the like are examples of the above binary periodic sequence cluster.
The method embodiment provided in Embodiment 1 of the present disclosure may be implemented in a mobile terminal, a computer terminal or the like. Taking running on a mobile terminal as an example,
The memory 104 may be configured to store a computer program, for example, a software program and a module of application software, such as a computer program corresponding to the positioning method based on a binary periodic sequence in the embodiments of the present disclosure, and the processor 102 executes the computer program stored in the memory 104 to perform various functional applications and data processing, that is, implement the above method. The memory 104 may include a high speed random access memory and may also include a non-volatile memory such as one or more magnetic storage device, flash memory, or other non-volatile solid state memory. In some examples, the memory 104 may further include a memory remotely located relative to the processor 102, which may be connected to the mobile terminal 10 via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
The transmission device 106 is configured to receive or transmit data via a network. Specific examples of such networks may include a wireless network provided by a communication provider of the mobile terminal 10. In an example, the transmission device 106 includes a Network Interface Controller (NIC) that may be connected to another network device through a base station to communicate with the Internet. In an example, the transmission device 106 may be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
Based on the above mobile terminal, this embodiment provides a positioning method based on a binary periodic sequence.
At step S202, select one polynomial from each equivalence class of a quadratic polynomial set S to determine a set T.
In the above step S202, specifically, polynomials are selected from the respective equivalence classes of the quadratic polynomial set S, and the set T is determined according to the respective selected polynomials.
At step S204, construct a binary periodic sequence cluster according to the set T.
At step S206, generate a positioning signal according to the binary periodic sequence cluster.
At step S208, perform positioning processing according to the positioning signal.
Through the above steps S202 to S208, the following problem in the related art is solved: although the constructed binary sequence has a good correlation mean value, the peak of correlation coefficient of the positioning signal generated in the positioning application is large. Since the constructed binary sequence with a new length has good correlation coefficient, the peak of positioning correlation coefficient generated in the positioning application is relatively small.
In an embodiment of the present disclosure, the above step S206 may specifically include:
In an embodiment of the present disclosure, the above step S208 may specifically include:
mapping the positioning signal to an antenna port at a transmitting end for transmission. The positioning signal is configured to instruct a receiving end, after receiving the positioning signal, to: perform cross-correlation to obtain an arrival time of the positioning signal, determine a distance from the transmitting end according to the arrival time, and perform positioning (on the transmitting end) according to the distance.
In an embodiment of the present disclosure, before selecting one polynomial from each equivalence class of the quadratic polynomial set S to determine the set T, select one generator γ from Fq*, where Fq is a finite field containing q elements, q is an odd prime or an odd prime power (i.e., a power of an odd prime number), and Fq* is a set of all nonzero elements in Fq.
In an embodiment, the above step S202 may specifically include:
In an embodiment of the present disclosure, the above step S204 may specifically include:
constructing a binary periodic sequence cluster 1 from the generator γ and the set T1:
where η is a quadratic multiplicative character from Fq to C*, C is a complex number set excluding 0, and α is any element in Fq*.
Optionally, each sequence in the binary periodic sequence cluster F1 has a length of q−1;
the binary periodic sequence cluster 1 has a size of q; and
if q≥17 and is an odd prime power, a correlation upper limit of the binary periodic sequence cluster 1 is Cor(1)≤6+└2√{square root over (q)}┘.
Furthermore, the above step S202 may further specifically include:
in the case where x2+ax+b in S1 is an irreducible polynomial,
are
Correspondingly, the step S204 may specifically further include:
constructing a binary periodic sequence cluster 1′ from the generator γ and the set T1′:
Optionally, each sequence in the binary periodic sequence cluster 1′ has a length of q−1;
In an embodiment of the present disclosure, before selecting one polynomial from each equivalence class of the quadratic polynomial set S to determine the set T, equivalence class division is performed on the polynomials in the quadratic polynomial set S, which includes:
In another embodiment, the above step S202 may specifically include:
Correspondingly, the step S204 may specifically include:
Optionally, each sequence in the binary periodic sequence cluster 2 has a length of q;
In an embodiment, the above step S202 may further specifically include:
Correspondingly, the step S204 may further include:
Optionally, each sequence in the binary periodic sequence cluster 2′ has a length of q;
the binary periodic sequence cluster 2′ has a size of (q−1)/2; and
if q≥7 and is an odd prime, a correlation coefficient upper limit of the binary periodic sequence cluster 2′ is Cor(4)≤1+└2√{square root over (q)}┘.
In an embodiment of the present disclosure, before selecting one polynomial from each equivalence class of the quadratic polynomial set S to determine the set T, the step of performing equivalence class division on the polynomials in the quadratic polynomial set S, may include:
determining, if and only if there exists β∈Fq, a1=2β+a2,b1=β2+βa+b2, an equivalence relation between x2+a1x+b1 and x2+a2x+b2, and determining an equivalence class of the quadratic polynomial set S to be [x2+a1x+b1].
An embodiment of the present disclosure provides a method for designing a binary periodic sequence based on prime characteristics, in which a length of the sequence may be an odd prime (or odd prime−1) or a prime power (or prime power −1), and has a better correlation coefficient. The binary periodic sequence is a special sequence, i.e., a periodic sequence that takes only two nonzero values.
Based on a multiplicative group structure of a prime characteristic finite field, q is an odd prime or an odd prime power. Consider a monic quadratic polynomial set:
Define an equivalence relation in S1: x2+a1x+b1˜x2+a2x+b2, if and only if there exists β∈Fq* such that a1=βa2, b1=β2b2, there are exactly q−1 elements in each equivalence class. Thus, there is exactly q−1 equivalence classes, denoted as [x2+a1x+b1].
Select one polynomial in each equivalence class, and combine the selected polynomials with x−1 to form a set a set T1:
Generate the binary periodic sequence cluster 1 by:
For f(x) in each T1, define:
Parameters of this sequence are listed below:
The estimation of correlation of such sequences depends on rational points of the curve y2+y=α(x2+axb)(x2+cx+d), a, b, c, d∈Fq. The correlation may also be estimated with a Hasse-Weil bound.
For example, a sequence 1 generated based on a multiplicative group is:
A sequence 2 generated based on a multiplicative group is:
Data simulation results of 1 are shown in table 1.
The above scheme considers all quadratic polynomials, but leads to the loss of the correlation coefficient. Preferably, only quadratic irreducible polynomials are considered:
A cardinality of the set S1′ is equal to ½q(q−1)−½(q−1)=½(q−1)2.
Also, the equivalence class is defined according to the previous definition.
There are exactly q−1 elements in each equivalence class. As a result, there are exactly ½(q−1) equivalence classes.
Select one polynomial from each of the above equivalence classes to form a set T1′, and obtain a set 1′={sf: f∈T1′};
Generating the sequence cluster 1′ includes:
Parameters of this sequence include:
For example, a sequence 1 generated based on a multiplicative group irreducible polynomial is:
A sequence 2 generated based on a multiplicative group irreducible polynomial is:
Data simulation results of 1′ are shown in table 2.
Based on an additive group structure of a prime characteristic finite field, a cyclic additive group is used to construct the sequence to obtain sequences of different lengths and better correlation coefficient characteristics. In order to obtain the cyclic addition group Fq, q is an odd prime.
Consider a monic polynomial set:
Select one polynomial in each equivalence class, and combine the selected polynomials with x to form a set T2.
The method for generating the sequence cluster 2 includes:
and
Parameters of this sequence are listed below:
Data simulation results of 2 are shown in table 3.
The above scheme only considers all quadratic polynomials, but leads to the loss of the correlation coefficient. In a preferred embodiment, quadratic irreducible polynomials in St are considered to form a set denoted as S2′.
Select one polynomial in each equivalence class of S2′, and combine the selected polynomials with x to form a set T2′:
The method for generating the sequence cluster 2′ includes:
and
Parameters of this sequence are listed below:
For example, a sequence 1 generated based on an additive group irreducible polynomial is:
A sequence 2 generated based on an additive group irreducible polynomial is:
Data simulation results of 2′ are shown in table 4.
In a positioning signal generation environment in 5G, firstly, since the PRSID of LTE ranges from 0 to 4095, a slot number ns in each frame ranges from 0 to 20, and the number 1 of each OFDM symbol ranges from 0 to 6, there are 4096*20*7=573440 different combinations of these three parameters. Taking the closest prime q=573451 (closest to 573440) as the initial parameter, and generating a multiplicative group F573451* is generated.
For selection of the positioning sequence in 5G, a finite field F573451 for q=573451 is selected as the finite field used for generating the positioning sequence.
A method for truncating a 5G positioning sequence includes taking a truncated code with a length of 400, from bit 1600 to bit 2000 of the positioning sequence, as the positioning code, which is consistent with the 3GPP standard.
Secondly, according to the above sequence construction method, each polynomial f(x)=x2+ax+b may determine a sequence cluster, in which only parameters a and b are included. Three parameters are mapped to LTE according to different combinations of a and b, which specifically includes:
where NIDPRS the positioning reference signal (PRS) ID, 1 is an OFDM symbol number in a slot, and ns is a slot number within a frame.
According to the 3GPP standard, different Cinit are randomly generated to generate the Gold sequence, and 400 bits after bit 1600 are truncated. The same random parameters and the same truncation method are used to generate the sequence in the embodiment of the present disclosure and a Kasami sequence. Parts of the three sequences are selected for comparison. The comparison results are shown in table 5.
The positioning process is described below.
After the transmitting end generates a positioning code, the positioning code is modulated according to the 3GPP signal modulation scheme to generate a positioning signal. Then, the positioning signal is mapped to a transmitting antenna port for transmission according to the 3GPP resource grid mapping scheme. After receiving the signal, the receiving end performs cross-correlation to obtain an arrival time of the signal and thus a distance to the signal transmitting end, so as to select an appropriate algorithm for positioning.
Through the description of the above implementations, those skilled in the art can clearly understand that the method according to the above embodiment may be implemented by means of software plus a necessary general hardware platform. Obviously, it may also be implemented by hardware, but in most cases, the former is preferred. Based on such understanding, the technical solutions of the present invention essentially or, in other words, a part thereof contributing to the prior art, can be embodied in a form of a software product, wherein the software product is stored in a storage medium (such as an ROM/RAM, a disk, or an optical disc) and includes a number of instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods of the various embodiments of the present disclosure.
This embodiment further provides a positioning and transmission apparatus based on a binary periodic sequence, which is configured to implement the above embodiments and preferred implementations. Details which have been explained will not be repeated here. As used herein, the term “module” may be a combination of software and/or hardware that can realize a preset function. The apparatus described in the following embodiments is preferably implemented in software, but hardware, or a combination of software and hardware, is also possible and contemplated.
a first selection module 142 configured to select one polynomial from each equivalence class of a quadratic polynomial set S to determine a set T;
a construction module 144 configured to construct a binary periodic sequence cluster according to the set T;
a generating module 146 configured to generate a positioning signal according to the binary periodic sequence cluster; and
a positioning processing module 148 configured to perform positioning processing according to the positioning signal.
Optionally, the generating module 146 includes:
a selecting unit configured to select a positioning sequence from the binary periodic sequence cluster according to a preset parameter;
a determining unit configured to take a truncated sequence with a preset length from the positioning sequence and determining the truncated sequence as a positioning reference sequence; and a generating unit configured to generate the positioning signal by modulating the positioning reference sequence.
Optionally, the positioning processing module 148 includes:
a transmitting unit configured to map the positioning signal to an antenna port at a transmitting end for transmission. The positioning signal is configured to instruct a receiving end, after receiving the positioning signal, to: perform cross-correlation to obtain an arrival time of the positioning signal, determine a distance from a transmitting end according to the arrival time, and perform positioning according to the distance.
The transmitting end may be the positioning apparatus itself, or may include the positioning apparatus or be independent of the positioning device. The receiving end may form a positioning system with the positioning device.
Optionally, the positioning apparatus further includes:
a second selection module configured to select one generator γ from Fq*, where Fq is a finite field containing q elements, q is an odd prime or an odd prime power, and Fq* is a set of all nonzero elements in Fq.
Optionally, the first selection module 142 is further configured to select one polynomial f(x) from each equivalence class of a quadratic polynomial set S1 and combine the polynomial f(x) with x−1 to form a set T1 by:
Optionally, the construction module 144 is further configured to construct a binary periodic sequence cluster 1 from the generator γ and the set T1:
Optionally, each sequence in the binary periodic sequence cluster 1 has a length of q−1;
the binary periodic sequence cluster 1 has a size of q; and
if q≥17 and is an odd prime power, a correlation upper limit of the binary periodic sequence cluster 1 is Cor(1)≤6+└2√{square root over (q)}┘.
Optionally, the first selection module 142 is further configured to, in the case wherex2+ax+b in S1 is an irreducible polynomial,
select one polynomial f(x) from each equivalence class of a quadratic polynomial set S1′ and combining the polynomial f(x) with x−1 to form a set T1′:
Optionally, the construction module 144 is further configured to construct a binary periodic sequence cluster 1′ from the generator γ and the set T1′:
where η is a quadratic multiplicative character from Fq to C*, C is a complex number set excluding 0, and α is any element in Fq*.
Optionally, each sequence in the binary periodic sequence cluster 1′ has a length of q−1;
the binary periodic sequence cluster 1′ has a size of ½ (q−1); and
if q≥11 and is an odd prime power, a correlation coefficient upper limit of the binary periodic sequence cluster 1′ is Cor(1′)≤2+└2√{square root over (q)}┘.
Optionally, the positioning apparatus further includes:
a first dividing module configured to perform equivalence class division on the polynomials in the quadratic polynomial set S, and determine, if and only if there exists β∈Fq* such that a1=βa2,b1=β2b2, an equivalence relation between x2+aix+b1 and x2+a2x+b2, and determining an equivalence class of the quadratic polynomial set S to be [x2+aix+b1].
Optionally, the first selection module 142 is further configured to select one polynomial f(x) from each equivalence class of a quadratic polynomial set S2 and combine the polynomial f(x) with x to form a set T2:
S2={x2 ax+b, a,b∈Fq}\{(x−a)2, a∈Fq}, where Fq is a finite field containing q elements, and q is an odd prime.
Optionally, the construction module 144 is further configured to construct a binary periodic sequence cluster 2 from the set T2:
Optionally, each sequence in the binary periodic sequence cluster 2 has a length of q;
the binary periodic sequence cluster 2 has a size of q; and
if q≥17 and is an odd prime, a correlation coefficient upper limit of the binary periodic sequence cluster 2 is Cor(2)≤5+└2√{square root over (q)}┘.
Optionally, the first selection module 142 is further configured to, in the case where the x2+ax+b in S2 is an irreducible polynomial,
select one polynomial f(x) from each equivalence class of a quadratic polynomial set S2′ and combine the polynomial f(x) with x to form a set T2′:
Optionally, the construction module is further configured to a binary periodic sequence cluster 2′ from the set T2:
Optionally, each sequence in the binary periodic sequence cluster 2′ has a length of q;
the binary periodic sequence cluster 2′ has a size of (q−1)/2; and
if q≥7 and is an odd prime, a correlation coefficient upper limit of the binary periodic sequence cluster 2′ is Cor(4)≤1+└2√{square root over (q)}┘.
Optionally, the positioning apparatus further includes:
a second dividing module configured to perform before the first selection module 142 selects the polynomial from each equivalence class of a quadratic polynomial set S to determine a set T, equivalence class division on the polynomials in the quadratic polynomial set S. The division operation includes:
the second dividing module determining, if and only if there exists β∈Fq, a1=2β+a2, b1=β2+βa+b2, an equivalence relation between x2+a1x+b1 and x2+a2x+b2, and determining an equivalence class of the quadratic polynomial set S to be [x2+a1x+b1].
It should be noted that each of the above modules may be implemented by software or hardware. For the latter, it may be implemented by, but are not limited to: the above modules all located in the same processor; or the above modules each located in different processors in any combination.
An embodiment of the disclosure further provides a storage medium having a computer program stored thereon, which computer program is configured to be executed to cause steps of any one of the above method embodiments to be implemented.
Optionally, in this embodiment, the storage medium may be configured to store a computer program for implementing the steps of:
S11, selecting one polynomial from each equivalence class of a quadratic polynomial set S to determine a set T;
S12, constructing a binary periodic sequence cluster according to the set T; S13, generating a positioning signal according to the binary periodic sequence cluster; and
S14, performing positioning processing according to the positioning signal.
Optionally, in this embodiment, the storage medium may include, but is not limited to: a U disk, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a disk or optical disk, and other media that can store a computer program.
An embodiment of the disclosure further provides an electronic apparatus, including a memory having a computer program stored thereon and a processor configured to execute the computer program to perform steps of any one of the above method embodiments.
Optionally, the electronic apparatus may further include a transmission device and an input/output device. The transmission device is coupled to the processor, and the input/output device is coupled to the processor.
Optionally, in this embodiment, the processor may be configured to execute the following steps via the computer program:
S11, selecting one polynomial from each equivalence class of a quadratic polynomial set S to determine a set T;
S12, constructing a binary periodic sequence cluster according to the set T; S13, generating a positioning signal according to the binary periodic sequence cluster; and
S14, performing positioning processing according to the positioning signal.
Optionally, specific examples in the present embodiment may refer to the examples described in the foregoing embodiments and alternative implementations, which will not be repeated in the present embodiment.
Obviously, a person skilled in the art would understand that the above modules and steps of the present disclosure can be realized by using a universal computing device, can be integrated in a single computing device or distributed on a network that consists of a plurality of computing devices; and alternatively, they can be realized by using the executable program code of the computing device, so that they can be stored in a storage device and executed by the computing device, in some cases, can perform the shown or described steps in a sequence other than herein, or they are made into various integrated circuit modules respectively, or a plurality of modules or steps thereof are made into a single integrated circuit module, thus to be realized. In this way, the present disclosure is not restricted to any particular hardware and software combination.
The descriptions above are only preferred embodiments of the present disclosure, which are not used to restrict the present disclosure. For those skilled in the art, the present disclosure may have various changes and variations. Any amendments, equivalent substitutions, improvements, etc. within the principle of the disclosure are all included in the scope of the protection defined by the appended claims of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201910395480.9 | May 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/089598 | 5/11/2020 | WO | 00 |