This disclosure relates generally to determining time and/or position of space vehicles in orbit.
A satellite in orbit typically must maintain certain information about its state in orbit in order to functional properly. Systems that provide or make use of this type of information are sometimes referred to as Positioning, Navigation, and Timing (PNT) systems. Positioning refers to the ability to determine a satellite's location in three dimensions relative to a selected frame of reference, for example an Earth-Centered, Earth-Fixed (ECEF) coordinate system. Navigation refers to the ability to use positioning information to determine relationships between the position of multiple satellites or between positions of one satellite at different times. Timing refers to the ability to determine a satellite's time relative to a selected time reference, for example clock offset between the satellite's local clock and Coordinated Universal Time (UTC). Timing may also include time transfer, which is the capability to transfer local knowledge of time from one location or system to another.
Ephemeris in this context is the position of a satellite over time. Traditionally, the ephemeris of a satellite may be determined based on on-board navigation systems and/or ranging to external known references, such as ground stations with known position and known time. However, as constellations of satellites become more common, it can be advantageous to determine the orbital state of satellites by also ranging to other satellites in the constellation.
Certain aspects relate to positioning, navigation, and/or timing using ranging over free space optical links within a constellation of space vehicles. In some embodiments, the orbital states (position and/or time) for a constellation of space vehicles is determined as follows. Space vehicles in the constellation measure PNT data, including range data determined based on free space optical (FSO links) between space vehicles. The PNT data is transmitted from the space vehicles to two or more PNT controllers, which are a subset of the space vehicles that calculate the orbital state data for the constellation. This is a semi-distributed calculation. There is not a single controller that performs the calculations for all of the space vehicles in the constellation, and each space vehicle also does not perform its own calculations. Rather, each PNT controller services a subset (sub-constellation) of the space vehicles and determines the orbital state data for the space vehicles in the sub-constellation. The calculated orbital state data is transmitted from the PNT controllers to the space vehicles in the corresponding sub-constellations and may also be transmitted to other space vehicles or recipients outside the constellation.
In one example, the constellation is defined by orbital planes, with multiple space vehicles in each orbital plane. One space vehicle in each orbital plane serves as the PNT controller for that orbital plane. It receives the PNT data measured by the other space vehicles in the orbital plane, calculates the orbital state data for the space vehicles and transmits the orbital state data to the space vehicles. The measured PNT data for each space vehicle includes FSO range data (i.e., range data determined based on FSO links) between that space vehicle and other space vehicles. For example, a space vehicle may measure FSO range data to the adjacent space vehicles in the same orbital plane and possibly also to space vehicles in adjacent orbital planes.
Other aspects include components, devices, systems, improvements, methods, processes, applications, computer readable mediums, and other technologies related to any of the above.
Embodiments of the disclosure have other advantages and features which will be more readily apparent from the following detailed description and the appended claims, when taken in conjunction with the examples in the accompanying drawings, in which:
The figures and the following description relate to preferred embodiments by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of what is claimed.
Within each orbital plane 110, one of the satellites serves as a PNT controller for all of the satellites in that orbital plane. The satellites serviced by the PNT controller will be referred to as constituent satellites. In
This approach may be referred to as a semi-distributed approach. In a fully distributed approach, each satellite would receive the necessary PNT data and calculate its own orbital state data. However, this requires that each satellite have the capability and compute resources to do so. A semi-distributed approach may save some compute hardware on the non-controller satellites. The other extreme is a fully centralized approach, where a single satellite serves as the PNT controller for the entire constellation. All satellites would have to forward data to this central controller, and the calculated results are then distributed back to every satellite in the constellation. This can require more involved communications, longer latencies and larger accumulated errors.
The satellites 120, including PNT controller 120x, include an FSO terminal 330, a PNT module 335, and a communications terminal 340 (which may be the same as the FSO terminal 330). The FSO terminal 330 establishes FSO links 130 with other satellites, for example as shown in
The PNT module 335 receives data based on the FSO links 130 and may also receive additional other data. The module 335 determines PNT data, which is data used to calculate the orbital state data for the satellites. In this example, the PNT data for a satellite includes bearing (attitude and elevation) Ω of the FSO link, ranges Rk from that satellite to other satellites k, the rate of change of Rk, and covariance matrix Σ of the ranges.
Range may be estimated based on time of flight across the FSO link. Packets transmitted across the FSO link may be time stamped at the transmitting terminal and at the receiving terminal. Range between the two terminals may be estimated based on the difference between the two timestamps. This may be referred to as pseudo-range if the relative clock offset between the two terminals is not corrected. Rather than the range value, pairs of transmit and receive timestamps may be used as the range data. Range rate is the time rate of change of the range. These measurements may be made in a differential manner, particularly for satellites in the same orbital plane since the range between these satellites does not change as quickly as between other satellites. Using FSO links, ranges may be accurate to sub-cm resolution.
Synchronous range estimates may be made by using both directions of a bidirectional FSO link. That is, the range between two satellites 120a and 120b may be estimated based on (i) an FSO beam transmitted from satellite 120a to 120b, using the transmit time according to 120a's clock and the receive time according to 120b's clock; and (ii) an FSO beam simultaneously transmitted from 120b to 120a, using the transmit time according to 120b's clock and the receive time according to 120a's clock. Differences in time of flight for the two FSO beams are a measure of the relative clock offset between the clocks on satellites 120a and 120b.
Satellites may also make Doppler measurements, based on the frequency shift of FSO links transmitted from one satellite to another. Doppler measurements are a function of the relative velocity of two satellites.
Bearing of the FSO link is the direction in which the FSO link is pointing. Bearing may be measured based on tracking systems within the satellite. It may be measured by the FSO terminal relative to a satellite reference direction.
The PNT controller 120x also includes a precision orbit determination (POD) module 350x. The POD module 350x receives the PNT data from the satellites in that controller's sub-constellation, as shown in
Although the detailed description contains many specifics, these should not be construed as limiting the scope of the invention but merely as illustrating different examples. It should be appreciated that the scope of the disclosure includes other embodiments not discussed in detail above. For example, other constellations and arrangements of PNT controllers may be used. The implementation is semi-distributed if there is a total of at least two PNT controllers for the constellation, and each PNT controller services a sub-constellation of at least two of the space vehicles. Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the spirit and scope as defined in the appended claims. Therefore, the scope of the invention should be determined by the appended claims and their legal equivalents.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 63/122,259, “Positioning, Navigation, and Timing using Laser Ranging over Free Space Optical Links,” filed Dec. 7, 2020. The subject matter of all of the foregoing is incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63122259 | Dec 2020 | US |