The present invention relates to a positioning receiver which comprises one or more receiving channels for receiving a signal from a positioning station, control means for controlling the reception of the signal from a positioning station, and means for generating a clock signal for said control means. The invention also relates to a system which comprises positioning stations which transmit a signal intended for use in positioning, as well as a positioning receiver comprising one or more receiving channels for receiving a signal from the positioning station, control means for controlling the reception of the signal from the positioning station, and means for generating a clock signal for said control means. Furthermore, the invention relates to a wireless communication device comprising a positioning receiver which comprises one or more receiving channels for receiving a signal from a positioning station, control means for controlling the reception of the signal from a positioning station, and means for generating a clock signal for said control means. The invention also relates to a module which comprises one or more receiving channels for receiving a signal from a positioning station, control means for controlling the reception of the signal from a positioning station, and means for generating a clock signal for said control means. Furthermore, the invention relates to a method for performing positioning, comprising the step of receiving a signal from a positioning station on one or more receiving channels, a control step for controlling the reception of the signal from the positioning station, and the step of generating a clock signal to be used in said control step. Furthermore, the invention relates to a computer software product comprising machine executable commands for controlling the positioning, wherein the positioning comprises the step of receiving a signal from a positioning station on one or more receiving channels, a control step for controlling the reception of the signal from the positioning station, and the step of generating a clock signal to be used in said control step.
In positioning systems based on satellite positioning, a positioning receiver attempts to receive signals from at least four satellites in order to determine the position of the positioning receiver as well as the time data. Some examples of such satellite positioning systems to be mentioned include the GPS system (Global Positioning System), the GLONASS (GLObal NAvigation Satellite System) as well as the European Galileo system under development. For example the GPS system comprises a plurality of satellites orbiting the globe according to predetermined orbits. These satellites transmit orbit data, on the basis of which the position of the satellite can be determined at each moment of time, provided that the exact time data used in the satellite positioning system is known in the positioning receiver. In the GPS system, the satellites transmit a spread spectrum signal modulated with a code which is individual for each satellite. Thus, the positioning receiver can distinguish between signals transmitted by different satellites by using a reference code corresponding to a satellite code generated locally in the positioning receiver or stored in the positioning receiver.
Each operating satellite of the GPS system transmits a so-called L1 signal at the carrier frequency of 1575.42 MHz. This frequency is also indicated with 154f0, where f0=10.23 MHz. Furthermore, the satellites transmit a L2 signal at a carrier frequency of 1227.6 MHz, i.e. 120f0. In the satellite, these signals are modulated with at least one pseudo random sequence. This pseudo random sequence is different for each satellite. As a result of the modulation, a code-modulated wideband signal is generated. This modulation technique allows the receiver to distinguish between the signals transmitted by different satellites, although the carrier frequencies used in the transmission are substantially the same. This modulation technique is called code division multiple access (CDMA). In each satellite, for modulating the L1 signal, the pseudo random sequence used is e.g. a so-called C/A code (Coarse/Acquisition code), which is a code from the family of the Gold codes. Each GPS satellite transmits a signal by using an individual C/A code. The codes are formed as a modulo-2 sum of two 1023-bit binary sequences. The first binary sequence G1 is formed with the polynomial X10+X3+1, and the second binary sequence G2 is formed by delaying the polynomial X10+X9+X8+X6+X3+X2+1 in such a way that the delay is different for each satellite. This arrangement makes it possible to generate different C/A codes by using identical code generators. The C/A codes are thus binary codes, chipping rate in the GPS system being 1.023 Mchips/s. The C/A code comprises 1023 chips, wherein the iteration time (epoch) of the code is 1 ms. The carrier of the L1 signal is further modulated by navigation information at a bit rate of 50 bit/s. The navigation information comprises information about the “health”, orbit, time data of the satellite, etc.
In order to detect the satellite signals and to identify the satellites, the receiver must perform acquisition, whereby the receiver searches for the signal of each satellite at the time and attempts to be synchronized and locked to this signal so that the information transmitted with the signal can be received and demodulated.
The positioning receiver must perform the acquisition e.g. when the receiver is turned on and also in a situation in which the receiver has not been capable of receiving the signal of any satellite for a long time. Such a situation can easily occur e.g. in portable devices, because the device is moving and the antenna of the device is not always in an optimal position in relation to the satellites, which impairs the strength of the signal coming in the receiver. In portable devices, the aim is also to reduce the power consumption to a minimum. Thus, for example, a positioning receiver arranged in connection with a wireless communication device is not necessarily kept continuously in operation but primarily when there is a need to perform positioning.
The above-mentioned acquisition and frequency control process must be performed for each satellite signal received in the receiver. Some receivers may comprise several receiving channels, wherein an attempt is made on each receiving channel to acquire the signal of one satellite at a time and to find out the information transmitted by this satellite.
After the acquisition, the positioning receiver attempts to keep synchronized with, i.e., to track the satellite signal. For the acquisition, correlators are normally used for generating signals which are used, for example, to find the correct code phase. The satellite signal received in the receiver is sampled, and the samples are led to the correlators. In receivers of prior art, the sampling rate is typically determined according to the chips in the satellite signal so that the sampling rate is normally twice the chipping rate. This means that two samples are taken of each chip. Applied into the GPS system, this means that about 2 million samples are taken per second. In practice, such a sampling rate is normally sufficient for signal acquisition, but this sampling rate is not necessarily sufficient for tracking, particularly under conditions of multipath propagation, i.e. the satellite signals arrive at the receiver along various routes.
By the selection of the sampling rate, it is possible to affect, for example, the manufacturing costs and the power consumption of the receiver. Normally, a higher sampling rate also involves higher manufacturing costs as well as a higher power consumption, which is due, for example, to the fact that the number of correlators used for the acquisition should also be increased when the sampling rate is increased. A larger number of correlators also requires more circuit board area, which, in turn, increases the power consumption.
In positioning receivers of prior art, the sampling frequency is used for both the acquisition and the tracking. Thus, the sampling frequency is a compromise determined by various properties. Furthermore, in receivers which are intended for receiving signals from the satellites or other positioning stations of more than one positioning systems, there may be a need to use a different sampling rate in the different systems. Thus, when applying the arrangements of prior art, separate receiving channels and sampling means must be provided for the different systems, which makes the implementation of the receiver more complex.
According to the present invention, an arrangement in a positioning receiver has been invented for improving the operation of the positioning receiver. The invention is based on the idea that at least two different sampling rates are formed, wherein different sampling rates can be used for acquisition and for tracking. To put it more precisely, the positioning receiver according to the present invention is primarily characterized in that the positioning receiver comprises means for taking samples at least first and second sampling rates, and means for selecting the samples from said samples formed at said at least first and second sampling rates, to be used in said control means for controlling the reception of the signal. The system according to the present invention is primarily characterized in that the positioning receiver of the system comprises means for taking samples at least a first and a second sampling rate, and means for selecting the samples from said samples formed at said at least first and second sampling rates, to be used in said control means for controlling the reception of the signal. The wireless communication device according to the present invention is primarily characterized in that the wireless communication device comprises means for taking samples at least first and second sampling rates, and means for selecting the samples from said samples formed at said at least first and second sampling rates, to be used in said control means for controlling the reception of the signal. The module according to the present invention is primarily characterized in that the module comprises means for taking samples at least first and second sampling rates, and means for selecting the samples from said samples formed at said at least first and second sampling rates, to be used in said control means for controlling the reception of the signal. The method according to the present invention is primarily characterized in that the method comprises the steps of taking samples at least first and second sampling rates, and selecting the samples from said samples formed at said at least first and second sampling rates, to be used in said control step for controlling the reception of the signal. The computer software product according to the present invention is primarily characterized in that the computer software product comprises machine executable commands for taking samples at least first and second sampling rates, and for selecting the samples from said samples formed at said at least first and second sampling rates, to be used in said control step for controlling the reception of the signal.
The present invention shows, for example, the following advantages over arrangements of prior art. By the arrangement of the invention, it is possible to improve e.g. the tracking function of the positioning receiver without affecting the acquisition and the number of correlators required therein, because the sampling rate can be set to be different for the tracking function and for the acquisition. Furthermore, the power consumption does not necessarily increase significantly, because the number of correlators and thereby the required circuit area is not increased. In the arrangement according to one example of the invention, the positioning receiver can be set in different modes according to the need at the time. Furthermore, the invention makes it possible that the reception of signals from positioning stations of several different positioning systems can be implemented in the same positioning receiver by selecting the sampling frequency in each receiving channel to comply with the requirements of the positioning station to be received at the time.
In the following, the invention will be described in more detail with reference to the appended drawings, in which
In the following, the invention will be described by using the GPS system as an example of a positioning system, but it will be obvious that the invention is not limited to be used in the GPS system only. The positioning stations 10.1-10.4 used in the GPS system are satellites which transmit a spread spectrum modulated signal. However, the positioning stations can also be other than satellite stations, for example base stations BS, BS′, BS″ of a mobile communication system.
In the embodiment of
The receiver 1 of
Furthermore,
The invention can also be applied in connection with such receivers 1 in which either acquisition or tracking operations only are carried out to control the reception of signals from the satellites. In this case, the control means comprise either acquisition means 2.4-2.8 or tracking means 2.1-2.3, respectively.
In the receiver according to the invention, it is possible to form even more than the first and second samples to be selected for processing in the receiving channels 2.
In the receiver according to the invention, the clock signal to be led to each receiving channel 2 is selected in clock signal selectors 1.13. In the example receiver of
In the following, the operation of the method according to one embodiment of the invention will be described with reference to the flow chart shown in
The above-mentioned steps are taken for each receiving channel 2, on which signals are received.
The receiver 1 according to the invention can be used to receive signals from positioning stations of several different positioning systems. Thus, for each receiving channel 2, the desired control data is selected for the selectors 1.12, 1.13 according to the sampling rate and clock frequency to be used. Thus, there may be a need to implement several decimation blocks 1.11 and divider blocks 1.14, in which the value of the divider is set so as to achieve the desired sampling rate and clock frequency. Thus, the selectors 1.12, 1.13 can be used to select, for each receiving channel 2, such a decimation block 1.11 and divider block 1.14 in which the divider used is set to correspond to the parameters of the positioning system which is received on the receiving channel 2 in question.
The receiver 1 according to the invention may function as such, or it may be a part of another device, for example a positioning receiver 1 in connection with a mobile communication device 4 (
It will be obvious that the present invention is not limited solely to the above-presented embodiments but it can be modified within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
20045145 | Apr 2004 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI05/50131 | 4/22/2005 | WO | 8/2/2007 |