This disclosure relates generally to equipment and operations utilized in conjunction with subterranean wells and, in an example described below, more particularly provides a positioning tool and associated systems and methods.
Although variations are possible, a gravel pack is generally an accumulation of “gravel” (typically sand, proppant or another granular or particulate material, whether naturally occurring or synthetic) about a tubular filter or screen in a wellbore. The gravel is sized, so that it will not pass through the screen, and so that sand, debris and fines from an earth formation penetrated by the wellbore will not easily pass through the gravel pack with fluid flowing from the formation. Although relatively uncommon, a gravel pack may also be used in an injection well, for example, to support an unconsolidated formation.
Placing the gravel about the screen in the wellbore is a complicated process, requiring relatively sophisticated equipment and techniques to maintain well integrity while ensuring the gravel is properly placed in a manner that provides for subsequent efficient and trouble-free operation. It will, therefore, be readily appreciated that improvements are continually needed in the arts of designing and utilizing gravel pack equipment and methods.
Such improved equipment and methods may be useful with any type of gravel pack in cased or open wellbores, and in vertical, horizontal or deviated well sections. The improved equipment and methods may also be useful in well operations other than gravel packing (such as, injection operations, stimulation operations, drilling operations, etc.).
Representatively illustrated in
In the
Setting the packer 20 in the wellbore 12 provides for isolation of an upper well annulus 22 from a lower well annulus 24 (although, as described above, at the time the packer is set, the upper annulus and lower annulus may be in communication with each other). The upper annulus 22 is formed radially between the service string 18 and the wellbore 12, and the lower annulus 24 is formed radially between the completion assembly 16 and the wellbore.
The terms “upper” and “lower” are used herein for convenience in describing the relative orientations of the annulus 22 and annulus 24 as they are depicted in
As depicted in
In the
Examples of some steps of the method are representatively depicted in
Referring now to
Note that, as shown in
As depicted in
This increased pressure operates a packer setting tool 36 of the service string 18. The setting tool 36 can be of the type well known to those skilled in the art, and so further details of the setting tool and its operation are not illustrated in the drawings or described herein.
Although the packer 20 in this example is set by application of increased pressure to the setting tool 36 of the service string 18, in other examples the packer may be set using other techniques. For example, the packer 20 could be set by manipulation of the service string 18 (e.g., rotating in a selected direction and then setting down or pulling up, etc.), with or without application of increased pressure. Thus, the scope of this disclosure is not limited to any particular technique for setting the packer 20.
Note that, although the set packer 20 separates the upper annulus 22 from the lower annulus 24, in the step of the method as depicted in
In
An annular seal 44 is sealingly received in a seal bore 46. The seal bore 46 is located within the packer 20 in this example, but in other examples, the seal bore could be otherwise located (e.g., above or below the packer).
In the step as depicted in
An upper end of the flow passage 38 is in communication with the upper annulus 22 via an upper port 54. Although not clearly visible in
Thus, it will be appreciated that the flow passage 38 and ports 40, 54 effectively bypass the seal bore 46 (which is engaged by the annular seals 44, 52 carried on the service string 18) and allow for hydrostatic pressure in the upper annulus 22 to be communicated to the lower annulus 24. This enhances wellbore 12 stability, in part by preventing pressure in the lower annulus 24 from decreasing (e.g., toward pressure in the formation 14) when the packer 20 is set.
As depicted in
However, the flow passage 32 is now in communication with the lower annulus 24 via the openings 42 and one or more ports 58 in the service string 18. Thus, hydrostatic pressure continues to be communicated to the lower annulus 24.
The lower annulus 24 is isolated from the upper annulus 22 by the packer 20. The flow passage 38 is not in communication with the lower annulus 24 due to the annular seal 56 in the seal bore 46. The flow passage 50 may be in communication with the lower annulus 24, but no flow is permitted through the port 48 due to the annular seal 52 in the seal bore 46. Thus, the lower annulus 24 is isolated completely from the upper annulus 22.
In the
As depicted in
Thus, in this example, the reversing valve 60 is an annular pressure-operated sliding sleeve valve of the type well known to those skilled in the art, and so operation and construction of the reversing valve is not described or illustrated in more detail by this disclosure. However, it should be clearly understood that the scope of this disclosure is not limited to use of any particular type of reversing valve, or to any particular technique for operating a reversing valve.
The raising of the service string 18 relative to the completion assembly 16 can facilitate operations other than opening of the reversing valve 60. In this example, the raising of the service string 18 can function to prepare an isolation valve (not shown) connected in or below a washpipe 62 of the service string for later closing.
The isolation valve can be of the type well known to those skilled in the art, and which can (when closed) prevent flow from the flow passage 32 into an interior of the well screen 26. However, the scope of this disclosure is not limited to use of any particular type of isolation valve, or to any particular technique for operating an isolation valve.
As described more fully below, raising of the service string 18 can also, or alternatively, prepare a positioning tool 80 for subsequent securement of the service string relative to the completion assembly 16. In this example, the positioning tool 80, when actuated, enables a weight of the service string 18 to be set down on an internal shoulder or other profile in the completion assembly 16, so that a preselected position of the service string relative to the completion assembly can be conveniently and reliably achieved and maintained.
In the
The positioning tool 80 is actuated so that extendable landing dogs thereof can engage an internal profile in the completion assembly 16. All or a portion of the weight of the service string 18 can then be set down on the internal profile.
A gravel slurry 64 (a mixture of the gravel 28 and one or more fluids 66) can now be flowed from surface through the flow passage 32 of the service string 18, and outward into the lower annulus 24 via the openings 42 and ports 58. The fluids 66 can flow inward through the well screen 26, into the washpipe 62, and to the upper annulus 22 via the flow passage 50 for return to surface. In this manner, the gravel 28 is deposited into the lower annulus 24 (see
During pumping of the gravel slurry 64, the service string 18 is prevented from displacing relative to the completion assembly 16 by the engagement between the positioning tool 80 and the internal profile in the completion assembly.
As depicted in
A clean fluid 68 can now be circulated from surface via the upper annulus 22 and inward through the open reversing valve 60, and then back to surface via the flow passage 32. This reverse circulating flow can be used to remove any gravel 28 remaining in the flow passage 32 after the gravel slurry 64 pumping operation. During pumping of the fluid 68, the service string 18 is prevented from displacing relative to the completion assembly 16 by engagement between the positioning tool 80 and another internal profile in the completion assembly.
After reverse circulating, the service string 18 can be conveniently retrieved to surface and a production tubing string (not shown) can be installed.
Flow through the openings 42 is prevented when the service string 18 is withdrawn from the completion assembly 16 (e.g., by shifting a sleeve of the type known to those skilled in the art as a closing sleeve). A lower end of the production tubing string can be equipped with annular seals and stabbed into the seal bore 46, after which fluids can be produced from the formation 14 through the gravel 28, then into the well screen 26 and to surface via the production tubing string.
An optional treatment step is depicted in
As depicted in
The lower portion of the flow passage 50 is, thus, now isolated from the upper annulus 22. However, the lower portion of the flow passage 50 now provides for communication between the flow passage 32 and the interior of the well screen 26 via the washpipe 62. Note, also, that the lower annulus 24 is isolated from the upper annulus 22.
A treatment fluid 76 can now be flowed from surface via the flow passages 32, 50 and washpipe 62 to the interior of the well screen 26, and thence outward through the well screen into the gravel 28. If desired, the treatment fluid 76 can further be flowed into the formation 14. During pumping of the treatment fluid 76, the service string 18 is prevented from displacing relative to the completion assembly 16 by engagement between the positioning tool 80 and another internal profile in the completion assembly.
The treatment fluid 76 could be any type of fluid suitable for treating the well screen 26, gravel 28, wellbore 12 and/or formation 14. For example, the treatment fluid 76 could comprise an acid for dissolving a mud cake (not shown) on a wall of the wellbore 12, or for dissolving contaminants deposited on the well screen 26 or in the gravel 28. Acid may be flowed into the formation 14 for increasing its permeability. Conformance agents may be flowed into the formation 14 for modifying its wettability or other characteristics. Breakers may be flowed into the formation 14 for breaking down gels used in a previous fracturing operation. Thus, it will be appreciated that the scope of this disclosure is not limited to use of any particular treatment fluid, or to any particular purpose for flowing treatment fluid into the completion assembly 16.
Referring additionally now to
In the
An engagement device 86 is reciprocably disposed on the mandrel 82. The engagement device 86 is used to engage one or more internal profiles in an outer tubular string (such as the completion assembly 16), and to secure the positioning tool 80 relative to the outer tubular string.
As depicted in
The profile 94 is in this example of the type known to those skilled in the art as a “ratchet” or “J-slot” profile. However, other types of profiles may be used in other examples.
In addition, it is not necessary for the profile 94 to be formed on the mandrel 82, and for the followers 92 to be carried on the engagement device 86. In other examples, these positions could be reversed. Thus, the scope of this disclosure is not limited at all to any of the details of the engagement device 86, mandrel 82 or any other components of the positioning tool 80.
Additional pins or followers 96 can engage longitudinal slots 98 or lugs 78 formed externally on the mandrel 82. These followers 96, slots 98 and lugs 78 function to control an extent of downward displacement of the mandrel 82 relative to the engagement device 86, as described more fully below.
In other examples, the followers 92, 96 could be rigidly secured to the mandrel 82, and the profile 94 and lugs 78 could be carried on the engagement device 86. In further examples, the profile 94 could be in the form of a raised track, instead of a recessed slot, and the follower 92 could be a “female” rather than a “male” member. Thus, it will be appreciated that the scope of this disclosure is not limited to any particular details of the mandrel 82 or the engagement device 86, or any of their elements or components.
The engagement device 86 is initially releasably secured against displacement relative to the mandrel 82 by shear screws 100. In addition, a snap ring 102 carried on the mandrel 82 engages an annular recess 104 in a generally tubular cage 106 that carries the landing dogs 90.
Note that, in the
Referring additionally now to
The keys 88 are radially outwardly biased and have external profiles 112 formed thereon. As the positioning tool 80 is displaced through the outer tubular string, the profiles 112 are able to engage one or more complementarily shaped internal profiles in the outer tubular string.
After such engagement, the keys 88 can be disengaged from the internal profile by applying a sufficient longitudinal force to the positioning tool 80 to cause the keys to radially inwardly retract into a cage 114 that carries the keys. Preferably, the force needed to retract the keys 88 out of engagement with the internal profile is greater than a force sufficient to shear the shear screws 100 and release the snap ring 102 from the recess 104 (see
Note that the followers 92, 96 are secured to, and extend radially inwardly from a sleeve 116 rotatably mounted in the engagement device 86. In this manner, the followers 92, 96 and sleeve 116 are permitted to rotate relative to the remainder of the engagement device 86, in response to longitudinal displacement of the mandrel 82 relative to the engagement device, and engagement between the followers 92 and the profile 94 on the mandrel.
In the
Referring additionally now to
In the
As depicted in
The followers 92 are now positioned in a lower portion of the profile 94 on the mandrel 82. This rotates the followers 92, 96 and sleeve 116 relative to the remainder of the engagement device 86 and the lugs 78, prevents further upward displacement of the mandrel 82 relative to the engagement device 86 and allows upward force applied to the mandrel to be transmitted to the engagement device. Such upward force can be used to release the keys 88 from their engagement with the internal profile 120, if desired.
However, it is not necessary for the keys 88 to be released from engagement with the internal profile 120 using an upward force applied to the mandrel 82 if, for example, it is desired for the landing dogs 90 to be extended and displaced downwardly into engagement with the same internal profile 120. In that case, the mandrel 82 can be displaced downwardly relative to the engagement device 86, after having been displaced upwardly relative to the engagement device to the configuration depicted in
Note that, with the mandrel 82 having been displaced upwardly relative to the engagement device 86 as depicted in
Referring additionally now to
As described above, this downward displacement of the mandrel 82 relative to the engagement device 86 is performed while the keys 88 are engaged with an internal profile 120 in the tubular string 118. Although not visible in
As depicted in
The followers 96 are now at an upper end of the slots 98, thereby preventing further downward displacement of the mandrel 82 relative to the engagement device 86. A substantial downward force (e.g., some or all of a weight of the service string 18 in the example of
When used in the system 10 and method of
It will be appreciated that, since the service string 18 is in different positions relative to the completion assembly 16 for the
The landing dogs 90 will no longer be radially outwardly supported by the radially enlarged section 110 of the mandrel 82, but will instead be in their retracted positions as depicted in
The landing dogs 90 will only be extended outward, in this example, every other time the positioning tool 80 is displaced upwardly so that the engagement device 86 engages at least one internal profile 120, and is then displaced downwardly so that the engagement device engages an internal profile. However, the landing dogs 90 are retracted each time the positioning tool 80 is displaced upward with the engagement device 86 engaged with an internal profile 120.
If it should happen that the landing dogs 90 fail to retract in response to upward displacement of the mandrel 82 relative to the engagement device 86, the extended landing dogs may engage an internal profile 120 or other restriction during upward displacement of the positioning tool 80 relative to the tubular string 118 (such as, during retrieval of the service string 18). In that case, a sufficient upward force can be applied to the positioning tool 80 to cause shear screws 126 to shear, thereby allowing the mandrel 82 to displace upward relative to the landing dogs 90, so that the landing dogs are no longer outwardly supported by the radially enlarged section 110 of the mandrel and will retract.
Referring additionally now to
As described above, the followers 92 are engaged with the profile 94. It will be appreciated that the shape of the profile 94 example of
When the followers 96 are rotationally aligned with the lugs 78 (as indicated by position 96a in
Relative rotation between the followers 96 and the mandrel 82 (caused by reciprocation of the mandrel relative to the engagement device 86, as described above and depicted from
Note that any pattern of reciprocating displacements may be used to cause extension and retraction of the landing dogs 90. For example, the profile 94 and lugs 78 can be configured to require three or more sets of alternating relative displacements between the mandrel 82 and the engagement device 86 for each time the landing dogs 90 are extended. Thus, the scope of this disclosure is not limited to any particular configuration of the profile 94 and lugs 78, or to any particular pattern or sequence of reciprocal displacements corresponding to extension and retraction of the landing dogs 90.
Although the positioning tool 80 is described above as being used to secure a tubular string (such as the service string 18) by allowing weight or another longitudinally downward force to be applied from the landing dogs 90 to an internal profile 120, in other examples a longitudinally upward force may be applied (e.g., by pulling tension on the service string from surface). For example, the positioning tool 80 could be inverted from its
It may now be fully appreciated that the above disclosure provides significant advancements to the arts of constructing and utilizing equipment for well operations. In examples described above, the positioning tool 80 provides for enhanced convenience and reliability in securing a tubular string (such as the service string 18) relative to another outer tubular string (such as the completion assembly 16).
The above disclosure provides to the art a positioning tool 80 for use in a well. In one example, the positioning tool 80 can include a generally tubular mandrel 82 and an engagement device 86 reciprocably disposed on the mandrel. The engagement device 86 can include at least one engagement member (such as keys 88) and at least one landing dog 90. The mandrel 82 displaces relative to the engagement device 86 in response to engagement between the engagement member 88 and at least one internal profile 120 in an outer tubular string 118. The landing dog 90 extends outward in response to displacement of the mandrel 82 in a first longitudinal direction relative to the engagement device 86.
The engagement member 88 may be biased outward relative to the mandrel 82 and the landing dog 90 may be biased inward relative to the mandrel. The landing dog 90 may be outwardly supported by a radially reduced section 108 of the mandrel 82 in a retracted position of the landing dog, and the landing dog 90 may be outwardly supported by a radially enlarged section 110 of the mandrel in an extended position of the landing dog.
The landing dog 90 may extend outward in response to displacement of the mandrel 82 in a second longitudinal direction relative to the engagement device 86. The landing dog 90 may retract inward in response to every displacement of the mandrel 82 in a second longitudinal direction relative to the engagement device 86, and the landing dog 90 may extend outward in response to less than every displacement of the mandrel 82 in the first longitudinal direction relative to the engagement device 86.
An extent of longitudinal displacement of the mandrel 82 in the first direction relative to the engagement device 86 may be controlled by engagement between a follower 96 and a slot 98. One of the follower 96 and the slot 98 rotates about the mandrel 82 in response to reciprocation of the mandrel relative to the engagement device 86.
A system 10 for use in a subterranean well is also provided to the art by the above disclosure. In one example, the system 10 can include a tubular string 118 and a positioning tool 80 reciprocably disposed in the tubular string. The positioning tool 80 can include a landing dog 90 that extends outward from a retracted position to engage one or more internal profiles 120 of the tubular string 118, in response to a pattern of reciprocation of the positioning tool 80 in the tubular string.
The landing dog 90 may retract from an extended position to the retracted position in response to displacement of the positioning tool 80 in a first longitudinal direction through the one or more internal profiles 120. The landing dog 90 may extend from the retracted position to the extended position in response to displacement of the positioning tool 80 in a second longitudinal direction through at least one of the internal profiles 120.
The positioning tool 80 may also include an engagement member 88. Displacement of the landing dog 90 relative to the tubular string 118 may cease in response to engagement between the engagement member 88 and at least one of the internal profiles 120.
The positioning tool 80 can include a mandrel 82, with the mandrel being longitudinally displaceable relative to the landing dog 90 as the positioning tool displaces through the one or more internal profiles 120. The landing dog 90 may be outwardly supported by a radially reduced section 108 of the mandrel 82 in response to displacement of the positioning tool 80 through the one or more internal profiles 120 in a first longitudinal direction. The landing dog 90 may be outwardly supported by a radially enlarged section 110 of the mandrel 82 in response to displacement of the positioning tool 80 through the one or more internal profiles 120 in a second longitudinal direction.
A method of gravel packing a well is also described above. In one example, the method can comprise: disposing a service string 18 in a completion assembly 16 in the well, the service string including a positioning tool 80 having an engagement member 88 and an extendable landing dog 90, and the completion assembly 16 having one or more internal profiles 120; displacing the positioning tool 80 in a first longitudinal direction relative to the completion assembly 16, thereby engaging the engagement member 88 with the one or more internal profiles 120; and displacing the positioning tool 80 in a second longitudinal direction relative to the completion assembly 16, thereby engaging the engagement member 88 with the one or more internal profiles 120 and outwardly extending the landing dog 90.
The method can include engaging the landing dog 90 with one of the internal profiles 120 by further displacing the positioning tool 80 in the second longitudinal direction after the landing dog is outwardly extended. The landing dog 90 may retract in response to displacing the positioning tool 80 in the first longitudinal direction with the engagement member 88 engaged with the one or more internal profiles 120. The landing dog 90 may extend less than every time the positioning tool 80 is displaced in the second longitudinal direction with the engagement member 88 engaged with the one or more internal profiles 120.
The step of displacing the positioning tool 80 in the first longitudinal direction may include displacing a mandrel 82 of the positioning tool relative to the landing dog 90 while the engagement member 88 is engaged with the one or more internal profiles 120. The step of displacing the positioning tool 80 in the second longitudinal direction can include displacing the mandrel 82 relative to the landing dog 90 while the engagement member 88 is engaged with the one or more internal profiles 120, thereby outwardly supporting the landing dog 90 with a radially enlarged section 110 of the mandrel 82.
Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope of this disclosure encompasses any combination of any of the features.
Although each example described above includes a certain combination of features, it should be understood that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.
It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
In the above description of the representative examples, directional terms (such as “above,” “below,” “upper,” “lower,” “upward,” “downward,” etc.) are used for convenience in referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.
The terms “including,” “includes,” “comprising,” “comprises,” and similar terms are used in a non-limiting sense in this specification. For example, if a system, method, apparatus, device, etc., is described as “including” a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term “comprises” is considered to mean “comprises, but is not limited to.”
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. For example, structures disclosed as being separately formed can, in other examples, be integrally formed and vice versa. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4043392 | Gazda | Aug 1977 | A |
4232889 | Putch | Nov 1980 | A |
4273190 | Baker et al. | Jun 1981 | A |
4508167 | Weinberg | Apr 1985 | A |
4871018 | Caskey | Oct 1989 | A |
5320183 | Muller | Jun 1994 | A |
5390735 | Williamson, Jr. | Feb 1995 | A |
5615740 | Comeau | Apr 1997 | A |
6510898 | Buytaert | Jan 2003 | B1 |
20010013410 | Beck | Aug 2001 | A1 |
20110042107 | Chambers | Feb 2011 | A1 |
20140246246 | Radford | Sep 2014 | A1 |
20140251628 | Wilkin | Sep 2014 | A1 |
20150152711 | Foong | Jun 2015 | A1 |
20150345256 | Tulloch | Dec 2015 | A1 |
20150376982 | Renkes | Dec 2015 | A1 |
20160102526 | Wind | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2016108886 | Jul 2016 | WO |
Entry |
---|
Combined Search and Examination Report dated Jun. 1, 2017 for UK Patent Application No. GB1701641.1, 5 pages. |
Specification and Drawings for U.S. Appl. No. 14/992,638, filed Jan. 11, 2015, 37 pages. |
FASTool; “Model A SMART Collet (System Multi-Acting Repositioning Tool)” Product Family No. H44591, product brochure, p. 70 of Service Tools, received Jan. 12, 2016, 1 page. |
Halliburton; “Reverse Position Indicators”, company brochure, Downhole Sand Components (3-43-3-44), received Jan. 12, 2016, 1 page. |
Australian Examination Report dated Mar. 27, 2018 for AU Patent Application No. 2017200623, 5 pages. |
Australian Office Action dated Jan. 30, 2019 for AU Patent Application No. 2017200623, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20170218712 A1 | Aug 2017 | US |