Positive battery terminal antenna ground plane

Abstract
A positive terminal of a battery may act as an antenna ground plane for communicating battery status information. The positive terminal of the battery may include a first electrically conductive external surface with a first surface area. The negative terminal of the battery may include a second electrically conductive external surface with a second surface area less than the first surface area. An antenna impedance matching circuit may be electrically connected between a communication circuit, an antenna, and the positive terminal of the battery. Thus the positive terminal of the battery may act as a ground plane for the antenna.
Description
FIELD OF THE INVENTION

The disclosure generally relates to apparatus and methods to use external surfaces of a battery as a ground plane for an antenna in a communication system and, more particularly, to use a positive terminal and electrically conductive external surface, typically the metal battery can or casing, of a battery as a ground plane for an antenna that communicates battery status information.


BACKGROUND

On-cell battery fuel gauges may require a user to press two buttons, wait several seconds, and then observe an indication of the state of charge of the battery. Such a solution may require removing the batteries from the device and checking the battery to decide whether it is necessary to replace the battery. As such, solutions that avoid removal of a battery from a device to check the remaining capacity provide significant advantages for consumers.


In some embodiments, a battery status may be detected by remote indication using an analog to digital converter (ADC) and a Near Field Communication (NFC) Integrated Circuit (IC) together with a magnetic diverter and a thin foil antenna on the battery label. Application software, for example executing on a smart phone, may be used to receive battery status information remotely. Such battery status information may include the battery voltage that is then used to provide an indication of battery status to the user.


Conventionally packaged silicon integrated circuits together with the associated discrete resistors and capacitors when installed, for example, directly onto the label of the battery cell may increase the diameter of the cell beyond the capabilities of many existing device cavities. Furthermore, NFC detection range may in some embodiments be limited to several centimeters.


Operation of RF transceivers near metal surfaces may present technical challenges, for example with parasitic coupling of the antenna to the metal surfaces. In some embodiments battery cells may be constructed with a conductive metal can, for example constructed with steel, particularly primary alkaline batteries available to consumers. The presence of such metal surfaces near an antenna installed on a wireless transmitter circuit may detune the antenna significantly, deteriorating performance and reducing the usable range to a receiving device.


SUMMARY

One exemplary embodiment includes an apparatus that includes a positive terminal of a battery as a ground plane of an antenna and having a first electrically conductive external surface with a first surface area; a negative terminal of the battery having a second electrically conductive external surface with a second surface area; and an antenna impedance matching circuit, electrically connected between a communication circuit, the antenna, and the positive terminal of the battery. The first surface area is greater than the second surface area.


Another exemplary embodiment includes a method, that includes providing a positive terminal of a battery as a ground plane of an antenna and having a first electrically conductive external surface with a first surface area; providing a negative terminal of the battery having a second electrically conductive external surface with a second surface area less than the first surface area; providing an antenna impedance matching circuit; and electrically connecting the antenna impedance matching circuit between the positive terminal of the battery, a communication circuit, and the antenna.


Yet another exemplary embodiment includes a method that includes providing a negative terminal of a primary alkaline battery with a first surface area; providing a positive terminal of a primary alkaline battery as a ground plane of an antenna, the positive terminal comprising a second surface area greater than the first surface area; providing an antenna impedance matching circuit; electrically connecting the antenna impedance matching circuit to the positive terminal of the primary alkaline battery; electrically connecting the antenna impedance matching circuit to a communication circuit and an antenna; and calculating data relating to the remaining capacity of the battery including corrections for load on the battery related to transmission and reception of data using the communication circuit, the antenna impedance matching circuit, the antenna, and the positive terminal of the primary alkaline battery. In such primary alkaline batteries, the anode can comprise zinc and the cathode can comprise manganese oxide. In yet another optional form, the battery is a primary Zinc-Carbon battery, the battery comprising an anode, a cathode, and an electrolyte. In addition to being a primary battery such as a primary alkaline battery or a primary Zinc-Carbon battery, the battery may be a primary lithium battery. Alternatively, the battery can be a secondary battery, for example, a secondary battery such as a nickel metal hydride (NiMH) battery, a nickel cadmium (NiCad) battery, a silver/zinc battery, a nickel/zinc battery, or a lithium solid state rechargeable battery. For rechargeable chemistries, the terminals of the battery switch during charging or discharging. Generally, any battery chemistry may be used in accordance with the disclosure provided that the electrically conductive metal battery can is electrically connected to the positive terminal.


In accordance with the teachings of the disclosure, any one or more of the foregoing aspects of an apparatus or a method may further include any one or more of the following optional forms.


In one optional form, the first electrically conductive external surface electrically connects to a cathode of the battery, and the second electrically conductive external surface electrically connects to an anode of the battery.


In another optional form, a ground plane of the communication circuit electrically connects to the negative terminal of the battery.


In yet another optional form, the antenna impedance matching circuit comprises a balun configured to convert, for a first communication frequency, an input impedance of the impedance matching circuit to an output impedance of the impedance matching circuit.


In still another optional form an electrical length of the first electrically conductive external surface is greater than 0.25 of a wavelength of a signal transmitted by the communication circuit into the antenna impedance matching circuit, and the electrical length of the first electrically conductive external surface is a physical length of the first electrically conductive external surface multiplied by the ratio of (i) the propagation time of the signal through the first electrically conductive external surface to (ii) the propagation time of the signal in free space over a distance equal to the physical length of the first electrically conductive external surface.


In still another optional form, the electrical length of the first electrically conductive external surface is configured to minimize a reflected power from the antenna back into the antenna impedance matching circuit as a result of the communication circuit transmitting the signal.


In still another optional form, the antenna impedance matching circuit comprises at least one of (i) a capacitor and (ii) an inductor, and at least one of (i) the capacitor and (ii) the inductor are electrically connected between the communication circuit and the positive terminal of the battery.


In still another optional form, the battery is a primary alkaline battery, the battery comprising an anode, a cathode, and an alkaline electrolyte. In such primary alkaline batteries, the anode can comprise zinc and the cathode can comprise manganese oxide. In yet another optional form, the battery is a primary Zinc-Carbon battery, the battery comprising an anode, a cathode, and an electrolyte. In addition to being a primary battery such as a primary alkaline battery or a primary Zinc-Carbon battery, the battery may be a primary lithium battery. Alternatively, the battery can be a secondary battery, for example, a secondary battery such as a nickel metal hydride (NiMH) battery, a nickel cadmium (NiCad) battery, a silver/zinc battery, a nickel/zinc battery, a lithium-ion or a lithium solid state rechargeable battery. Generally, any battery chemistry may be used in accordance with the disclosure provided that the exterior metal battery can is electrically connected to the positive terminal.


In still another optional form, the balun comprises a first winding and a second winding around a magnetic ferrite, a first end of the first winding is electrically connected to the antenna, and a second end of the first winding is electrically connected to the positive terminal of the battery.


In still another optional form, a first end of the second winding is electrically connected to the communication circuit, and a second end of the second winding is electrically connected to the antenna.


Another optional form includes electrically connecting the antenna impedance matching circuit to a communication circuit and an antenna.


Yet another optional form includes electrically connecting a ground plane of the communication circuit to the negative terminal of the battery.


Still another optional form includes providing a balun configured to convert an input impedance encountered by a signal transmitted by the communication circuit into the impedance matching circuit to an output impedance.


Still another optional form includes providing the first electrically conductive external surface with an electrical length greater than 0.25 of a wavelength of a signal transmitted by the communication circuit into the antenna impedance matching circuit.


Still another optional form includes providing the first electrically conductive external surface with an electrical length that minimizes a reflected power from the antenna back into the antenna impedance matching circuit as a result of the communication circuit transmitting the signal.


Still another optional form includes providing the antenna impedance matching circuit with at least one of (i) a capacitor and (ii) an inductor, and electrically connecting at least one of (i) the capacitor and (ii) the inductor between a communication circuit and the positive terminal of the battery.


Still another optional form includes providing a primary alkaline battery comprising an anode, a cathode, and an alkaline electrolyte; electrically connecting the cathode of the battery to the first electrically conductive external surface of a battery; and electrically connecting the anode of the battery to the second electrically conductive external surface of a battery. In such primary alkaline batteries, the anode can comprise zinc and the cathode can comprise manganese oxide. In addition to being a primary battery such as a primary alkaline battery, the battery may be a primary lithium battery. Alternatively, the battery can be a secondary battery, for example, a secondary battery such as a nickel metal hydride (NiMH) battery, a nickel cadmium (NiCad) battery, a silver/zinc battery, a nickel/zinc battery, or a lithium ion, lithium polymer or a lithium solid state rechargeable battery. Generally, any battery chemistry may be used in accordance with the disclosure provided that the exterior metal battery can is electrically connected to the positive terminal.


Still another optional form includes providing a balun comprising a first winding and a second winding around a magnetic ferrite such that an output impedance of the balun approximates an input impedance of the antenna; electrically connecting a first end of the first winding to the antenna; and electrically connecting a second end of the first winding to the positive terminal of the battery.


Still another optional form includes electrically connecting a first end of the second winding to the communication circuit; and electrically connecting a second end of the second winding to the antenna.


Exemplary embodiments may include computer-implemented methods that may, in other embodiments, include apparatus configured to implement the method, and/or non-transitory computer readable mediums comprising computer-executable instructions that cause a processor to perform the method.


Advantages will become more apparent to those skilled in the art from the following description of the preferred embodiments which have been shown and described by way of illustration. As will be realized, the present embodiments may be capable of other and different embodiments, and their details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

The Figures described below depict various aspects of the system and methods disclosed herein. Each figure depicts a particular aspect of the disclosed system and methods, and each of the figures is intended to accord with a possible aspect thereof. Further, wherever possible, the following description refers to the reference numerals included in the following figures, in which features depicted in multiple figures are designated with consistent reference numerals.


There are shown in the Figures arrangements which are presently discussed, it being understood, however, that the present embodiments are not limited to the precise arrangements and instrumentalities shown, wherein:



FIG. 1 illustrates an exemplary consumer alkaline battery with an installed printed circuit board to transmit battery status information, in accordance with one aspect of the present disclosure;



FIG. 2 illustrates an exemplary block diagram of an apparatus to detect a voltage of a battery, and communicate battery status information over an antenna, in which an anode is used as a ground plane;



FIG. 3 illustrates an exemplary block diagram of an apparatus to use a cathode of an alkaline battery as a ground plane for an antenna, including a capacitor/inductor based impedance matching circuit, in accordance with one aspect of the present disclosure;



FIG. 4 illustrates an exemplary block diagram of an apparatus to use a cathode of an alkaline battery as a ground plane for an antenna, including a balun based impedance matching circuit, in accordance with one aspect of the present disclosure;



FIG. 5 illustrates an exemplary received signal strength indication (RSSI) plot over a variety of samples including an anode ground plane and a cathode ground plane, in accordance with one aspect of the present disclosure;



FIG. 6 illustrates an exemplary RSSI polar plot for a horizontal orientation of a receiver relative to an anode ground plane and a cathode ground plane, in accordance with one aspect of the present disclosure;



FIG. 7 illustrates an exemplary RSSI polar plot for a vertical orientation of a receiver relative to an anode ground plane and a cathode ground plane, in accordance with one aspect of the present disclosure; and



FIG. 8 illustrates an exemplary block diagram of a method to electrically connect an antenna impedance matching circuit to an external surface of a battery.





The Figures depict preferred embodiments for purposes of illustration only. Alternative embodiments of the systems and methods illustrated herein may be employed without departing from the principles of the invention described herein.


DETAILED DESCRIPTION

Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this patent and equivalents. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical. Numerous alternative embodiments may be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.


One embodiment of the present disclosure includes enabling an RF wireless sensor to operate on a battery with positive-biased case, or can, to improve the range, or maximum reading distance, between the transmitter installed on the battery and the reader. The reader may include a smart phone, tablet, local network hub, or another embodiment of a computing device.



FIG. 1 illustrates an exemplary apparatus 100 including a consumer alkaline battery 110, and an installed printed circuit board 120 that includes a variety of interconnected components that transmit a status of a battery. The printed circuit board 120 may be electrically connected to the cathode of the battery 130, and the anode of the battery 140, for example by making a low-impedance connection through wires, clips, or otherwise. Consumer alkaline batteries 110, in particular, may benefit from the installed printed circuit board 120 because alkaline batteries often require replacement in consumer electronic devices and trips to a retailer to purchase new batteries, and as such battery status information is particularly relevant.


The active material of the anode may comprise zinc. The active material of the cathode may comprise a composition comprising manganese oxide and/or manganese dioxide. Manganese dioxide may comprise gamma manganese dioxide, lambda manganese dioxide, or combinations thereof. Manganese dioxide may be prepared electrolytically as electrolytic manganese dioxide (EMD) or chemically as chemical manganese dioxide (CMD). Manganese dioxide is also available as natural manganese dioxide (NMD), however, NMD typically is not employed in alkaline batteries. Mixtures of more than one of EMD, CMD, and NMD may be used. Accordingly, as used herein, manganese dioxide refers to EMD, CMD, NMD and combinations thereof.


Active material compositions for cathodes comprising manganese dioxide may contain at least about 91 percent by weight (e.g., impurities such as sulfate salts, various metals and the like are present in an amount no greater than 9% by weight). Commercially available EMD is provided as a composition comprising a high purity, high density, gamma manganese dioxide, and is desirable as a cathode active material for alkaline cells. CMD has also been used as electrochemically active cathode material in electrochemical cells including alkaline cells and heavy-duty cells; however, commercial chemical processes yield high purity MnO2 but do not yield densities of MnO2 comparable to that of EMD. As a result EMD has become the most widely used form of battery grade MnO2, particularly for alkaline and lithium cells, since in such application it has become most desirable to employ high density MnO2 to increase the capacity of these cells.


EMD is typically manufactured from direct electrolysis of a bath of manganese sulfate and sulfuric acid. Battery grade CMD may be produced via the “Sedema process,” by employing the reaction mixture of MnSO4 and an alkali metal chlorate, preferably NaClO3, as disclosed by U.S. Pat. No. 2,956,860 (Welsh). Distributors of manganese dioxides include Tronox, Erachem, Tosoh, Delta Manganese, and Xiangtan.


Conventional battery grade manganese dioxide-containing compositions do not have a true stoichiometric formula MnO2, but are better represented by the formula MnOx, wherein x is typically between about 1.92 to 1.96, corresponding to a manganese valence of between about 3.84 and 3.92. Conventional EMD may typically have a value for x of about 1.95 or 1.96, corresponding to a manganese valence of 3.90 and 3.92, respectively. Conventional EMD also has a real density of between about 4.4 and 4.6 g/cm3.


In other embodiments of the present disclosure, the printed circuit board 120 installed on other primary batteries or secondary batteries, for example, a primary lithium-ion battery, or a secondary battery such as a nickel metal hydride (NiMH) battery, a nickel cadmium (NiCad) battery, a silver/zinc battery, a nickel/zinc battery, or a lithium solid state rechargeable battery. For rechargeable chemistries, the terminals of the battery switch during charging or discharging. Regardless, in a secondary rechargeable battery, the electrically conductive external surface of the battery comprises the positive terminal while discharging and being used to power a device.



FIG. 2 illustrates a block diagram of an exemplary apparatus 200 to detect and transmit battery status information. The apparatus 200 includes a battery 210, with an anode of the battery electrically connected to a ground 215, and a cathode of the battery electrically connected to an input of a voltage regulator 220. In some embodiments, the voltage regulator 220 may step-up a single alkaline cell voltage to a suitable voltage to power a communications circuit 230, for example to 2.4 volts or 3 volts. The voltage regulator 220 may be electrically connected to a ground 225 with a low impedance electrical path to the ground 215 and the anode of the battery 210. In some embodiments, the voltage of the battery cell may be offset at the input of an analog to digital converter (ADC) to effectively improve the resolution of the ADC.


In some embodiments, the communications circuit 230 may include a ground plane with a low impedance path to a ground 235. The ground 235 may share a low impedance path with voltage regulator ground 225, and the anode of the battery ground 215 to provide an appropriate electrical reference for proper functioning of the ADC disposed within the communications circuit 230. In some embodiments, a ground plane of the digital circuitry of the communications circuit 230 may be electrically isolated with a relatively high impedance from a ground plane of the radio frequency transmission circuitry.


A transmitter disposed within the communications circuit 230 may include a balanced connection to an impedance matching circuit 240. In other embodiments, the connection between the communications circuit 230 and the impedance matching circuit 240 may include an unbalanced connection, with an impedance of 50 ohms, or otherwise as a characteristic input impedance to the impedance matching circuit 240.


The impedance matching circuit 240 is configured to convert an input impedance encountered by the communications circuit 230 to an output impedance for a particular frequency, using a variety of passive and active electrical components. The output impedance of the impedance matching circuit 240 may approximate the characteristic input impedance of an antenna 250 and any associated wiring or electrical connections. In other embodiments, the impedance matching circuit may be configured to minimize a reflected power from the antenna 250 as a result of a signal transmitted at a particular frequency, or set of frequencies, from the communications circuit.


Embodiments of the impedance matching circuit 240 may include one or a plurality of connections to a ground 245. The ground 245 may include a low impedance path to the grounds 235, 225, and 215 of the remainder of the apparatus 200. In some embodiments, the ground 245 of the impedance matching circuit 240 may include a ground plane of the antenna 250. In other embodiments the ground plane of the antenna 250 may include the anode of the battery 210 and an electrical length of the anode of the battery 210 may be significantly less than 0.25 the wavelength of a signal transmitted by the communications circuit 230 into the impedance matching circuit 240.


In another embodiment, the transmitter installed on the battery may include a Bluetooth® Low Energy wireless sensor, for example based on the Texas Instruments CC2540 integrated circuit. In other embodiments, the transmitter may include a UHF transceiver for exchanging data over short distances. The transmitter may include a voltage booster, or voltage regulator to increase the voltage of the single alkaline cell. Such an embodiment may include a printed circuit board installed in proximity to the battery 210, due to space constraints in the battery cavity of most devices. Attachment springs may provide battery an electrical connection to allow an electrical potential for measurement and also power supply to the communications circuit 230.


Proximity of metal to the antenna 250 may detune the antenna 250 away from a frequency range of interest and negatively affect signal transmission and reception. As the distance between the sensor and the battery 210 is reduced, due to space constraints, the detuning effect becomes more pronounced. When an optimum tuned transmitter functions near a metal object, for example near the battery 210, the RF transceiver may be grounded to the positive power supply rail, or the cathode of the battery 210, to make use of the relatively larger cathode terminal, or battery case, as a more effective ground plane. In this case other metal objects, such as additional battery cells and metal parts of the device near the monitored battery, may not interfere substantially with the tuned system of antenna and battery.


Positive Terminal of a Battery as Ground Plane

One exemplary embodiment of the present disclosure includes a universal reusable battery remote indication system that includes one or more silicon integrated circuits that contain an analog to digital converter (ADC) and a communications circuit such as Bluetooth® Low Energy transceiver, Ultra High Frequency (UHF) passive or active Radio Frequency Identification (RFID), WiFi, Zigbee or other means of RF communications, an antenna and resistors and/or capacitors and other components that may be needed for the operation of the system.


Snap-on attachment of the indication system to the battery causes an electrical connection to the battery terminals, or flexible connections can also be used. Options may include double-sided flexible Printed Circuit Boards (PCBs) inserted between the battery and the device battery contact and electrically connected between the two sides, or flexible wires with conductive magnets to attach to the device battery terminals.


A battery indicator may connect to and communicate with a reader or receiver, to include a smart phone or other BLE, RFID, UHF, WiFi or similar enabled communication device. A software application executing on the reader may display the battery status, for example voltage, impedance, load, distance, temperature, time or other parameters. The software application may interpret these parameters to provide a user of the application an indication of battery status and/or a recommendation of when to replace or recharge the battery.


One embodiment of the present disclosure includes a single-cell BLE Monitor (Bluetooth® Low-Energy also known as Bluetooth® 4.xx or “Smart”) wherein the electronics are integrated in an ASIC (Application Specific Integrated Circuit) with common ground (DC/DC, ADC and RF) connected to the positive power supply rail or cathode of the battery. The antenna may be placed on the outer side of the sensor PCB (printed or integrated) and may be tuned to a fixed position versus the battery cell, which may be at a distance one PCB thickness plus the battery label thickness. An incorporated voltage boost converter may enable operation down to 0.8V-0.9V. The board may include two snap-on battery attachments that provide power and voltage measurement connections between battery and sensor. The sensor may attach to a single battery cell and may be placed in a device in non-interfering way between the other battery cells. The assembly may rotate to the most suitable position, depending on the battery compartment specifics. The battery attachment may, in some embodiments, be customized to a specific battery type.


The BLE battery monitor may be read wirelessly, using a BLE enabled smart phone with an integrated reader software application. The reader software application may display distance to the devices, assisting the user to locate the devices by moving and watching the RF signal strength increasing (indicating closer) or decreasing (indicating further).


The functionality of the Reusable Wireless Battery Monitor may not be limited to indication of battery state of charge and distance to the device. The BLE module may include a built-in MCU that can be programmed to a variety of additional functions, such as battery impedance or internal resistance measurement (state of health), temperature, pressure, leakage, safety and low-battery alerts, charge control, power management functions, or other battery related characteristics.



FIG. 3 illustrates one exemplary embodiment of the present disclosure that includes a block diagram of an apparatus 300. The apparatus 300 includes a battery 310 with a negative terminal of the battery electrically connected with a low impedance to a ground 360. A positive terminal of the battery 310 may be electrically connected with a low impedance to a voltage regulator 320 and one or more ground connections of an impedance matching circuit 340.


The impedance matching circuit 340, as illustrated may include a variety of passive electrical components, such as capacitors, resistors, and inductors, that together are configured to convert an input impedance of the impedance matching circuit 340 to an output impedance of the impedance matching circuit 340. In some embodiments, such as illustrated in FIG. 3, the input to the impedance matching circuit 340 may include a balanced differential pair of conductors, and the output includes an unbalanced output and variety of a ground connections. However, other alternative embodiments may include unbalanced inputs, balanced outputs, or other combinations therein.


The communications circuit 330 may include one or more analog to digital converters (ADCs) to receive an electrical potential from the battery 310 and convert the analog potential to a digital signal for transmission. In other embodiments, the communications circuit may convert the analog potential from the battery 310 to directly modulate an RF signal without an ADC to modulate an RF signal solely with the electric potential, or current provided by the cell of the battery 310. In some embodiments, the communications circuit 330 may share a low impedance ground connection 360 with the anode of the battery 310.


The impedance matching circuit 340 may electrically connect to an antenna 350, as illustrated with an unbalanced connection, for example with a 50 ohm impedance. Such embodiments may include antennas 350 that require an effective ground plane to radiate RF energy in a relatively omnidirectional pattern and prevent reflected power back into the communications circuit 330 or impedance matching circuit 340. As illustrated in FIG. 3, by connecting the ground connections of the impedance matching circuit 340 to the cathode of the battery 310, the cathode of the battery 310 may act as a ground plane of the antenna 350. In the embodiment wherein the battery 310 is a consumer alkaline battery, the cathode of the battery 310 may comprise a majority of the external surface area of the battery and provide an electrical length greater than 0.25 of the wavelength of transmitted signal from the communications circuit 330 into the impedance matching circuit 340.


One implementation of the embodiment illustrated in FIG. 3 may include the apparatus 300 integrated into a flexible assembly in a manner that it does not interfere with an available battery cavity. Such an embodiment may be applied to, for example, a AA, AAA, C, or D battery types without further modifications. In order to effectively utilize the alkaline battery case or positive terminal as a ground plane, a BLE Transceiver antenna impedance matching circuit may be grounded to the positive power supply rail, or the grounded ends of inductors and capacitors within the impedance matching circuit. To effectively function otherwise, the remainder of the apparatus may be grounded to the negative power supply rail, or anode of the battery. In such an embodiment, the detuning caused by proximity to the battery's metal case is eliminated.


Alternatively, as illustrated in the exemplary embodiment of FIG. 4, an output impedance matching balun, which may also be a DC blocking component, can be grounded to the positive battery can. FIG. 4 illustrates a block diagram of an apparatus 400 that includes a battery 410, likewise with the cathode of the battery 410 electrically connected to a voltage regulator 420 and the anode of the battery 410 electrically connected to a ground 460. The voltage regulator functions in a similar way as the embodiment of FIG. 3, together with the communications circuit 430 to communicate a status of the battery 410. Likewise, the communications circuit 430 may share a ground connection 460 with the anode of the battery to function effectively.


However, the embodiment illustrated in FIG. 4 includes an impedance matching circuit 440 that includes a balun 445 that converts a balanced signal from the communications circuit 430 to an unbalanced signal for an antenna 450. The negative end of the unbalanced end of the balun 445 may be electrically connected to the cathode of the battery to effectively use the cathode of the battery as a ground plane for the antenna 450.


In one particular embodiment, the balun 445 may include a balanced and unbalanced windings around a magnetic ferrite, configured as necessary to convert a balanced input impedance to an unbalanced output impedance. As illustrated in FIG. 4, both ends of the balanced connection may be electrically connected to the communications circuit 430, one end of the unbalanced winding electrically connected to the antenna 450, and one end of the unbalanced winding electrically connected to the cathode of the battery.


By using the battery connections as illustrated in FIG. 4, the sensor module and hence the antenna, which are, for example, printed on an outer side of the PCB or surface-mounted chip antenna, may remain at a fixed small distance from the metal battery can or cathode of the battery 410 and the balun 445 may be tuned specifically for that distance. In one specific embodiment, the battery length (e.g., 50 mm for AA and 45 mm for AAA sizes respectively) may approximate a half wavelength (e.g., 61.2 mm) of a center 2.45 GHz carrier frequency and may form an effective ground plane for the antenna 450.


Signal Reception Improvements with Positive Terminal Antenna Ground Plane


FIG. 5 illustrates a received signal strength indication (RSSI) graph 500 that represents the received signal strength 520 from a Bluetooth Low-Energy sensor mounted on a Duracell alkaline AA battery, measured with an iPhone 6 at 20 feet away using a Texas Instruments “Sensor Tag” app for a variety of samples 510 plotted using the negative terminal as a ground plane 530, as compared with the positive terminal as the ground plane 540.


In one embodiment, the received RF power, using the cathode as the ground plane approximates at −85 decibels over one milliwatt (dBm), compared to −95 dBm when using the anode of the battery as a ground plane. The received signal strength may determine if communications will be established and if data packets are successfully exchanged between the sensor and the reader, for example between the battery and the smart phone. Stronger signals result in a better range, or maximum distance, between the sensor and the reader, or alternatively lower power consumption of the sensor for the same distance. For example, the average current drain of the sensor may be limited to about 10 microamps, if several years of service life are desired without significant reduction of battery life. The difference illustrated in FIG. 5 of approximately 10 dBm shown may result in approximately 10 times lower RF power for the sensor with cathode ground plane for the antenna. Active RF transmission and/or reception may represents the heaviest load on the battery and may factor in battery life calculations. As such, corrections for such load during transmission and/or reception may be accounted for during calculation of remaining battery capacity.


Directionality of Signal Reception with Positive Terminal Antenna Ground Plane


FIGS. 6 and 7 illustrate polar RSSI plots for a horizontal orientation 600 and vertical orientation 700 with the results of further testing performed with two AA alkaline cells side by side and the voltage sensor board mounted on one of them. The device was rotated for each of the horizontal and vertical orientation in four relative directions, 0 degrees for axis 610 and 710, 90 degrees for axes 620 and 720, 180 degrees for axes 630 and 730, and 270 degrees for axes 640 and 740. The averages of the RSSI were taken from 60 points for each direction over 1 minute period (one sample per second).


As illustrated in FIGS. 6 and 7, the test results show consistent significant advantage of the cathode, or positive terminal ground plane, as indicated by plot 660 and 760, versus the anode, or negative terminal ground plane, as indicated by plot 650 and 750. The advantage of positive terminal grounding was further confirmed with other devices and metal objects in proximity to the sensor.


Fabrication and Use of Positive Terminal Antenna Ground Plane


FIG. 8 illustrates a block diagram 800 that represents one embodiment of a method to fabricate and/or use the positive terminal of a battery as an antenna ground plane. For example, the block diagram 800 includes providing a positive terminal of a battery having a first electrically conductive external surface with a first surface area (block 805). Furthermore, the block diagram 800 includes providing a negative terminal of a battery having a second electrically conductive external surface with a second surface area less than the first surface area (block 815). By providing an antenna impedance matching circuit (block 830) the antenna impedance matching circuit may be electrically connected to the positive terminal of the battery (block 845).


Other embodiments include electrically connecting the antenna impedance matching circuit to a communication circuit and an antenna. Furthermore, alternative embodiments include electrically connecting a ground plane of the communication circuit to the negative terminal of the battery. Still further, alternative embodiments include providing a balun configured to convert an input impedance encountered by a signal transmitted by the communication circuit into the impedance matching circuit to an output impedance. Other embodiments include providing the first electrically conductive external surface of the battery with an electrical length greater than 0.25 of a wavelength of a signal transmitted by the communication circuit into the antenna impedance matching circuit.


Alternative embodiments include providing the first electrically conductive external surface of the battery with an electrical length that minimizes a reflected power from the antenna back into the antenna impedance matching circuit as a result of the communication circuit transmitting the signal. Still further, embodiments include providing the antenna impedance matching circuit with at least one of (i) a capacitor and (ii) an inductor, and electrically connecting at least one of (i) the capacitor and (ii) the inductor between a communication circuit and the positive terminal of the battery.


Other alternative embodiments include providing an alkaline primary battery comprising an anode, a cathode, and an alkaline electrolyte; electrically connecting the cathode of the battery to the first electrically conductive external surface of a battery; and electrically connecting the anode of the battery to the second electrically conductive external surface of a battery. Still further, embodiments include providing a balun comprising a first winding and a second winding around a magnetic ferrite such that an output impedance of the balun approximates an input impedance of the antenna; electrically connecting a first end of the first winding to the antenna; and electrically connecting a second end of the first winding to the first electrically conductive external surface of the battery.


Yet another embodiment includes electrically connecting a first end of the second winding to the communication circuit; and electrically connecting a second end of the second winding to the antenna.


Alternative Embodiments

In one embodiment the RF antenna may be kept at a fixed distance from the battery case to form a tuned radiator with the battery can as a ground plane. The circuit board may be protected by an enclosure in the form of a triangular or trapezoid prism or other shape for a better fit between two of the round cylindrical battery cells, and to assure consistent antenna location.


In other embodiments the antenna impedance matching components may be switched from negative to positive ground to effectively turn the battery can into a ground plane.


In still other alternative embodiments, a 2.45 GHz Impedance Matched Balun, such as the BPF P/N2450BM15A0002 from High Frequency RF Solutions, may be grounded to the battery case (the positive power supply rail) instead of the common negative ground. As a DC block may not be required for the balun grounding, its function may not be affected by the change in balun grounding. The antenna and the alkaline battery case as a ground plane in such an embodiment may form an optimum RF radiator. The sensor module may in some embodiments be permanently attached internally in the battery-powered device.


ADDITIONAL CONSIDERATIONS

All of the foregoing computer systems may include additional, less, or alternate functionality, including that discussed herein. All of the computer-implemented methods may include additional, less, or alternate actions, including those discussed herein, and may be implemented via one or more local or remote processors and/or transceivers, and/or via computer-executable instructions stored on computer-readable media or medium.


The processors, transceivers, mobile devices, service terminals, servers, remote servers, database servers, heuristic servers, transaction servers, and/or other computing devices discussed herein may communicate with each via wireless communication networks or electronic communication networks. For instance, the communication between computing devices may be wireless communication or data transmission over one or more radio links, or wireless or digital communication channels.


Customers may opt into a program that allows them share mobile device and/or customer, with their permission or affirmative consent, with a service provider remote server. In return, the service provider remote server may provide the functionality discussed herein, including security, fraud, or other monitoring, and generate recommendations to the customer and/or generate alerts for the customers in response to abnormal activity being detected.


The following additional considerations apply to the foregoing discussion. Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.


Additionally, certain embodiments are described herein as including logic or a number of routines, subroutines, applications, or instructions. These may constitute either software (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware. In hardware, the routines, etc., are tangible units capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.


In various embodiments, a hardware module may be implemented mechanically or electronically. For example, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.


Accordingly, the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.


Hardware modules may provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and may operate on a resource (e.g., a collection of information).


The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.


Similarly, the methods or routines described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.


The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.


Unless specifically stated otherwise, discussions herein using words such as “processing,” “computing,” “calculating,” “determining,” “presenting,” “displaying,” or the like may refer to actions or processes of a machine (e.g., a computer) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non-volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.


As used herein any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. For example, some embodiments may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).


In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the description. This description, and the claims that follow, should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.


The patent claims at the end of this patent application are not intended to be construed under 35 U.S.C. § 112(f) unless traditional means-plus-function language is expressly recited, such as “means for” or “step for” language being explicitly recited in the claim(s).


The systems and methods described herein are directed to improvements to computer functionality, and improve the functioning of conventional computers.


This detailed description is to be construed as exemplary only and does not describe every possible embodiment, as describing every possible embodiment would be impractical, if not impossible. One may be implement numerous alternate embodiments, using either current technology or technology developed after the filing date of this application.

Claims
  • 1. An apparatus, comprising: a positive terminal of a battery as a ground plane of an antenna, comprising a first electrically conductive external surface with a first surface area;a negative terminal of the battery, comprising a second electrically conductive external surface with a second surface area;an antenna impedance matching circuit, electrically connected between a communication circuit, an antenna, and the first electrically conductive external surface of the battery;wherein the first surface area is greater than the second surface area.
  • 2. The apparatus of claim 1, wherein the first electrically conductive external surface electrically connects to a cathode of the battery, and the second electrically conductive external surface electrically connects to an anode of the battery.
  • 3. The apparatus of claim 1, wherein a ground plane of the communication circuit electrically connects to the negative terminal of the battery.
  • 4. The apparatus of claim 1, wherein the antenna impedance matching circuit comprises a balun configured to convert, for a first communication frequency, an input impedance of the impedance matching circuit to an output impedance of the impedance matching circuit.
  • 5. The apparatus of claim 1, wherein an electrical length of the first electrically conductive external surface is greater than 0.25 of a wavelength of a signal transmitted by the communication circuit into the antenna impedance matching circuit, and wherein the electrical length of the first electrically conductive external surface is a physical length of the first electrically conductive external surface multiplied by the ratio of (i) the propagation time of the signal through the first electrically conductive external surface to (ii) the propagation time of the signal in free space over a distance equal to the physical length of the first electrically conductive external surface.
  • 6. The apparatus of claim 5, wherein the electrical length of the first electrically conductive external surface is configured to minimize a reflected power from the antenna back into the antenna impedance matching circuit as a result of the communication circuit transmitting the signal.
  • 7. The apparatus of claim 4, wherein the balun comprises a first winding and a second winding around a magnetic ferrite, wherein a first end of the first winding is electrically connected to the antenna, and a second end of the first winding is electrically connected to the positive terminal of the battery.
  • 8. The apparatus of claim 7, wherein a first end of the second winding is electrically connected to the communication circuit, and wherein a second end of the second winding is electrically connected to the antenna.
  • 9. The apparatus of claim 1, wherein the antenna impedance matching circuit comprises at least one of (i) a capacitor and (ii) an inductor, and wherein at least one of (i) the capacitor and (ii) the inductor are electrically connected between the communication circuit and the positive terminal of the battery.
  • 10. The apparatus of claim 1, wherein the battery is a primary alkaline battery.
  • 11. A method, comprising: providing a positive terminal of a battery as a ground plane of an antenna, comprising a first electrically conductive external surface with a first surface area;providing a negative terminal of the battery, comprising a second electrically conductive external surface with a second surface area less than the first surface area;providing an antenna impedance matching circuit; andelectrically connecting the antenna impedance matching circuit between the positive terminal of the battery, a communication circuit, and the antenna.
  • 12. The method of claim 11, comprising electrically connecting a ground plane of the communication circuit to the negative terminal of the battery.
  • 13. The method of claim 11, comprising providing a balun configured to convert an input impedance encountered by a signal transmitted by the communication circuit into the impedance matching circuit to an output impedance.
  • 14. The method of claim 11, comprising providing the first electrically conductive external surface with an electrical length greater than 0.25 of a wavelength of a signal transmitted by the communication circuit into the antenna impedance matching circuit.
  • 15. The method of claim 14, comprising providing the first electrically conductive external surface with an electrical length that minimizes a reflected power from the antenna back into the antenna impedance matching circuit as a result of the communication circuit transmitting the signal.
  • 16. The method of claim 11, wherein providing the antenna impedance matching circuit comprises providing at least one of (i) a capacitor and (ii) an inductor, and electrically connecting at least one of (i) the capacitor and (ii) the inductor between a communication circuit and the positive terminal of the battery.
  • 17. The method of claim 11, wherein: the battery is a primary alkaline battery comprising a cathode connected to a metal battery can; andelectrically connecting the antenna impedance matching circuit between the positive terminal of the battery, the communication circuit, and the antenna comprises: electrically connecting the antenna impedance matching circuit between the cathode of the primary alkaline battery, the communication circuit, and the antenna.
  • 18. The method of claim 11, wherein providing the antenna impedance matching circuit comprises: providing a balun comprising a first winding and a second winding around a magnetic ferrite such that an output impedance of the balun approximates an input impedance of the antenna;electrically connecting a first end of the first winding to the antenna; andelectrically connecting a second end of the first winding to the positive terminal of the battery.
  • 19. The method of claim 18, further comprising: electrically connecting a first end of the second winding to the communication circuit; andelectrically connecting a second end of the second winding to the antenna.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/340,737 filed Nov. 1, 2016, and entitled “Positive Battery Terminal Antenna Ground Plane.” The disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (311)
Number Name Date Kind
3354565 Emmons et al. Nov 1967 A
3992228 Depoix Nov 1976 A
3993985 Chopard et al. Nov 1976 A
4117475 Ebihara et al. Sep 1978 A
4149146 Ebihara et al. Apr 1979 A
4238554 Barrella Dec 1980 A
4302751 Nakauchi et al. Nov 1981 A
4460870 Finger Jul 1984 A
4482615 Rosansky et al. Nov 1984 A
4598243 Kawakami Jul 1986 A
4654280 Bailey Mar 1987 A
4759765 Van Kampen Jul 1988 A
4808497 Blomgren et al. Feb 1989 A
4860185 Brewer et al. Aug 1989 A
4952330 Leger et al. Aug 1990 A
5015544 Burroughs et al. May 1991 A
5032825 Kuznicki Jul 1991 A
5188231 Kivell et al. Feb 1993 A
5200686 Lee Apr 1993 A
5219683 Webber Jun 1993 A
5231356 Parker Jul 1993 A
5250905 Kuo et al. Oct 1993 A
5290414 Marple Mar 1994 A
5339024 Kuo et al. Aug 1994 A
5355089 Treger Oct 1994 A
5366832 Hayashi et al. Nov 1994 A
5389458 Weiss et al. Feb 1995 A
5389470 Parker et al. Feb 1995 A
5396177 Kuo et al. Mar 1995 A
5418086 Bailey May 1995 A
5424722 Inada et al. Jun 1995 A
5438607 Przygoda, Jr. et al. Aug 1995 A
5458992 Bailey Oct 1995 A
5458997 Crespi et al. Oct 1995 A
5491038 DePalma et al. Feb 1996 A
5494496 Huhndorff et al. Feb 1996 A
5514491 Webber May 1996 A
5525439 Huhndorff et al. Jun 1996 A
5543246 Treger Aug 1996 A
5569556 Bohmer Oct 1996 A
5587573 Owen et al. Dec 1996 A
5596278 Lin Jan 1997 A
5607790 Hughen et al. Mar 1997 A
5627472 Ofer et al. May 1997 A
5633592 Lang May 1997 A
5640150 Atwater Jun 1997 A
5654640 Bailey Aug 1997 A
5691083 Bolster Nov 1997 A
5737114 Bailey Apr 1998 A
5786106 Armani Jul 1998 A
5798933 Nicolai Aug 1998 A
5849046 Bailey Dec 1998 A
5925479 Wei et al. Jul 1999 A
5959568 Woolley Sep 1999 A
5963012 Garcia et al. Oct 1999 A
6014014 Owen et al. Jan 2000 A
6084523 Gelnovatch et al. Jul 2000 A
6127062 Sargeant et al. Oct 2000 A
6143439 Yoppolo et al. Nov 2000 A
6156450 Bailey Dec 2000 A
6169397 Steinbach et al. Jan 2001 B1
6171729 Gan et al. Jan 2001 B1
6208235 Trontelj Mar 2001 B1
6218054 Webber Apr 2001 B1
6252377 Shibutani et al. Jun 2001 B1
6275161 Wan et al. Aug 2001 B1
6300004 Tucholski Oct 2001 B1
6407534 Mukainakano Jun 2002 B1
6469471 Anbuky et al. Oct 2002 B1
6483275 Nebrigic et al. Nov 2002 B1
6587250 Armgarth et al. Jul 2003 B2
6617069 Hopper et al. Sep 2003 B1
6617072 Venkatesan et al. Sep 2003 B2
6627353 Munshi Sep 2003 B1
6670073 Tucholski et al. Dec 2003 B2
RE38518 Tucholski May 2004 E
6730136 Webber May 2004 B2
6774685 O'Toole et al. Aug 2004 B2
6775562 Owens et al. Aug 2004 B1
6849360 Marple Feb 2005 B2
6979502 Gartstein et al. Dec 2005 B1
6990171 Toth et al. Jan 2006 B2
7067882 Singh Jun 2006 B2
7079079 Jo et al. Jul 2006 B2
7157185 Marple Jan 2007 B2
7386404 Cargonja et al. Jun 2008 B2
7474230 Blom et al. Jan 2009 B2
7489431 Malmstrom et al. Feb 2009 B2
7511454 Legg Mar 2009 B1
7561050 Bhogal et al. Jul 2009 B2
7576517 Cotton et al. Aug 2009 B1
7586416 Ariyoshi et al. Sep 2009 B2
7598880 Powell et al. Oct 2009 B2
7606530 Anderson et al. Oct 2009 B1
7715884 Book et al. May 2010 B2
7741970 Cunningham et al. Jun 2010 B2
7745046 Kim et al. Jun 2010 B2
7768236 Takamura et al. Aug 2010 B2
7772850 Bertness Aug 2010 B2
7805263 Mack Sep 2010 B2
7911182 Cargonja et al. Mar 2011 B2
7944368 Carter et al. May 2011 B2
8031054 Tuttle Oct 2011 B2
8106845 Savry Jan 2012 B2
8119286 Issaev et al. Feb 2012 B2
8131486 Leonard et al. Mar 2012 B2
8344685 Bertness et al. Jan 2013 B2
8368356 Nakashima et al. Feb 2013 B2
8374507 Hudson et al. Feb 2013 B2
8424092 Ikeuchi et al. Apr 2013 B2
8427109 Melichar Apr 2013 B2
8471888 George et al. Jun 2013 B2
8652670 Uchida Feb 2014 B2
8653926 Detcheverry et al. Feb 2014 B2
8900731 Bohne Dec 2014 B2
8905317 Hsu et al. Dec 2014 B1
9037426 Schaefer May 2015 B2
9060213 Jones Jun 2015 B2
9076092 Ritamaki et al. Jul 2015 B2
9083063 Specht et al. Jul 2015 B2
9146595 Forutanpour et al. Sep 2015 B2
9167317 DeMar Oct 2015 B2
9189667 Bourilkov et al. Nov 2015 B2
9235044 Specht et al. Jan 2016 B2
9297859 Mukaitani et al. Mar 2016 B2
9312575 Stukenberg et al. Apr 2016 B2
9331378 Merlin et al. May 2016 B2
9331384 Jenwatanavet May 2016 B2
9425487 Bertness Aug 2016 B2
9453885 Mukaitani et al. Sep 2016 B2
9459323 Mukaitani et al. Oct 2016 B2
9461339 Roohparvar Oct 2016 B2
9478850 Bourilkov et al. Oct 2016 B2
9551758 Bourilkov et al. Jan 2017 B2
9568556 Bourilkov et al. Feb 2017 B2
9619612 Kallfelz et al. Apr 2017 B2
9639724 Bourilkov et al. May 2017 B2
9661576 Tomisawa May 2017 B2
9699818 Grothaus et al. Jul 2017 B2
9726763 Dempsey et al. Aug 2017 B2
9739837 Bourilkov et al. Aug 2017 B2
9746524 Petrucelli Aug 2017 B2
9774210 Wright Sep 2017 B1
9823310 Bourilkov et al. Nov 2017 B2
9841462 Kim et al. Dec 2017 B2
9843220 Herrmann et al. Dec 2017 B2
9869726 Zumstein et al. Jan 2018 B2
9882250 Chappelle et al. Jan 2018 B2
9887463 Bourilkov et al. Feb 2018 B2
9893390 Specht et al. Feb 2018 B2
9983312 Dempsey et al. May 2018 B2
10094886 Bourilkov et al. Oct 2018 B2
10151802 Riemer et al. Dec 2018 B2
10184988 Bourilkov et al. Jan 2019 B2
10297875 Riemer et al. May 2019 B2
10416309 Dempsey et al. Sep 2019 B2
10483634 Bourilkov et al. Nov 2019 B2
20010005123 Jones et al. Jun 2001 A1
20010026226 Andersson et al. Oct 2001 A1
20020001745 Gartstein et al. Jan 2002 A1
20020086718 Bigwood et al. Jul 2002 A1
20030070283 Webber Apr 2003 A1
20030169047 Chen Sep 2003 A1
20030170537 Randell Sep 2003 A1
20030184493 Robinet et al. Oct 2003 A1
20030228518 Marple Dec 2003 A1
20040029007 Kusumoto et al. Feb 2004 A1
20040048512 Chen Mar 2004 A1
20040183742 Goff et al. Sep 2004 A1
20050038614 Botts et al. Feb 2005 A1
20050073282 Carrier et al. Apr 2005 A1
20050095508 Yamamoto May 2005 A1
20050112462 Marple May 2005 A1
20050162129 Mutabdzija et al. Jul 2005 A1
20050233214 Marple et al. Oct 2005 A1
20050258797 Hung Nov 2005 A1
20050277023 Marple et al. Dec 2005 A1
20060017581 Schwendinger et al. Jan 2006 A1
20060028179 Yudahira et al. Feb 2006 A1
20060043933 Latinis Mar 2006 A1
20060046152 Webber Mar 2006 A1
20060046153 Webber Mar 2006 A1
20060046154 Webber et al. Mar 2006 A1
20060047576 Aaltonen et al. Mar 2006 A1
20060163692 Detecheverry et al. Jul 2006 A1
20060168802 Tuttle Aug 2006 A1
20060170397 Srinivasan et al. Aug 2006 A1
20060208898 Swanson et al. Sep 2006 A1
20060247156 Vanderby et al. Nov 2006 A1
20060261960 Haraguchi et al. Nov 2006 A1
20070080804 Hirahara et al. Apr 2007 A1
20070096697 Maireanu May 2007 A1
20070108946 Yamauchi et al. May 2007 A1
20070182576 Proska et al. Aug 2007 A1
20070210924 Arnold et al. Sep 2007 A1
20070273329 Kobuse et al. Nov 2007 A1
20080053716 Scheucher Mar 2008 A1
20080076029 Bowden et al. Mar 2008 A1
20080079391 Schroeck et al. Apr 2008 A1
20080157924 Batra Jul 2008 A1
20080160392 Toya et al. Jul 2008 A1
20080206627 Wright Aug 2008 A1
20080218351 Corrado et al. Sep 2008 A1
20080252462 Sakama Oct 2008 A1
20090008031 Gould et al. Jan 2009 A1
20090009177 Kim et al. Jan 2009 A1
20090024309 Crucs Jan 2009 A1
20090041228 Owens et al. Feb 2009 A1
20090098462 Fujiwara et al. Apr 2009 A1
20090148756 Specht et al. Jun 2009 A1
20090155673 Northcott Jun 2009 A1
20090179763 Sheng Jul 2009 A1
20090214950 Bowden et al. Aug 2009 A1
20090263727 Josephs et al. Oct 2009 A1
20090273473 Tuttle Nov 2009 A1
20090289825 Trinkle Nov 2009 A1
20090297949 Berkowitz et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20100019733 Rubio Jan 2010 A1
20100030592 Evans et al. Feb 2010 A1
20100073003 Sakurai et al. Mar 2010 A1
20100081049 Holl et al. Apr 2010 A1
20100085008 Suzuki et al. Apr 2010 A1
20100087241 Nguyen et al. Apr 2010 A1
20100143753 Kim et al. Jun 2010 A1
20100209744 Kim Aug 2010 A1
20100219252 Kikuchi et al. Sep 2010 A1
20100295943 Cha et al. Nov 2010 A1
20100308974 Rowland et al. Dec 2010 A1
20110018777 Brown Jan 2011 A1
20110023130 Gudgel et al. Jan 2011 A1
20110104520 Ahn May 2011 A1
20110123874 Issaev et al. May 2011 A1
20110163752 Janousek et al. Jul 2011 A1
20110293969 Hoofman et al. Dec 2011 A1
20120021266 Marple et al. Jan 2012 A1
20120056002 Ritamaki et al. Mar 2012 A1
20120081774 De Paiva Martins et al. Apr 2012 A1
20120086615 Norair Apr 2012 A1
20120121943 Roohparvar May 2012 A1
20120183862 Gupta et al. Jul 2012 A1
20120190305 Wuidart Jul 2012 A1
20120206102 Okamura et al. Aug 2012 A1
20120206302 Ramachandran et al. Aug 2012 A1
20120217971 Deluca Aug 2012 A1
20120235870 Forster Sep 2012 A1
20120277832 Hussain Nov 2012 A1
20120299597 Shigemizu Nov 2012 A1
20120323511 Saigo et al. Dec 2012 A1
20130069768 Madhyastha Mar 2013 A1
20130117595 Murawski et al. May 2013 A1
20130127611 Bernstein et al. May 2013 A1
20130148283 Forutanpour et al. Jun 2013 A1
20130154652 Rice et al. Jun 2013 A1
20130161380 Joyce et al. Jun 2013 A1
20130162402 Amann et al. Jun 2013 A1
20130162403 Striemer et al. Jun 2013 A1
20130162404 Striemer et al. Jun 2013 A1
20130164567 Olsson et al. Jun 2013 A1
20130171479 Kim et al. Jul 2013 A1
20130183568 Babinec et al. Jul 2013 A1
20130185008 Itabashi et al. Jul 2013 A1
20130271072 Lee et al. Oct 2013 A1
20130295421 Teramoto et al. Nov 2013 A1
20130320989 Inoue et al. Dec 2013 A1
20140062663 Bourilkov et al. Mar 2014 A1
20140139380 Ouyang et al. May 2014 A1
20140188413 Bourilkov et al. Jul 2014 A1
20140197802 Yamazaki Jul 2014 A1
20140229129 Campbell et al. Aug 2014 A1
20140302348 Specht et al. Oct 2014 A1
20140302351 Specht et al. Oct 2014 A1
20140320144 Nakaya Oct 2014 A1
20140342193 Mull et al. Nov 2014 A1
20140346873 Colangelo et al. Nov 2014 A1
20140347249 Bourilkov Nov 2014 A1
20140370344 Lovelace et al. Dec 2014 A1
20140379285 Dempsey et al. Dec 2014 A1
20150061603 Loftus et al. Mar 2015 A1
20150064524 Noh et al. Mar 2015 A1
20150162649 Bae et al. Jun 2015 A1
20150349391 Chappelle Dec 2015 A1
20150357685 Iwasawa Dec 2015 A1
20160034733 Bourilkov et al. Feb 2016 A1
20160049695 Lim et al. Feb 2016 A1
20160064781 Specht et al. Mar 2016 A1
20160092847 Buchbinder Mar 2016 A1
20160137088 Lim et al. May 2016 A1
20160154025 Song et al. Jun 2016 A1
20160277879 Daoura et al. Sep 2016 A1
20170040698 Bourilkov et al. Feb 2017 A1
20170062841 Riemer et al. Mar 2017 A1
20170062880 Riemer et al. Mar 2017 A1
20170092994 Canfield et al. Mar 2017 A1
20170125855 Gong et al. May 2017 A1
20170176539 Younger Jun 2017 A1
20170286918 Westermann et al. Oct 2017 A1
20170301961 Kim et al. Oct 2017 A1
20170315183 Chao et al. Nov 2017 A1
20170331162 Clarke et al. Nov 2017 A1
20180040929 Chappelle et al. Feb 2018 A1
20180088182 Bourilkov et al. Mar 2018 A1
20180120386 Riemer et al. May 2018 A1
20180123174 Riemer et al. May 2018 A1
20180123175 Riemer et al. May 2018 A1
20180123176 Riemer et al. May 2018 A1
20180123233 Bourilkov et al. May 2018 A1
20180159225 Bourilkov et al. Jun 2018 A1
20190113579 Riemer et al. Apr 2019 A1
20190137572 Bourilkov et al. May 2019 A1
20200011997 Dempsey et al. Jan 2020 A1
Foreign Referenced Citations (103)
Number Date Country
1084281 Mar 1994 CN
1163020 Oct 1997 CN
1228540 Sep 1999 CN
1315072 Sep 2001 CN
1529182 Sep 2004 CN
2828963 Oct 2006 CN
101126795 Feb 2008 CN
201142022 Oct 2008 CN
201233435 May 2009 CN
101702792 May 2010 CN
101785164 Jul 2010 CN
102097844 Jun 2011 CN
102142186 Aug 2011 CN
102544709 Jul 2012 CN
202308203 Jul 2012 CN
202720320 Feb 2013 CN
202856390 Apr 2013 CN
103682482 Mar 2014 CN
104635169 May 2015 CN
105337367 Feb 2016 CN
205160145 Apr 2016 CN
106405241 Feb 2017 CN
106848448 Jun 2017 CN
107284272 Oct 2017 CN
206804833 Dec 2017 CN
10118027 Nov 2002 DE
10118051 Nov 2002 DE
0523901 Jan 1993 EP
718908 Dec 1994 EP
1450174 Aug 2004 EP
1693807 Aug 2006 EP
1786057 May 2007 EP
1821363 Aug 2007 EP
2065962 Jun 2009 EP
2204873 Jul 2010 EP
2324535 May 2011 EP
2328223 Jun 2011 EP
2645447 Oct 2013 EP
2680093 Jan 2014 EP
2790262 Oct 2014 EP
3128599 Feb 2017 EP
S52005581 Jan 1977 JP
61169781 Jul 1986 JP
02142324 May 1990 JP
H03131771 Jun 1991 JP
H06284170 Oct 1994 JP
H09005366 Jan 1997 JP
10014003 Jan 1998 JP
2000077928 Mar 2000 JP
2001022905 Jan 2001 JP
2004085580 Mar 2004 JP
2004-253858 Sep 2004 JP
2004534430 Nov 2004 JP
2005327099 Nov 2005 JP
2006139544 Jun 2006 JP
2006284431 Oct 2006 JP
2006324074 Nov 2006 JP
2007515848 Jun 2007 JP
2007171045 Jul 2007 JP
2008042985 Feb 2008 JP
2008-530682 Aug 2008 JP
2008181855 Aug 2008 JP
2009-37374 Feb 2009 JP
2010098361 Apr 2010 JP
2010-154012 Jul 2010 JP
2011113759 Jun 2011 JP
2011203595 Oct 2011 JP
20120056002 Mar 2012 JP
2012085491 Apr 2012 JP
2012-129183 Jul 2012 JP
2012161614 Aug 2012 JP
2012170262 Sep 2012 JP
2013-038967 Feb 2013 JP
2013038961 Feb 2013 JP
2013120640 Jun 2013 JP
2011-0018488 Feb 2011 KR
M510009 Oct 2015 TW
I580153 Apr 2017 TW
WO-9501062 Jan 1995 WO
WO-03047064 Jun 2003 WO
WO-2004047215 Jun 2004 WO
WO-2004107251 Dec 2004 WO
WO-2005078673 Aug 2005 WO
WO-2006048838 May 2006 WO
WO-2006085291 Aug 2006 WO
WO-2008151181 Dec 2008 WO
WO-2008156735 Dec 2008 WO
WO-2010127509 Nov 2010 WO
WO-2011063679 Jun 2011 WO
WO-2011096863 Aug 2011 WO
WO-2012051272 Apr 2012 WO
WO-2012061262 May 2012 WO
WO-2012070635 May 2012 WO
WO-2012083759 Jun 2012 WO
WO-2013022857 Feb 2013 WO
WO-2013024341 Feb 2013 WO
WO-2013069423 May 2013 WO
WO-2013084481 Jun 2013 WO
WO-2013101652 Jul 2013 WO
WO-2015183609 Dec 2015 WO
WO-2016146006 Sep 2016 WO
WO-2016166735 Oct 2016 WO
WO-2016172542 Oct 2016 WO
Non-Patent Literature Citations (7)
Entry
Atmel Corporation, Application Note AVR400: Low Cost A/D Converter, available at http://www.atmel.com/images/doc0942.pfd (last visited Oct. 24, 2013).
International Application No. PCT/US2017/059465, International Preliminary Report on Patentability, dated Nov. 28, 2018.
International Application No. PCT/US2017/059465, International Search Report and Written Opinion, dated Jan. 18, 2018.
Kooser, Tethercell magically turns AA batteries into Bluetooth devices, CNET.com, downloaded from the Internet at: <https://www.cnet.com/news/tethercell-magically-turns-aa-batteries-into-bluetooth-devices/> (Jan. 8, 2013).
Tethercell Smart Battery Adapter fundraising campaign on Indiegogo website (<https://www.indiegogo.com/projects/tethercell-smart-battery-adapter#/>) (launched Oct. 2013).
Tethercell video uploaded at <https://vimeo.com/53823785> (Oct. 2012).
Yamashiro, Voltage Detecting Circuit, Japanese Patent No. 52005581, Hitashi Ltd., (Jan. 17, 1977), Translated by the United States Patent and Trademark Office via Phoenix Translations (Elgin, TX) in Feb. 2018.
Related Publications (1)
Number Date Country
20200083601 A1 Mar 2020 US
Continuations (1)
Number Date Country
Parent 15340737 Nov 2016 US
Child 16687205 US