The present disclosure relates generally to positive displacement pump systems. More particularly, the present disclosure relates to a controller configured to operate a reciprocating pump and methods for controlling reciprocation.
Positive displacement pumps comprise systems in which a fixed volume of material is drawn into an expanding chamber and pushed out of the chamber as it contracts. Such pumps typically comprise a reciprocating pumping mechanism, such as a piston, or a rotary pumping mechanism, such as a gear set. Reciprocating piston pumps require a bi-directional input that can drive the piston to expand and collapse the pumping chamber (i.e., an upstroke and a downstroke). Typical pumping systems are driven by a rotary input, such as a motor with a rotating output shaft. Rotary input requires unidirectional rotation of the output shaft to be converted into a reciprocating motion. The motors are conventionally configured as air motors powered by compressed air or electric motors powered by alternating current. This is conventionally achieved by the use of crankshaft or cam systems, such as is described in co-owned U.S. Pat. No. 5,145,339 to Lehrke et al. which is herein incorporated by reference in its entirety.
U.S. Pat. No. 2,640,425 to Saalfrank is directed to adjusting pumping during the operation of the pump by moving a pivot which is fixed except for its linear motion and rotation, and therefore can be moved very simply. The pump always completes its stroke at approximately the same point for any adjustment, so that very little error is introduced in pumping compressible liquids even at high pressures. The pump is very effective scavenging the cylinder regardless of the adjustment position.
U.S. Pat. No. 3,459,056 to Lea discloses a mechanism for converting constant reciprocal motion to or from constant torque rotary motion. This mechanism is typically made up of two separate but identical mechanical linkage units which work in parallel but 90° out of phase from one another in connection with a common rotary shaft. Each unit comprises two serially coupled transmission means. Each transmission means is designed to transmit a force F with a resultant force F sin Θ. This mechanism results in equal constant forces being applied reciprocally to the serially coupled transmission means resulting in a constant torque on the rotary shaft, and vice versa.
U.S. Pat. No. 4,089,235 to McWhorter discloses a connecting rod for use in reciprocating piston driven internal or external combustion engines. The connecting rod design presented consists of two component parts pivotally joined near the center and in this respect differs from the single piece rigid link connecting rods generally described as comprising the four-bar linkage slider mechanism of other engine systems.
U.S. Pat. No. 4,384,576 to Farmer discloses a portable positive displacement respirator/ventilator for both a pressure sigh and a volume sigh of predetermined duration and frequency by providing a variable length crank arm connecting a piston through a connecting rod by mounting the connecting rod on a circular toothed gear, pivoting the gear for movement at its center and driven on its outer edge with a separate motor driven pivot gear which when moved relocates the effective length of movement of the point of attachment of the connecting rod thereby changing the volume swept by the piston for the same arc of reciprocal movement of the larger circular toothed gear enabling both a volume change or a volume sigh with the device. A cooperating multiplicity of adjustable pressure regulating valves where at least one can be intermittently closed during the operation of the device regulates ventilation pressure or breathing pressure and sigh pressure.
U.S. Pat. No. 5,145,339 to Lehrke et al. discloses a multiple piston cylinder reciprocating pump with a cam drive such that the sum of the velocities during the pumping strokes of all of the cylinders is generally constant. The leak free design is provided by utilizing a diaphragm attached to the piston between the main seal assembly and the cam. A flow through intake design is provided which flows incoming material around the piston between the diaphragm and the main seal to prevent the build-up and hardening of material on the piston and in the seal area. The intake and exhaust passages are arranged such that air pockets cannot be formed and any air bubbles which find their way into the pump will rise upwardly out of the pump without restriction.
U.S. Pat. No. 5,245,962 to Routery discloses an improved apparatus in an internal combustion engine for causing a piston to remain generally at the top dead center position for a period after the crank has passed top dead center, permitting constant volume combustion of a fuel mixture. A rotatable disc mounted in the upper sleeve end of a connecting rod as an eccentric bore for receiving the wrist pin of a piston. Another eccentric bore in the disc pivotally receives an upper end of a rigid shifter bar. An intermediate portion of the shifter bar is slidably attached to a pin mounted to a lower portion of the piston and a lower portion of the shifter bar is slidably attached to a pin mounted to an intermediate portion of the connecting rod. Thus, angular movement of the connecting rod relative to the pin will cause the shifter bar to rotate the disc imparting an upward motion to the piston to counteract for a time the downward motion of the connecting rod. The position of at least one of the pins may be remotely controlled to be repositioned in proportion to engine speed, or to accommodate alternative fuels.
U.S. Pat. No. 5,988,994 to Berchowitz discloses a pump or compressor wherein the volumetric displacement of a piston cylinder assembly is variable. The piston is connected to a crank slider or eccentric mechanical drive, the crankshaft of which oscillates alternately clockwise through a controllably variable angle Θ and counterclockwise through substantially the same angle Θ, the angle Θ being measured from the angular position of the crankshaft or eccentric at which separation between piston and the closed end of the bore is a minimum (Top Dead Center). The angle of crank oscillation controls the degree of volumetric displacement of the piston. The crank shaft is connected to a torsional spring so as to substantially resonate the rotational inertia of the moving parts. An oscillating electric motor supplies the oscillating torque to drive the mechanism at constant frequency but controllably variable angular amplitude.
U.S. Pat. No. 6,202,622 to Raquiza, Jr., discloses a crank system-device specifically for piston-type internal combustion engines, to maximize the transfer of combustion power from the push-down pressure of the piston to the twisting force of the crankshaft. The device provides for a “Downward Power Path” that enables the piston to push the crank pin downwards and close to the piston centerline, unlike in the case of the “Sideways Power Path” of the prior art wherein the piston pushes the crank pin sideways and away from the piston centerline. To effect a downward power path, an “Off-Center Crankshaft” is resorted to, whereby the crankshaft is moved from its usual position along the piston centerline to the left side thereof, and with an offset distance that places the downward path of the crank pin directly under the piston's downward axis along the piston centerline. A special “Variable-length Connecting Rod”, operating in conjunction with a “Multiple Crank Pin” is also provided to suspend the TDC position of the piston and to synchronize it with the new starting point for both the power stroke and the downward power path.
U.S. Pat. No. 6,336,389 to English et al. discloses a pressurized working environment for a pneumatic device which permits emission-free utilization of the potential mechanical energy of pressure differentials within compressed gas systems is disclosed. The pneumatic device is contained within a pressure vessel and the pneumatic device exhaust is in fluid communication with the interior of the pressure vessel. In use, the interior of the pressure vessel is in fluid communication with an area of lower pressure in the compressed gas system and the pneumatic device intake is in fluid communication with an area of higher pressure in the compressed gas system. In use, the gas from the area of higher pressure drives the pneumatic device and is then exhausted to the area of lower pressure.
U.S. Pat. No. 7,028,647 to Styron discloses a variable compression ratio connecting rod for an internal combustion engine, the rod having a large end adapted for attachment to a crankshaft and a small end adapted for attachment to a piston. An adjustable four-bar link system extends between and links the large end and the small end so as to permit the length of the connecting rod to be adjusted through the action of an adjustable toggle link and an eccentric which is driven by inertia forces acting upon the connecting rod.
U.S. Pat. No. 8,713,934 to Berchowitz discloses a free-piston Stirling machine drivingly coupled to at least one rotary electromagnetic transducer. At least one pulley is oriented in a plane of a reciprocating piston connecting rod. At least one motion translating drive link connects the connecting rod to the pulley by at least two straps so that the pulley moves in rotationally oscillating motion. The two straps extend along an arcuate surface of the pulley into connection to the piston rod at two spaced locations. The pulley is linked to a rotary electromagnetic transducer so that both move in rotationally oscillating motion. Preferably a piston spring resonates the piston at an operating frequency of the Stirling machine and a torsion spring resonates the pulley in rotational oscillation at the operating frequency of the Stirling machine.
U.S. Pat. No. 9,765,689 to Amplatz discloses an internal combustion engine having a standard connect-ing rod as well as a gear rack. The connecting rod can be a standard connecting rod that reciprocates with the piston and that drives a rotatable crank mechanism to convert the reciprocating motion of the piston into rotation of the crankshaft. The gear rack is also connected to and recipro-cates with the piston. The gear rack is engaged with a gear that is mounted on the crankshaft. A one-way drive mechanism is provided between the gear and the crankshaft that transmits torque (i.e., rotary force) to the crankshaft only during the power stroke of the piston.
U.S. Pat. App. Pub. No. 2008/0199333 to Detering discloses a compressor unit having a motor and a reciprocating-piston compressor which is driven via a slider-crank drive. The slider-crank drive includes a crank wheel and a connecting rod, which is connected to the crank wheel and a piston. The piston stroke can be adjusted by a threaded connection that allows an exact spacing between the crank drive and the piston to be set.
A pump may be configured for optimal performance with a compressible material (e.g., fire proofing material, etc.). In some pump configurations, such as pump systems with two piston pumps and four ball valves, it has been found that an appreciable percentage of work of the first stroke (e.g., downstroke) after the compressible material has entered the piston cylinder is directed at compressing the compressible material, after which the majority of the percentage of work done by the next stroke (e.g., upstroke) is directed at pumping the compressible material. With double pump systems, the work load may be divided between the pumps, wherein one pump is compressing while the other pump is pumping (moving) the compressible material. However, a problem arises when non-compressible materials (e.g., water) are pumped through pumps configured to pump compressible materials, such as during a pump wash sequence. Because neither pump is compressing material, the pressure within each pump may peak at the same time as the other pump, resulting in significant torque on the rotational drive shaft. The rotational drive shaft and/or corresponding motor input may not be configured to drive such torque demand. As such, there exists a need in the art for a pump that can operate in a range of operation that overcomes high pump pressure demands. There also exists a need for a pump that optimizes high flow demands.
A non-limiting exemplary embodiment of a pumping system includes a piston disposed within a piston cylinder, a drive shaft, an eccentric coupled to the drive shaft, a connecting arm having opposing first and second ends, and a controller for operating the pumping system. The first end of the connecting arm and the piston are coupled to each other, and the second end of the connecting arm and the eccentric are connected to each other. The controller is configured for controlling the rotation of the drive shaft such that the eccentric oscillates the piston within one of a first high pressure region, a second high pressure region, a first high flow region, and a second high flow region.
Another non-limiting exemplary embodiment of a pumping system includes a piston disposed within a piston cylinder, a drive shaft, an eccentric coupled to the drive shaft, a connecting arm having opposing first and second ends, and a controller for operating the pumping system. The first end of the connecting arm and the piston are coupled to each other, and the second end of the connecting arm and the eccentric are connected to each other. The controller is configured for controlling the rotation of the drive shaft such that the eccentric oscillates the piston within one of a region of maximum relative mechanical advantage and a region of minimum relative mechanical advantage.
A non-limiting exemplary embodiment of a method of operating a pumping system in a region of high pressure is disclosed. In some embodiments, the pumping system includes a piston disposed within a piston cylinder, a drive shaft, an eccentric coupled to the drive shaft, and a connecting arm having opposing first and second ends. The first end of the connecting arm and the piston are coupled to each other, and the second end of the connecting arm and the eccentric are connected to each other. The method includes the steps of oscillating a rotation of the drive shaft in opposing directions by rotating the drive shaft in a first direction whereby a torque and a rotational speed of the drive shaft increase, limiting the rotational speed of the drive shaft to a pre-set minimum speed as the torque approaches a pre-set upper limit, rotating the drive shaft in a second direction opposite the first direction, and limiting the rotational speed of the drive shaft to the pre-set minimum speed as the torque approaches the pre-set upper limit.
A non-limiting exemplary embodiment of a method of operating a pumping system in a region of high flow is disclosed. In some embodiments, the pumping system includes a piston disposed within a piston cylinder, a drive shaft, an eccentric coupled to the drive shaft, and a connecting arm having opposing first and second ends. The first end of the connecting arm and the piston are coupled to each other, and the second end of the connecting arm and the eccentric are connected to each other. The method includes the steps of oscillating a rotation of the drive shaft in opposing directions by rotating the drive shaft in a first direction whereby a torque and a rotational speed of the drive shaft increase, limiting the rotational speed of the drive shaft to a pre-set maximum speed as the torque approaches a pre-set lower limit, rotating the drive shaft in a second direction opposite the first direction, and limiting the rotational speed of the drive shaft to the pre-set maximum speed as the torque approaches the pre-set lower limit.
One or more non-limiting embodiments are described herein with reference to the accompanying drawings, wherein like numerals designate like elements. It should be clearly understood that there is no intent, implied or otherwise, to limit the disclosure in any way, shape or form to the embodiments illustrated and described herein. While multiple exemplary embodiments are provided, variations thereof will become apparent or obvious to a person of ordinary skills. Accordingly, any and all variants for providing functionalities similar to those described herein are considered as being within the metes and bounds of the instant disclosure.
In a non-limiting exemplary embodiment, the pumping system 10 includes a drive section defined at least in part by the drive shaft 150 and the eccentric 160 (e.g., crank arm, scotch yoke, etc.). Generally, the drive section is configured to drive or operate the piston 110. In some embodiments, a connecting arm 120 connects the pump section and the drive section to each other. In certain embodiments, the connecting arm 120 and the piston 110 are connected at connection point 122. The opposite end of the connecting arm 120 connects to the eccentric 160 at connection point 124.
In a non-limiting exemplary embodiment, the pumping system 10 includes an intermediate drive 190 (e.g., gear drive, transmission, clutch, etc.) as is well known in the art. In some embodiments, the intermediate drive 190 is located between the motor 180 and the drive shaft 150. In certain embodiments, the controller 170 may control the output (e.g., direction, speed, gearing, etc.) of the intermediate drive 190 in order to control the rotation of the drive shaft 150. The motor 180 or intermediate drive 190 may be referred to generically as an actuator, to the extent they drive the drive shaft 150. In some embodiments, control of the intermediate drive 190 by the controller 170 may be in addition to the control of the motor 180. Alternatively, the controller 170 may only control the output of the drive shaft 150 via control of the intermediate drive 190. In certain embodiments, the controller 170 is configured to ascertain the position of the drive shaft 150 from various methods known in the art including, but not limited to, sensor-less control algorithms, clocking signals from an external position sensor, etc.
In view thereof, modified and/or alternate configurations of the embodiments described herein may become apparent or obvious to one of ordinary skill. All such variations are considered as being within the metes and bounds of the instant disclosure. For instance, while reference may have been made to particular feature(s) and/or function(s), the disclosure is considered to also encompass any and all equivalents providing functionalities similar to those disclosed herein with reference to the accompanying drawings. Accordingly, the spirit, scope and intent of the instant disclosure is to embrace all such variations. Consequently, the metes and bounds of the instant disclosure are defined by the appended claims and any and all equivalents thereof.
This application is a continuation of U.S. application Ser. No. 16/980,926 filed Sep. 15, 2020 for “POSITIVE DISPLACEMENT PUMP CONTROLLER AND METHOD OF OPERATION,” which in turn claims the benefit of PCT International Application No. PCT/US2019/023416 filed Jan. 1, 2014 for “POSITIVE DISPLACEMENT PUMP CONTROLLER AND METHOD OF OPERATION,” which in turn claims the benefit of U.S. Provisional Patent Application No. 62/647,406 filed Mar. 23, 2018, the disclosures of which are herein incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62647406 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16980926 | Sep 2020 | US |
Child | 17945590 | US |