The present invention relates generally to latches, and, more particularly, relates to a positive dual-locking latch having enhanced safety features, such as a positive latch bias, requiring a pulling force to be exerted on the latch in order to disengage the latch from a door, thereby unlocking the door frame and allowing the door to be opened.
The use of latches for closing cabinets, doors, drawers, and the like is well known. One problem that exists with known latches is that the locking components are often not designed to positively lock, or directly engage with, the cabinet in different positions, thereby causing the door to inadvertently open. Such inadvertent opening not only causes damage to the door but also poses a safety risk to a person in close proximity to the moving door. This can be especially hazardous on moving vehicles and vessels where rooms are relatively small. For example, a swinging door in a marine vessel is highly likely to strike a person due to the relatively small amount of occupancy space available.
Among other drawbacks, a number of known latches include a button, knob, or the like, that permanently protrudes outwardly from the cabinet or door which may easily become caught around a person's clothing, purse strap, or the like. Said another way, many known latches do not include a recessed knob that is flush with an outer surface of the cabinet and prevents the knob from being snagged by a passerby or otherwise damaged. Further, the known latches that include a recessed knob are locked only in the recessed position, becoming unlocked when protruding from the cabinet or door, thereby allowing the cabinet or door to inadvertently open.
Therefore, a need exists to overcome the problems with the prior art as discussed above.
The invention provides a positive dual-locking latch and a method of use that overcomes the herein-aforementioned disadvantages of the heretofore-known devices and methods of this general type, and that includes a first locked configuration, a second locked configuration, and an unlocked configuration. The positive dual-locking latch remains locked when it protrudes from an exterior surface of a door. As such, the positive dual-locking latch requires a pulling force to be exerted on it in order to disengage the latch member from the door, thereby unlocking the door and allowing the door to be opened.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a positive dual-locking latch for use in combination with a door. The positive dual-locking latch includes a latch base defining a latch opening; a handle assembly at least partially housed within and translatable relative to the latch base; and a latch assembly mechanically coupled to the handle assembly. The handle assembly includes a proximal end having a housing member, the housing member defining a first portion of a slot-protrusion assembly; a handle pin mechanically coupled to the housing member; a handle spring mechanically coupled to the housing member; and a distal end opposite the proximal end, the distal end having a handle member. The handle member is at least partially housed within the housing member; is biased by the handle spring along a handle translation path in a direction away from the latch base; defines a first aperture sized and shaped to receive the handle pin in a first locked configuration; defines a second aperture sized and shaped to receive the handle pin in a second locked configuration; is disposed to translate the handle pin between the first aperture in the first locked configuration and the second aperture in the second locked configuration when moved toward the latch base; and is disposed to translate the handle assembly from the second locked configuration to an unlocked configuration to unlock the door when moved away from the latch base. The latch assembly includes at least one latch spring; a latch member mechanically coupled to the at least one latch spring; and a second portion of the slot-protrusion assembly sized and shaped to mechanically couple with the first portion of the slot-protrusion assembly.
In accordance with another feature, in one embodiment of the present invention, in the first locked configuration, the handle member is positioned substantially flush with an exterior surface of the door; the handle spring is compressed; and the handle pin is retained within the first aperture.
In accordance with a further feature, in one embodiment of the present invention, in the second locked configuration, the handle member protrudes to a first position in an ambient environment surrounding an exterior surface of the door revealing a user-accessible knob, the user-accessible knob being substantially flush with the exterior surface of the door in the first locked configuration; the handle spring is at least partially decompressed; and the handle pin is retained within the second aperture.
In accordance with yet another feature, in one embodiment of the present invention, in the unlocked configuration, the handle member extends to a second position in the ambient environment surrounding the exterior surface of the door, the second position being further from the exterior surface of the door as compared to the first position; and the housing member translates from a locked position to an unlocked position.
In accordance with another characteristic, in one embodiment of the present invention, the unlocked configuration includes the slot-protrusion assembly being translated from a locked position to an unlocked position; and as a result of the translation, at least one latch spring being compressed, so as to cause the latch m ember to translate from a locked position to an unlocked position.
In accordance with another feature, in one embodiment of the present invention, the handle member further includes a threaded portion and a user-accessible knob mechanically coupled to the threaded portion.
In accordance with a further feature, in one embodiment of the present invention, the handle spring is configured to compress and apply a biasing force on the handle member in a direction toward the distal end of the handle assembly; and the handle pin is disposed to lock the handle member in the first locked configuration or the second locked configuration against the biasing force of the handle spring, depending on which of the first and second aperture the handle pin is retained within.
In accordance with another characteristic, in one embodiment of the present invention, the latch spring is configured to compress and apply a biasing force on the latch member in a direction toward the distal end of the latch assembly to bias the latch member in a locked position.
In accordance with yet another feature, one embodiment of the present invention includes an arm member mechanically coupled to at least one latch spring, the arm member operably configured to exert a force from at least one latch spring to the latch member to bias the latch member in the locked position through an opening in the latch base.
Also in accordance with the invention, a positive dual-locking latch for use in combination with a door of a moving vehicle is disclosed, the positive dual-locking latch including a latch base defining a latch opening; a handle assembly at least partially housed within and translatable relative to the latch base; and a latch assembly mechanically coupled to the handle assembly. The handle assembly includes a proximal end having a housing member, the housing member defining a first slot and a second slot, the first and second slots being parallel to each other and on opposite sides of the housing member; a handle spring mechanically coupled to the housing member; and a distal end opposite the proximal end, the distal end having a handle member. The handle member is at least partially housed within the housing member; is biased by the handle spring in a direction away from the latch base; defines a first aperture corresponding to a first locked configuration; and defines a second aperture corresponding to a second locked configuration and an unlocked configuration, the second aperture positioned between the first aperture and the handle spring. The handle assembly also includes a push-pull actuator mechanically coupled to the handle member. The latch assembly includes a latch member biased by a latch spring in a direction away from the latch base; a first latch pin sized and shaped to be received by the first slot of the housing member; and a second latch pin sized and shaped to be received by the second slot of the housing member. The handle assembly is operably configured to actuate the opening and closing of the latch assembly.
In accordance with another feature, in one embodiment of the present invention, the push-pull actuator is operably configured to translate the handle assembly from the first locked configuration to the second locked configuration when moved toward the latch base, thereby extending the push-pull actuator to allow a user to grasp the push-pull actuator; and translate the handle assembly from the second locked configuration to the unlocked configuration when moved away from the latch base, thereby unlocking the door.
In accordance with a further feature, in one embodiment of the present invention, the push-pull actuator is a user-accessible knob.
In accordance with another characteristic, in one embodiment of the present invention, as a result of translating the handle assembly from the second locked configuration to the unlocked configuration, the unlocked configuration includes the first latch pin and the second latch pin translating from a locked position to an unlocked position, and the latch spring being compressed by the translation, so as to cause the latch member to translate from a locked position to an unlocked position.
In accordance with yet another feature, one embodiment of the present invention includes a handle pin mechanically coupled to the housing member, the handle pin operably configured to be received by the first aperture and the second aperture of the push-pull actuator.
In accordance with another characteristic, in one embodiment of the present invention, the handle pin is retained within the second aperture in the second locked configuration and the unlocked configuration.
In accordance with another feature, in one embodiment of the present invention, in the first locked configuration, the push-pull actuator is positioned substantially flush with an exterior surface of a door.
Also in accordance with the invention, a positive dual-locking latch for use in combination with a door is disclosed, the positive dual-locking latch including a latch assembly having a first locked configuration, a second locked configuration, and an unlocked configuration. The latch assembly includes a latch base operably configured to attach to an interior surface of a door, the latch base defining a substantially vertical plane along the interior surface of the door; a latch member biased by a latch spring in a direction that is away from and substantially parallel to the substantially vertical plane defined by the latch base, the latch member operably configured to engage with at least a portion of the door; a handle member biased by a handle spring in a direction that is away from and substantially perpendicular to the substantially vertical plane defined by the latch base, the handle member operably configured to disengage the latch member from the door; and a push-pull actuator mechanically coupled to the handle member. In the first locked configuration of the latch assembly, the push-pull actuator is substantially flush with an exterior surface of the door and the latch member is engaged with at least a portion of the door. In the second locked configuration of the latch assembly, the push-pull actuator is pushed toward the interior surface of the door and subsequently protrudes to a first position in an ambient environment surrounding the exterior surface of the door; and latch member is engaged with at least a portion of the door. In the unlocked configuration of the latch assembly, the push-pull actuator is pulled away from the exterior surface of the door to a second position in the ambient environment surrounding the exterior surface of the door, the second position being further from the exterior surface of the door as compared to the first position; and the latch member disengages from the door.
In accordance with another feature, in one embodiment of the present invention, the latch assembly is stationary in the first locked configuration and the second locked configuration.
In accordance with a further feature, in one embodiment of the present invention, the latch assembly is non-stationary in the unlocked configuration.
Although the invention is illustrated and described herein as embodied in an automatic door latch and a method of use, it is, nevertheless, not intended to be limited to the details shown because various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Additionally, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
Other features that are considered as characteristic for the invention are set forth in the appended claims. As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one of ordinary skill in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention. While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. The figures of the drawings are not drawn to scale.
Before the present invention is disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. The terms “a” or “an,” as used herein, are defined as one or more than one. The term “plurality,” as used herein, is defined as two or more than two. The term “another,” as used herein, is defined as at least a second or more. The terms “including” and/or “having,” as used herein, are defined as comprising (i.e., open language). The term “coupled,” as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The term “providing” is defined herein in its broadest sense, e.g., bringing/coming into physical existence, making available, and/or supplying to someone or something, in whole or in multiple parts at once or over a period of time.
As used herein, the terms “about” or “approximately” apply to all numeric values, whether or not explicitly indicated. These terms generally refer to a range of numbers that one of skill in the art would consider equivalent to the recited values (i.e., having the same function or result). In many instances these terms may include numbers that are rounded to the nearest significant figure. In this document, the term “longitudinal” should be understood to mean in a direction corresponding to an elongated direction of the handle member of the positive dual-locking latch.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and explain various principles and advantages all in accordance with the present invention.
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. It is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms.
The present invention provides a novel and efficient positive dual-locking latch configured to be used in combination with a door and a door frame or door strike, and including a first locked configuration, a second locked configuration, and an unlocked configuration. As used herein, “positive-dual locking latch” means a door latch that is positively engaged with a door frame, such that the door is locked in both a first locked configuration and a second locked configuration, and translated to an unlocked configuration only after receiving a force from a user. As used herein, “door” means a traditional hinged door, sliding door within a track, gate, hatch, portal, cabinet, drawer, lid, container, and any other barrier to an entrance or opening to a room or other type of compartment. For example, the door may be a cabinet on a moving vehicle, such as a recreational vehicle, airplane, train, or nautical vessel. In the first locked configuration, a latch member is positively engaged with at least a portion of a door frame, with a handle assembly being positioned substantially flush with an exterior surface of the door. In the second locked position, the latch member remains positively engaged with the at least a portion of the door frame and/or strike, with the handle assembly protruding from the exterior surface of the door. In the unlocked position, the latch member disengages from the door frame and/or strike when the handle assembly is pulled away from the protruding position, thereby unlocking the door and allowing the door to be opened. When the knob is released, and/or the door is closed, it returns to the first locked configuration.
Referring now to
As shown in
In one embodiment, the handle assembly 136 may include a distal end 116 opposite the proximal end 106, the distal end 116 having a handle member 118. In one embodiment, the handle member 118 may be at least partially housed within the housing member 108. In one embodiment, the handle member 118 may include a threaded portion 134, which may be operably configured to mechanically couple with a user-accessible knob 206 (as shown in
In one embodiment, the handle member 118 may define a first aperture 120 and a second aperture 122, both of which may be sized and shaped to receive a handle pin 112 that may be mechanically coupled to the housing member 108. The first aperture 120 and the second aperture 122 may correspond to varying configurations of the handle member 118. For example, when the handle pin 112 is retained within the first aperture 120, the handle member 118 may be in a first locked configuration 200 (as shown in
Still referring to
Referring still to
Referring now to
Referring now to
In one embodiment, in the second locked configuration 300, the handle spring 114 may be at least partially decompressed, and the handle pin 112 may be retained within the second aperture 122. As such, when the user-accessible knob 206 receives the pushing force 302 from the user, the handle pin 112 may translate from the first aperture 120 to the second aperture 122, and remain retained within the second aperture 122 when the user-accessible knob 206 protrudes to the first position 400 in the ambient environment surrounding the exterior surface 204 of the door 202.
Referring now to
Still referring to
Referring now to
Still referring to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Since the second portion 128 of the slot-protrusion assembly 111 is a part of the latch assembly 138 and is mechanically coupled to the latch member 126, when the second portion 128 of the slot-protrusion assembly 111 is translated toward the proximal end 1302 of the latch assembly 138, the at least one latch spring 124 may be compressed as a result of the translation, causing the latch member 126 to translate from the locked position 500 (as shown in
Referring now to
The method of using the positive dual-locking latch 100 may then proceed to step 1504, which includes applying a pushing force on the user-accessible knob 206, such that the user-accessible knob 206, the handle member 118, and the handle assembly 136 are translated toward the latch base 102 from a position that is substantially flush with the exterior surface 204 of the door 202. In one embodiment, during step 1504, the handle pin 112 may translate from the first aperture 120 to the second aperture 122.
The method of using the positive dual-locking latch may then proceed to step 1506, in which the user-accessible knob 206 may protrude to the first position 400 in the ambient environment surrounding the exterior surface 204 of the door 202. In one embodiment, the positive dual-locking latch 100 may then be in the second locked configuration 300, with the handle spring 114 at least partially decompressed. In the second locked configuration 300, the door 202 may remain locked and unable to be opened by a user.
The method of using the positive dual-locking latch 100 may then proceed to step 1508, which includes applying a pulling force on the user-accessible knob 206, such that the user-accessible knob 206 may be translated away from the latch base 102 to the second position 700 in the ambient environment surrounding the exterior surface 204 of the door 202. In one embodiment, during step 1504, the second portion 128 of the slot-protrusion assembly 111 may be translated toward the proximal end 1302 of the latch assembly 138, the at least one latch spring 124 may be compressed. As such, the method of using the positive dual-locking latch 100 may proceed to step 1510, in which the latch member 126 translates from the locked position 500 to the unlocked position 800. As such, the latch member 126 may disengage from the door frame 208, and the door 202 may be opened in step 1512. At step 1514, upon release of the user-accessible knob 206 by terminating the pulling force applied on the user-accessible knob 206 (e.g. letting it go), the latch member 126 may automatically return to the original locked position 500 from the unlocked position 800. The method may repeat n reverse order to re-lock the door 202, or may end at step 1516.
A positive dual-locking latch and a method of use has been disclosed that overcomes the herein-aforementioned disadvantages of the heretofore-known devices and methods of this general type, and that includes a latch base, a handle assembly housed within and translatable relative to the latch base, and a latch assembly mechanically coupled to the handle assembly. The positive dual-locking latch also includes first locked configuration, a second locked configuration, and an unlocked configuration, wherein the positive dual-locking latch remains locked when the handle member protrudes from an exterior surface of a door in the second locked configuration. As such, the positive dual-locking latch requires a pulling force to be exerted on it in order to translate to the unlocked configuration, thereby disengaging the latch member from the door, unlocking the door, and allowing the door to be opened.