The present invention relates to positive locking coupling for an electrical connector or connector accessory, such as a backshell. More specifically, the coupling prevents counter-rotation of the electrical connector when engaged with its mating connector and subject to vibration or shock.
Electrical connector assemblies generally include mating plug and receptacle connectors and backshell assemblies or accessories. Often a threaded nut or collar is used to mate the plug and receptacle connectors. When an electrical connector assembly or accessory is subject to vibration or shock, however, the mating connectors of the assembly often become loose or even decouple. The loosening or decoupling usually occurs because the coupling nut counter rotates, that is it rotates in a direction opposite the mating or locking direction, thereby compromising the integrity of both the mechanical and electrical connection between the mating connectors.
Examples of some prior art couplings for electrical connector assemblies include U.S. Pat. No. 7,914,311 to Gallusser et al.; U.S. Pat. No. 7,905,741 to Wade et al.; U.S. Pat. No. 7,544,085 to Baldwin et al.; U.S. Pat. No. 6,293,595 to Marc et al; U.S. Pat. No. 6,123,563; U.S. Pat. No. 6,086,400 to Fowler; U.S. Pat. No. 5,957,716 to Buckley et al.; U.S. Pat. No. 5,435,760 to Miklos; U.S. Pat. No. 5,399,096 to Quillet et al.; U.S. Pat. No. 4,208,082 to Davies et al.; U.S. Pat. No. 3,917,373 to Peterson; and U.S. Pat. No. 2,728,895 to Quackenbush, the subject Matter of each of which is hereby incorporated by reference.
Accordingly, the present invention provides a coupling that includes a connector body, an interface coupling that is rotatable with respect to the connector body and that has an interface portion at an inner surface thereof adapted to engage a mating connector. and a first collar that is coupled to the interface coupling and surrounds the connector body. The first collar has a main body with at least one inner retaining member that includes a first set of teeth and at least one first engagement member at an outer surface thereof. The coupling also includes a second collar that surrounds a portion of the first collar and has at least one second engagement member configured to engage the first engagement member of the first collar. The second collar is movable axially with respect to the connector body between a disengaged position when the first and second engagement members are disengaged and an engaged position when the first and second engagement members are engaged. A ratchet ring is received inside of the first collar and surrounds the connector body. The ratchet ring has a second set of teeth configured to engage the first set of teeth of the first collar. The ratchet ring is axially moveable with respect to the connector body between a locked position when the first and second sets of teeth are engaged and an unlocked position when the first and second sets of teeth are spaced from one another. Wherein when the ratchet ring is in the locked position, the first and second sets of teeth form a ratchet that allows the interface coupling to rotate with respect to the connector body in a mating direction and prevents the interface coupling from rotating with respect to the connector body in a release direction opposite the mating direction.
The present invention may also provide a coupling that includes a connector body, an interface coupling that is rotatable with respect to the connector body and has an interface portion at an inner surface thereof adapted to engage a mating connector, and an inner collar that is coupled to the interface coupling and surrounds the connector body. The inner collar has a main body with at least one inner retaining member that includes a first set of teeth and at least one first engagement member at an outer surface thereof. The coupling also includes an outer collar that surrounds a portion of the inner collar and has at least one second engagement member configured to engage the first engagement member of the inner collar. The outer collar is movable axially with respect to the connector body between a disengaged position when the first and second engagement members are disengaged and an engaged position when the first and second engagement members are engaged. A ratchet ring is received inside of the inner collar and surrounds the connector body. The ratchet ring has a second set of teeth configured to engage the first set of teeth of the inner collar, The ratchet ring is axially moveable with respect to the connector body between a locked position when the first and second sets of teeth are engaged and an unlocked position when the first and second sets of teeth are spaced from one another. An actuating ring is received in the outer collar and surrounds the inner collar. The actuating ring moves the ratchet ring from the locked position to the unlocked position when the outer collar moves from the disengaged position to the engaged position. A biasing member is supported by the connector body adjacent the ratchet ring. The biasing member biasing the ratchet ring in the locked position. Wherein when the ratchet ring is in the locked position, the first and second sets of teeth form a ratchet that allows the interface coupling to rotate with respect to the connector body in a mating direction and prevents the interface coupling from rotating with respect to the connector body in a release direction opposite said mating direction.
Other objects, advantages and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring to
The interface coupling 104 rotates with respect to an interface end 103 of the backshell connector body 102 for mating to the mating connector component. The backshell connector body 102 may include a grounding ring 192 secured to its interface end 103 via an attachment ring 194 by an interference fit, for example, or by any known manner of attachment. The interface coupling 104 is axially stationary with respect to the backshell connector body 102. An interface portion 120 of the interface coupling 104 may include threads 122 at its inner surface for engaging corresponding threads of the mating connector component. That is, the interface coupling 104 may rotate in a mating direction (e.g. counter-clockwise when viewing the backshell connector body 102 from its interface end 103) to threadably engage the mating connector component. The portion 124 of the interface coupling 104 opposite the interface portion 120 includes one or more keys 126 (
As best seen in
The inner collar 106 surrounds the connector body 102 such that the inner collar 106 is retained on and is axially stationary with respect to the connector body 102. The inner collar 106 includes a main body 140 that receives the end portion of the interface coupling 104. The main body 140 may include one or more engagement members 142. The engagement members 142 may be a bayonet ramp, for example, that is formed in the outer surface of the inner collar 104, as seen in
Extending from the main body 140 away from the interface coupling 104 are one or more spaced arms 150. The spaced arms 150 are preferably arranged in a ring formation and are preferably resilient to facilitate engagement with the connector body 102. Each of the arms 150 may include a catch end 152 that extends from its distal end that is configured to engage or catch a shoulder or flange of the connector body 102, as seen in
As seen in
The outer collar 108 surrounds a substantially portion of the inner collar 104 such that the arms 150 of the inner collar 106 extend beyond the end of the outer collar 108. The outer collar 108 is configured to rotate with respect to both the inner collar 106 and the backshell connector body 102. The outer collar 106 includes one or more engagement members 180 on the inner surface of the outer collar 106, as seen in
The outer collar 108 is configured to move axially with respect to the connector body 102 between a disengaged position where the engagement members 142 and 180 of the inner and outer collars 106 and 108 are not fully engaged and an engaged position where the engagement members 142 and 180 of the inner and outer collars 106 and 108 are fully engaged with one another. That is, in the disengaged position, the detents 180 of the outer collar 108 are received in the entrance 144 of the respective ramps 142 on the inner collar 106. As the outer collar 108 rotates and the detents 180 move along the respective ramps 142, the outer collar 108 moves axially toward the interface coupling 104 until the detents 180 rest in the ends 146 of the respective ramps 142. When the detents 180 of the outer collar 108 are received in the ends 146 of the respective ramps 142 on the inner collar 106, the outer collar 108 is fully engaged with the inner collar 106 and is prevent from moving further axially. The outer collar 108 may include an outer gripping surface 182 to facilitate gripping and rotation of the collar 108.
The ratchet ring 110 is disposed around the connector body 102 inside of the main body 140 of the inner collar 106, as seen in
The actuating ring 112 is supported inside of the outer collar 106, preferably in an inner groove 184 thereof, such that the actuating ring 112 surrounds the inner collar 106, as seen in
To mate the connector component to a mating connector component using the coupling 100 of the present invention, the outer collar 108 is disposed in its disengaged position with respect to the inner collar 106 where the detents 180 are at the entrance 144 of the bayonet ramps 142 on the surface of the inner collar 106. The ratchet ring 110 is in its locked position where its teeth 172 are engaged with the teeth 162 of the inner collar in a one-way ratchet engagement. That allows the interface coupling 104, which is engaged to the inner collar 106 by the retaining ring 134, to be rotated with respect to the connector body 102 in the mating direction such that the threads 122 can engage corresponding threads on the mating connector. The interface coupling 104 is rotated in that mating direction until tight.
The engagement of the teeth 162 and 172 of the inner collar 108 and the ratchet ring 110, while allowing the interface coupling 104 to rotate in the mating direction, also prevent the interface coupling from rotating in the release direction opposite the mating direction. That creates a secure connection between the mated connector components and prevents loosening of the components. even under conditions such as vibration.
The coupling 100 may be manually unlocked to allow the interface coupling 104 and the inner collar 106 to rotate in the release direction with respect to the backshell connector body 102 when desired. The manual unlocking allows decoupling of the threads 122 of the inner collar 104 from the mating connector. To unlock the coupling 100, the outer collar 108 is moved from its disengaged position to its engaged position with respect to the inner collar 108. In particular, the outer collar 108 is rotated with respect to the inner collar 106 and the backshell connector body 102 such that its detents 180 ride along the respective bayonets channels 142, thereby pulling and moving the outer collar 108 axially toward the interface coupling 104 until the detents reside at the ends 146 of the channels 142. As the outer collar 108 moves axially toward to the inner collar 106 to its engaged position, the actuating ring 112 residing inside of the outer collar 108 engages and pushes against the ratchet ring 110 to push apart and space the teeth 172 of the ratchet ring 110 from the teeth 162 of the inner collar 106. In particular, the tabs 190 of the actuating ring 112 move in respective slots 164 of the inner collar 106 to abut the teeth 172 of the ratchet ring 110. That moves the ratchet ring 110 axially with respect to the connector body 102 toward the interface coupling 104 to its unlocked position. Once the ratchet ring 110 is in the unlocked position, the interface coupling 104 and the inner collar 106 can be rotated in the release direction to disengage the threads 122 from the mating connector component.
While a particular embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims. For example, any type of known engagement may be used at the interface portion 120 of the inner collar 104 and is not limited to threads. Any type of engagement members 142 and 180 may be used to engage the inner and outer collars 106 and 108 and are not limited to a bayonet engagement. Also, the corresponding detents and channels of the bayonet engagement may be located on either the inner collar or the outer collar. Also, the biasing member is not limited to a wave spring and may be any type of biasing mechanism, such as a compression spring.
The present application claims priority to U.S. provisional application Ser. No. 61/788,753. filed on Mar. 15, 2013.
Number | Date | Country | |
---|---|---|---|
61788753 | Mar 2013 | US |