The present disclosure relates to integrated circuit devices, and more particularly to a method and apparatus for digitally tuning the capacitance of integrated circuit components in integrated circuit devices that use positive logic for DC biasing purpose.
According to a first aspect of the present disclosure, an integrated circuit block is provided, comprising: a first node; a second node; a resistive network, and a series arrangement of two or more capacitors and a plurality of FET switches coupled between the first node and the second node; wherein: a first capacitor of the two or more capacitors is coupled to the first node and a second capacitor of the two or more capacitors is coupled to the second node; the plurality of FET switches comprises a first end FET switch and a second end FET switch, the first end FET switch being closest to the first node and farthest from the second node and the second end FET switch being closest to the second node and farthest from the first node; each FET switch comprises a gate resistor connecting a FET switch gate to a first supply voltage; the resistive network comprises a plurality of resistive paths connecting a second supply voltage to drains of corresponding FET switches; the resistive network further comprises a resistive path connecting the second supply voltage to a source of the second end FET switch, and wherein the first supply voltage and the second supply voltage are configured to enable or disable the FET switches and thereby adjusting the capacitance between the two nodes.
According to a second aspect of the present disclosure, a method for digitally tuning a capacitor in an integrated circuit is disclosed, providing: providing a first node; providing a second node; providing a series arrangement of two or more capacitors and a plurality of FET switches; the plurality of FET switches comprising a first end FET switch and a second end FET switch, the first end FET switch being the closest to the first node and farthest from the second node and the second end FET switch being closest to the second node and farthest from the first node, and each of the plurality of FET switches comprising a gate resistor; providing a resistive network, the resistive network comprising: a plurality of resistive paths connecting a second supply voltage to drains of corresponding FET switches of the plurality of FET switches; a resistive path connecting the second supply voltage to a source of the end FET switch; connecting each of the FET switches from the plurality of the FET switches to a first supply voltage via a corresponding gate resistor; coupling the series arrangement of two or more capacitors and the plurality of FET switches between the first node and the second node; coupling a first capacitor of the two or more capacitors to the first node and coupling a second capacitor of the two or more capacitors to the second node, and enabling or disabling the FET switches using the first supply voltage and the second supply voltage and thereby adjusting the capacitance between the two nodes.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present disclosure and, together with the description of example embodiments, serve to explain the principles and implementations of the disclosure.
In order to achieve an improved RF performance in designs using the above mentioned DTC, a large enough negative voltage to turn fully the FET switch OFF is highly desirable. Turning the FET switches into a full OFF state results in improved RF linearity in terms of harmonics and Inter Modulation Distortion (IMD), better RF power handling and also higher isolation.
In most applications using such DTC circuit as shown in
On the other hand, there are applications where generating a negative supply voltage is either not desired or not practical due to design constraints. More in particular, in many applications a use of a negative charge pump is not even possible. These are applications with stringent requirements such as extremely low current and power consumption, extremely low noise sensitivity and very small die areas. Moreover, in biasing schemes wherein charge pumps are used to generate negative supply power, the switching speed is limited by current sourcing capability of the charge pumps. This is the main reason charge pumps cannot be used when designing integrated circuits requiring very fast switching times.
Embodiments of the present disclosure offer solutions for integrated circuits comprising DTC's wherein conventional designs to generate a negative supply voltage (e.g. charge pumps) are either impractical or impossible due to stringent system design requirements.
Referring to
In what follows, embodiments showing more details of the resistive network (230) will be described.
Further referring to
Referring to
With further reference to
Although in the preferred embodiment of
Referring to the embodiments disclosed in the present disclosure, all the design rules, guidelines as well as the related tradeoffs as disclosed in the PCT Patent International Application No. PCT/US2009/001358 filed Mar. 2, 2009, entitled “Method and Apparatus for use in Digitally Tuning a Capacitor in an Integrated Circuit Device” incorporated herein by reference in its entirety, remain applicable to the embodiments described herein with reference to the present disclosure. By way of example, the ON resistance, OFF capacitance, stack height, capacitor values, Rg and Rd values may be appropriately selected using the teachings as disclosed in the above-incorporated patents. Additionally, the person skilled in the art will understand that, after minor modifications and proper adjustments, all the equations as described in the above-incorporated patent will be applicable to the embodiments of the present disclosure.
Further referring to
Turning back to the depiction of
Referring to
With further reference to
With continuous reference to
A number of embodiments of the invention have been described. It is to be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, some of the steps described above may be order independent, and thus can be performed in an order different from that described. Further, some of the steps described above may be optional. Various activities described with respect to the methods identified above can be executed in repetitive, serial, or parallel fashion. It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the following claims, and that other embodiments are within the scope of the claims.
Fabrication Technologies and Options
Although most embodiments described in the present disclosure use MOSFET devices, the person skilled in the art will understand that embodiments implementing the teachings of the disclosure may be envisaged wherein a device comprising three or more terminals is used. Such device further comprises a resistance between two terminals wherein the resistance is controlled by a third terminal.
As should be readily apparent to one of ordinary skill in the art, various embodiments of the invention can be implemented to meet a wide variety of specifications. Unless otherwise noted above, selection of suitable component values is a matter of design choice and various embodiments of the invention may be implemented in any suitable IC technology (including but not limited to MOSFET and IGFET structures), or in hybrid or discrete circuit forms. Integrated circuit embodiments may be fabricated using any suitable substrates and processes, including but not limited to standard bulk silicon, silicon-on-insulator (SOI), silicon-on-sapphire (SOS), GaN HEMT, GaAs pHEMT, and MESFET technologies. However, the inventive concepts described above are particularly useful with an SOI-based fabrication process (including SOS), and with fabrication processes having similar characteristics. Fabrication in CMOS on SOI or SOS enables low power consumption, the ability to withstand high power signals during operation due to FET stacking, good linearity, and high frequency operation (in excess of about 10 GHz, and particularly above about 20 GHz). Monolithic IC implementation is particularly useful since parasitic capacitances generally can be kept low (or at a minimum, kept uniform across all units, permitting them to be compensated) by careful design.
The term “MOSFET” technically refers to metal-oxide-semiconductors; another synonym for MOSFET is “MISFET”, for metal-insulator-semiconductor FET. However, “MOSFET” has become a common label for most types of insulated-gate FETs (“IGFETs”). Despite that, it is well known that the term “metal” in the names MOSFET and MISFET is now often a misnomer because the previously metal gate material is now often a layer of polysilicon (polycrystalline silicon). Similarly, the “oxide” in the name MOSFET can be a misnomer, as different dielectric materials are used with the aim of obtaining strong channels with smaller applied voltages. Accordingly, the term “MOSFET” as used herein is not to be read as literally limited to metal-oxide-semiconductors, but instead includes IGFETs in general.
Voltage levels may be adjusted or voltage and/or logic signal polarities reversed depending on a particular specification and/or implementing technology (e.g., NMOS, PMOS, or CMOS, and enhancement mode or depletion mode transistor devices). Component voltage, current, and power handling capabilities may be adapted as needed, for example, by adjusting device sizes, serially “stacking” components (particularly FETs) to withstand greater voltages, and/or using multiple components in parallel to handle greater currents. Additional circuit components may be added to enhance the capabilities of the disclosed circuits and/or to provide additional functional without significantly altering the functionality of the disclosed circuits. Further, as should be readily apparent to one of ordinary skill in the art, various embodiments of the invention may take into account the RF characteristics (e.g., distributed effects) of various components and may include additional circuit elements to adjust or compensate for such characteristics. For example, at high radio frequencies, a pure resistor cannot be readily implemented in actual ICs—an actual resistor will have some physical length which introduces effects other than resistance alone, such as parasitic capacitance and/or inductance. Similarly, actual inductive and capacitive elements may include a resistive characteristic and also exhibit distributed effects on other components. Accordingly, where resistive R, capacitive C, and inductive L components have been specified above, it should be understood that such components may be implemented by elements that are substantially resistive, substantially capacitive, and substantially inductive, respectively.
A number of embodiments of the invention have been described. It is to be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, some of the steps described above may be order independent, and thus can be performed in an order different from that described. Further, some of the steps described above may be optional. Various activities described with respect to the methods identified above can be executed in repetitive, serial, or parallel fashion. It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the following claims, and that other embodiments are within the scope of the claims.
This application is a continuation of, and claims the benefit of priority under 35 USC § 120 of, commonly assigned and co-pending prior U.S. application Ser. No. 15/871,643, filed Jan. 15, 2018, “Positive Logic Digitally Tunable Capacitor”, the disclosure of which is incorporated herein by reference in its entirety. Application Ser. No. 15/871,643 is a continuation of, and claims the benefit of priority under 35 USC § 120 of, commonly assigned pending prior U.S. application Ser. No. 15/256,453, filed Sep. 2, 2016, “Positive Logic Digitally Tunable Capacitor”, now U.S. Pat. No. 9,948,281, issued Apr. 17, 2018, the disclosure of which is incorporated herein by reference in its entirety. Application Ser. No. 15/256,453 is related to PCT Patent International Application No. PCT/US2009/001358 filed Mar. 2, 2009, entitled “Method and Apparatus for use in Digitally Tuning a Capacitor in an Integrated Circuit Device” incorporated herein by reference in its entirety. This application is also related to U.S. application Ser. No. 12/803,139 filed Jun. 18, 2010, entitled “Device and Methods for Improving Voltage handling and/or Bi-directionality of Stacks of Elements when Connected Between Terminals”, issued as U.S. Pat. No. 8,669,804 on Mar. 11, 2014, also incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4893070 | Milberger et al. | Jan 1990 | A |
5012123 | Ayasli et al. | Apr 1991 | A |
5382826 | Mojaradi et al. | Jan 1995 | A |
6683499 | Lautzenhiser et al. | Jan 2004 | B2 |
6747522 | Pietruszynski et al. | Jun 2004 | B2 |
6753738 | Baird | Jun 2004 | B1 |
6803680 | Brindle et al. | Oct 2004 | B2 |
6804502 | Burgener et al. | Oct 2004 | B2 |
6889036 | Ballweber et al. | May 2005 | B2 |
6906653 | Uno | Jun 2005 | B2 |
7098755 | Zhao et al. | Aug 2006 | B2 |
7190933 | De Ruijter et al. | Mar 2007 | B2 |
7299018 | Van Rumpt | Nov 2007 | B2 |
7459988 | Iversen | Dec 2008 | B1 |
7492209 | Prikhodko et al. | Feb 2009 | B2 |
7492238 | Nakatsuka et al. | Feb 2009 | B2 |
7825715 | Greenberg | Nov 2010 | B1 |
7910993 | Brindle et al. | Mar 2011 | B2 |
7960772 | Englekirk | Jun 2011 | B2 |
8044739 | Rangarajan et al. | Oct 2011 | B2 |
8334718 | Granger-Jones et al. | Dec 2012 | B2 |
8373490 | Burgener et al. | Feb 2013 | B2 |
8461903 | Granger-Jones | Jun 2013 | B1 |
8587361 | Taddiken et al. | Nov 2013 | B2 |
8669804 | Ranta et al. | Mar 2014 | B2 |
8970278 | Granger-Jones et al. | Mar 2015 | B2 |
9024700 | Ranta | May 2015 | B2 |
9106227 | Ranta et al. | Aug 2015 | B2 |
9190994 | Hurwitz | Nov 2015 | B2 |
9209801 | Matsuno | Dec 2015 | B2 |
9276570 | Madan et al. | Mar 2016 | B2 |
9667244 | Cavus et al. | May 2017 | B1 |
9742400 | Bakalski et al. | Aug 2017 | B2 |
9948281 | Ranta | Apr 2018 | B2 |
10050616 | Ranta et al. | Aug 2018 | B2 |
10158285 | Emsenhuber | Dec 2018 | B2 |
10270437 | Scott et al. | Apr 2019 | B2 |
10320379 | Kerr et al. | Jun 2019 | B2 |
10476484 | Ranta | Nov 2019 | B2 |
10505530 | Ranta et al. | Dec 2019 | B2 |
10523195 | Luo et al. | Dec 2019 | B1 |
10630280 | Willard et al. | Apr 2020 | B2 |
10886911 | Willard et al. | Jan 2021 | B2 |
11018662 | Willard et al. | May 2021 | B2 |
20020120103 | Rosen et al. | Aug 2002 | A1 |
20030090313 | Burgener et al. | May 2003 | A1 |
20050017789 | Burgener et al. | Jan 2005 | A1 |
20050068103 | Dupuis et al. | Mar 2005 | A1 |
20050151575 | Sibrai et al. | Jul 2005 | A1 |
20050179506 | Takahashi et al. | Aug 2005 | A1 |
20050285684 | Burgener et al. | Dec 2005 | A1 |
20050287976 | Burgener et al. | Dec 2005 | A1 |
20060077082 | Shanks et al. | Apr 2006 | A1 |
20060160520 | Naoyuki | Jul 2006 | A1 |
20060194567 | Kelly et al. | Aug 2006 | A1 |
20060270367 | Burgener et al. | Nov 2006 | A1 |
20070018247 | Brindle et al. | Jan 2007 | A1 |
20070120103 | Burgener et al. | May 2007 | A1 |
20080265978 | Englekirk | Oct 2008 | A1 |
20090224843 | Radoias et al. | Sep 2009 | A1 |
20100060377 | Takahashi | Mar 2010 | A1 |
20100308932 | Rangarajan | Dec 2010 | A1 |
20110002080 | Ranta | Jan 2011 | A1 |
20110127849 | Yoon | Jun 2011 | A1 |
20110227666 | Manssen et al. | Sep 2011 | A1 |
20130015717 | Dykstra | Jan 2013 | A1 |
20140009214 | Altunkilic et al. | Jan 2014 | A1 |
20140055191 | Kim | Feb 2014 | A1 |
20140368257 | Wang | Dec 2014 | A1 |
20150364928 | Yen et al. | Dec 2015 | A1 |
20150381171 | Cebi et al. | Dec 2015 | A1 |
20160329891 | Bakalski et al. | Nov 2016 | A1 |
20170201248 | Scott et al. | Jul 2017 | A1 |
20170272066 | Scott et al. | Sep 2017 | A1 |
20170338321 | Hurwitz et al. | Nov 2017 | A1 |
20180069530 | Ranta et al. | Mar 2018 | A1 |
20180114801 | Leipold et al. | Apr 2018 | A1 |
20180159511 | Ranta | Jun 2018 | A1 |
20180175851 | Kerr et al. | Jun 2018 | A1 |
20200153425 | Ranta et al. | May 2020 | A1 |
20200321955 | Willard et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2008133621 | Nov 2008 | WO |
2009108391 | Sep 2009 | WO |
Entry |
---|
Copenheaver, Blaine, International Search Report and Written Opinion received from the USRO dated May 27, 2009, 11 pgs. |
Peregrine Semiconductor Corporation, Article 19 Amendment Letter under Seciton 205(b) and Rule 46.5 (b) PCT filed in the International Bureau of WIPO dated Aug. 11, 2009 for appln. No. PCT/US2009/001358. |
Dang, Hung Q., Office Action received from the USPTO dated Dec. 22, 2011 for U.S. Appl. No. 12/735,954, 32 pgs. |
Ranta, Tero Tapio, Amendment filed in the USPTO dated Mar. 21, 2012 for U.S. Appl. No. 12/735,954, 16 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Jul. 12, 2012 for U.S. Appl. No. 12/735,954, 20 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Oct. 1, 2012 for U.S. Appl. No. 12/735,954, 67 pgs. |
Ranta, Tero Tapio, Amendment filed in the USPTO dated Jun. 26, 2014 for U.S. Appl. No. 12/735,954, 33 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Jan. 25, 2013 for U.S. Appl. No. 12/735,954, 42 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated May 10, 2013 for U.S. Appl. No. 12/735,954, 22 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Sep. 13, 2013 for U.S. Appl. No. 12/735,954, 16 pgs. |
Ranta, Tero Tapio, Amendment filed in the USPTO dated Dec. 13, 2013 for U.S. Appl. No. 12/735,954, 29 pgs. |
Dang, Hung Q., Office Action received from the USPTO dated Feb. 26, 2014 for U.S. Appl. No. 12/735,954, 34 pgs. |
Dang, Hung Q., Notice of Allowance received from the USPTO dated Nov. 18, 2014 for U.S. Appl. No. 12/735,954, 33 pgs. |
Kao, W.H., et al., “Parasitic extraction: current state of the art and future trends”, Proceedings of the IEEE, May 2001, vol. 89, Issue 5, pp. 729-739. |
Brambilla, A., et al., “Measurements and extractions of parasitic capacitances in ULSI layouts”, Electron Devices, IEEE Transactions, Nov. 2003, vol. 50, Issue 11, pp. 2236-2247. |
Xu, et al., “An efficient formulation for substrate parasitic extraction accounting for nonuniform current distribution”, Circuits and Systems I: Regular papers, IEEE Transactions, Jun. 2004, vol. 51, Issue 6, pp. 1223-1233. |
Nabors, et al., “FastCap: A Multipole Accelerated 3-D Capacitance Extraction Program”, IEEE Transactions on Computer Aided Design, vol. 10, No. 11, Nov. 1991, pp. 1447-1459. |
Nabors, et al., “Fast Capacitance Extraction of General Three-Dimensional Structures”, IEEE Transactions on Microwave Theory and Techniques, vol. 40, No. 7, Jul. 1992, pp. 1496-1506. |
Nabors, et al., “Multipole-Accelerated Capacitance Extraction Algorithms for 3-D Structures with Multiple Dielectrics” IEEE Transactions on Circuit and Systems, 1: Fundamental Theory and Applications, vol. 39, No. 11, Nov. 1992, pp. 946-954. |
Tausch, et al., “Capacitance Extraction of 3-D Conductor Systems in Dielectric Media with High-Permittivity Ratios”, IEEE Transactions on Microwave Theory and Techniques, vol. 47, No. 1, Jan. 1999, pp. 18-26. |
Nabors, et al., “A Fast Multipole Algorithm for Capacitance Extraction of Complex 3-D Geometries”, IEEE 1989 Custom Integrated Circuits Conference, May 1989, pp. 21.7.1-21.7.4. |
Nabors, et al., “Fast Capacitance Extraction of General Three-Dimensional Structures”, Proc. Int. Conf. on Computer Design, Cambridge, MA, Oct. 1991, pp. 479-484. |
Nabors, et al., “Including Conformal Dielectrics in Multipole-Accelerated Three-Dimensional Interconnect Capacitance Extraction”, proceedings of NUPAD IV, Seattle, WA, May 1992, 2 pgs. |
Nabors, et al., “Multipole-Accelerated 3-D Capacitance Extraction Algorithms for Structures with Conformal Dielectrics”, Proceeding of the 29th Design Automation Conference, Anaheim, CA, Jun. 1992, pp. 710-715. |
Phillips, et al., “A Precorrected-FFT method for Capacitance Extraction of Complicated 3-D Structures”, Int. Conf. on Computer-Aided Design, Santa Clara, CA, Nov. 1994, 4 pgs. |
Phillips, et al., “Efficient Capacitance Extraction of 3D Structures Using Generalized Pre-Corrected FFT Methods”, Proceedings of the IEEE 3rd Tropical Meeting on Electrical Performance of Electronic Packaging, Monterey, CA, Nov. 1994, 3 pgs. |
Cai, et al., “Efficient Galerkin Techniques for Multipole-Accelerated Capacitance Extraction of 3-D Structures with Multiple Dielectrics” Proceedings of the 16th Conference on Advanced Research in VLSI, Chapel Hill, North Carolina, Mar. 1995, 12 pages. |
Kamon, et al., “FastPep: A Fast Parasitic Extraction Program for Complex Three-Dimensional Geometries”, Proceedings of the IEEE Conference on Computer-Aided Design, San Jose, Nov. 1997, pp. 456-460. |
Young, Lee W., International Search Report received from USRO for related appln. No. PCT/US2007/10331 dated Feb. 15, 2008, 14 pages. |
Patel, Reema, Notice of Allowance received from the USPTO for related U.S. Appl. No. 11/796,522, dated Jan. 28, 2011, 9 pgs. |
Le, Dinh Thanh, Office Action received from the USPTO dated Jun. 23, 2011 for related U.S. Appl. No. 12/803,064, 16 pgs. |
Brosa, Anna-Maria, extended European Search Report received from the EPO dated Jul. 15, 2011 for related application No. 09715932.1, 12 pgs. |
Le, Dinh Thanh, Office Action received from the USPTO dated Dec. 1, 2011 for related U.S. Appl. No. 12/803,064, 23 pgs. |
Patel, Reema, Office Action received from the USPTO dated Dec. 5, 2011 for related U.S. Appl. No. 13/046,560, 13 pgs. |
Peregrine Semiconductor Corporation, Response filed in the EPO dated Feb. 10, 2012 for related appln. No. 09715932.1, 47 pgs. |
Cole, Brandon S., Office Action received from the USPTO dated Feb. 24, 2012 for related U.S. Appl. No. 12/803,133, 36 pgs. |
Kurisu, Masakazu, Japanese Office Action and translation received from the JPO dated Apr. 17, 2012 for related appln. No. 2010-506156, 4 pgs. |
Ranta, et al., Amendment filed in USPTO dated Apr. 30, 2012 for related U.S. Appl. No. 12/803,064, 16 pgs. |
Ranta, et al., Response filed in the USPTO dated May 23, 2012 for related U.S. Appl. No. 12/803,133, 7 pgs. |
Patel, Reema, Notice of Allowance received from the USPTO dated May 24, 2012 for related appln. No. 13/046,560, 15 pgs. |
Englekirk, Robert Mark, Amendment filed in the USPTO dated Mar. 5, 2012 for related U.S. Appl. No. 13/046,560, 4 pgs. |
Cole, Brandon S., Notice of Allowance received from the USPTO dated Jun. 8, 2012 for related U.S. Appl. No. 12/803,133, 12 pgs. |
Le, Dinh Thanh, Office Action received from the USPTO dated Jun. 13, 2012 for related U.S. Appl. No. 12/803,064, 14 pgs. |
Theunissen, Lars, Communication under Rule 71(3) EPC dated Jul. 2, 2012 for related appln. No. 09715932.1, 98 pgs. |
Ranta, et al., Comments on Examiner's Statement of Reasons for Allowance filed in the USPTO dated Sep. 10, 2012 for related U.S. Appl. No. 12/803,133, 3 pgs. |
Ranta, et al., Amendment filed in the USPTO dated Sep. 12, 2012 for related U.S. Appl. No. 12/803,064, 13 pgs. |
Chen, Patrick C., Office Action received from the USPTO dated Apr. 4, 2017 for U.S. Appl. No. 15/256,453, 6 pgs. |
Chen, Patrick C., Office Action received from the USPTO dated May 25, 2017 for U.S. Appl. No. 15/256,453, 11 pgs. |
Chen, Patrick C., Notice of Allowance received from the USPTO dated Dec. 15, 2017 for U.S. Appl. No. 15/256,453, 11 pgs. |
Ranta, Tero Tapio, Response filed in the USPTO dated Apr. 14, 2017 for U.S. Appl. No. 15/256,453, 3 pgs. |
Ranta, Tero Tapio, Response filed in the USPTO dated Aug. 24, 2017 for U.S. Appl. No. 15/256,453, 11 pgs. |
Chen, Patrick C., Office Action received from the USPTO dated May 1, 2018 for U.S. Appl. No. 15/871,643, 18 pgs. |
Chen, Patrick C., Applicant-Initiated Interview Summary received from the USPTO dated Jun. 20, 2018 for U.S. Appl. No. 115/871,643, 3 pgs. |
Chen, Patrick C., Final Office Action received from the USPTO dated Dec. 13, 2018 for U.S. Appl. No. 15/871,643, 24 pgs. |
Chen, Patrick C., Advisory Action received from the USPTO dated May 8, 2019 for U.S. Appl. No. 15/871,643, 3 pgs. |
Chen, Patrick C., Applicant-Initiated Interview Summary received from the USPTO dated May 8, 2019 for U.S. Appl. No. 15/871,643, 2 pgs. |
Chen, Patrick C., Notice of Allowance received from the USPTO dated Jul. 3, 2019 for U.S. Appl. No. 15/871,643, 8 pgs. |
Chen, Patrick C., Notice to File Corrected Application Papers received from the USPTO dated Sep. 5, 2019 for U.S. Appl. No. 15/871,643, 3 pgs. |
PSEMI Corporation. Amendment After Allowance filed in the USPTO dated Sep. 12, 2019 for U.S. Appl. No. 15/871,643, 3 pgs. |
Chen, Patrick C., Reply to Applicant-Initiated Interview Summary filed in the USPTO dated May 9, 2019 for U.S. Appl. No. 15/871,643, 2 pgs. |
Chen, Patrick C., Response filed in the USPTO dated Apr. 10, 2019 for U.S. Appl. No. 15/871,643, 13 pgs. |
Chen, Patrick C., Response filed in the USPTO dated Jun. 19, 2018 for U.S. Appl. No. 15/871,643, 14 pgs. |
Chen, Patrick C., Preliminary Amendment filed in the USPTO dated Feb. 23, 2018 for U.S. Appl. No. 15/871,643, 6 pgs. |
Wells, Kenneth B., Office Action received from the USPTO dated Sep. 4, 2019 for U.S. Appl. No. 16/261,167, 31 pgs. |
Fermentel, Thomas, International Search Report and Written Opinion received from the EPO dated Jan. 8, 2020 for appln. No. PCT/US2019/024143, 19 pgs. |
Wells, Kenneth B., Final Office Action received from the USPTO dated Jan. 28, 2020 for U.S. Appl. No. 16/261,167, 25 pgs. |
Wells, Kenneth, Notice of Allowance received from the USPTO dated Feb. 28, 2020 for U.S. Appl. No. 16/261,167, 11 pgs. |
Tra, Anh Quan, Office Action received from the USPTO dated Mar. 20, 2020 for U.S. Appl. No. 15/939,132, 11 pgs. |
Wells, Kenneth, Office Action received from the USPTO dated Apr. 22, 2020 for U.S. Appl. No. 16/682,920, 154 pgs. |
Tra, Anh Quan, Final Office Action received from the USPTO dated Jul. 2, 2020 for U.S. Appl. No. 15/939,132, 15 pgs. |
Tra, Anh Quan, Advisory Action received from the USPTO dated Sep. 11, 2020 for U.S. Appl. No. 15/939,132, 3 pgs. |
Wells, Kenneth, Final Office Action received from the USPTO dated Jul. 29, 2020 for U.S. Appl. No. 16/682,920, 20 pgs. |
Wells, Kenneth, Notice of Allowance received from the USPTO dated Sep. 10, 2020 for U.S. Appl. No. 16/682,920, 7 pgs. |
Wells, Kenneth B., Notice of Allowance received from the USPTO dated Jan. 26, 2021 for U.S. Appl. No. 16/852,804, 9 pgs. |
Wells, Kenneth B., Office Action received from the USPTO dated Oct. 16, 2020 for U.S. Appl. No. 16/852,804, 220 pgs. |
Number | Date | Country | |
---|---|---|---|
20200119719 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15871643 | Jan 2018 | US |
Child | 16653728 | US | |
Parent | 15256453 | Sep 2016 | US |
Child | 15871643 | US |