Positive push medical valve with internal seal

Information

  • Patent Grant
  • 7357792
  • Patent Number
    7,357,792
  • Date Filed
    Thursday, October 16, 2003
    20 years ago
  • Date Issued
    Tuesday, April 15, 2008
    16 years ago
Abstract
A medical valve having an open mode to permit fluid flow and a closed mode to prevent fluid flow has a body and a valving element within the interior of the body. The body also has a valving element within its interior, and a proximal port and a distal port. The valving element controls fluid flow between the proximal and distal ports. Moreover, the valving element includes a resilient member and a plug. The resilient member forms a variable sized fluid chamber within the interior of the body, while the plug cooperates with the gland to provide an internal seal (within the interior of the body) that is spaced from the proximal port. The plug is capable of radially expanding the resilient member when the valve transitions from the closed mode to the open mode. The fluid chamber has a larger volume when in the open mode than when in the closed mode.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to the following U.S. provisional and non-provisional patent applications, the disclosures of which are incorporated herein, in their entireties, by reference:

    • application Ser. No. 09/479,327 (Bromberg & Sunstein LLP);
    • application Ser. No. 09/812,237 (Bromberg & Sunstein LLP);
    • application Ser. No. 10/007,377 (Bromberg & Sunstein LLP);
    • Application No. 60/350,775 (Bromberg & Sunstein LLP); and
    • application Ser. No. 10/224,299 (Bromberg & Sunstein LLP).


FIELD OF THE INVENTION

The invention generally relates to medical products and, more particularly, the invention relates to devices for reducing backflow through a medical valve.


BACKGROUND OF THE INVENTION

In general terms, medical valving devices often act as a sealed port that may be repeatedly accessed to non-invasively inject fluid into (or withdraw fluid from) a patient's vasculature. Consequently, a medical valve permits the patient's vasculature to be freely accessed without requiring such patient's skin be repeatedly pierced by a needle.


Medical personnel insert a syringe into the medical valve to inject fluid into (or withdraw fluid from) a patient who has an appropriately secured medical valve. Once inserted, fluid may be freely injected into or withdrawn from the patient. Problems arise, however, when the syringe is withdrawn from the valve. Specifically, a back pressure (i.e., a proximally directed pressure) produced by the withdrawing syringe undesirably can cause blood to leak proximally into the valve. In addition to coagulating and impeding the mechanical operation of the valve, blood in the valve also compromises the sterility of the valve.


SUMMARY OF THE INVENTION

In accordance with one aspect of the invention, a medical valve having an open mode to permit fluid flow and a closed mode to prevent fluid flow has a body and a valving element within the interior of the body. The body also has a valving element within its interior, and proximal and distal ports. The valving element controls fluid flow between the proximal and distal ports. Moreover, the valving element includes a resilient member and a plug. The resilient member forms a variable sized fluid chamber within the interior of the body, while the plug cooperates with the gland to provide an internal seal (within the interior of the body) that is spaced from the proximal port. The plug is capable of radially expanding the resilient member when the valve transitions from the closed mode to the open mode. The fluid chamber has a larger volume when in the open mode than when in the closed mode.


In some embodiments, the resilient member forms a proximal seal at the proximal port. In addition, the plug may include a plurality of legs that bow outwardly upon application of a distally directed force. The plurality of legs may normally bow outwardly, and/or the plug may have and a leg separator to prevent contact of the legs.


The interior may have a stop, where the plug is capable of longitudinally moving distally within the interior to contact the stop. The plug is capable of radially expanding the resilient member after the plug contacts the stop. In some embodiments, the plug includes a distal end having a base. In such embodiment, the resilient member has an open distal end, and the plug distal end cooperates with the resilient member open distal end to form the internal seal. The internal seal is closed when the resilient member open distal end is occluded by the plug distal end.


In accordance with another aspect of the invention, a medical valve includes a variable volume fluid chamber that is larger when the valve is in the open mode than when in the closed mode. Such valve also includes an internal seal. To these ends, the valve includes a body forming an interior, a proximal port, and a distal port. The valve also has a valving element within the interior of the body. The valving element controls fluid flow between the proximal and distal ports. A variable volume fluid chamber within the interior of the body has a larger volume when in the open mode than when in the closed mode. The valving element also includes an internal seal within the interior of the body. The internal seal is spaced from the proximal port.


In some embodiments, the valving element also includes a proximal seal that is spaced from the internal seal. The proximal seal may be swabbable.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and advantages of the invention will be appreciated more fully from the following further description thereof with reference to the accompanying drawings wherein:



FIG. 1 schematically shows a medical valve configured in accordance with illustrative embodiments of the invention.



FIG. 2A schematically shows a cross-sectional view of a first embodiment of the valve shown in FIG. 1 in the closed position.



FIG. 2B schematically shows a cross-sectional view of the valve shown in FIG. 2A in the open position.



FIG. 3 schematically shows a plug used in the valve shown in FIGS. 2A and 2B.



FIG. 4 schematically shows a cut-away view of the gland and plug of the valve shown in FIGS. 2A and 2B.



FIG. 5A schematically shows a cross-sectional view of a second embodiment of the valve shown in FIG. 1 in the closed position.



FIG. 5B schematically shows a cross-sectional view of the valve shown in FIG. 5A in the open position.



FIG. 6A schematically shows a cross-sectional view of a third embodiment of the valve shown in FIG. 1 in the closed position.



FIG. 6B schematically shows a cross-sectional view of the valve shown in FIG. 6A in the open position.



FIG. 7 schematically shows a cross-sectional view of a fourth embodiment of the valve shown in FIG. 1 in the closed position.





DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In illustrative embodiments of the invention, a medical valve is configured to substantially eliminate fluid drawback when a nozzle or syringe is withdrawn from it. In fact, in some embodiments, the valve is expected to produce a positive, distally directed pressure when a nozzle or syringe is withdrawn. Such pressure necessarily should prevent non-negligible amounts of fluid from being drawn into the valve. Moreover, illustrative embodiments also include an internal seal.


To these ends, illustrative embodiments of the medical valve have an interior fluid chamber that is larger when it is in an open mode (i.e., permitting fluid flow, also referred to as “open position”), than when it is in a closed mode (i.e., preventing fluid flow, also referred to as “closed position”). More specifically, the fluid chamber is formed from a resilient member that, when transitioning from the closed mode toward the open mode, expands from its normal (i.e., relaxed) state. This expansion consequently increases the volume of fluid that the fluid chamber can contain when in the open mode. Accordingly, when retracting back to the closed mode, the resilient member returns to its normal state, which has a smaller volume. Excess fluid within the fluid chamber thus is forced out the distal end of the valve as the valve transitions toward the closed mode. Accordingly, fluid should not be drawn into the valve when withdrawing a syringe. Details of illustrative embodiments are discussed below.



FIG. 1 schematically shows a medical valve 10 that is configured to reduce fluid drawback (a/k/a “back-flow,” noted above) when a syringe or other type of nozzle is withdrawn from it. The valve 10 includes a proximal port 12 (also referred to herein as “inlet 12”) for receiving the nozzle, a valve body/housing 14 having a valve element (different embodiments are shown in FIGS. 2–7) that controls fluid flow through the valve 10, and a distal port 16 (also referred to herein as outlet 16) for directing fluid between the valve 10 and a patient. The fluid preferably is in liquid form, such as liquid medication, to pass through a centrally formed fluid channel (discussed in greater detail below). Although much of the discussion herein refers to the proximal port 12 as a fluid inlet, and the distal port 16 as a fluid outlet, the proximal and distal ports 12 and 16 also may be respectively used as outlet and inlet ports.


In illustrative embodiments, the valve 10 is similar to the swab valve disclosed in U.S. Pat. No. 6,039,302 entitled, “SWABBABLE LUER-ACTIVATED VALVE,” the disclosure of which is incorporated herein, in its entirety, by reference. Of course, various embodiments may relate to other non-swab valves and thus, such embodiments are not limited to swab valves.



FIG. 2A schematically shows a cross-sectional view of a first embodiment of the medical valve 10 (shown in FIG. 1 along line X—X) in a closed mode. FIG. 2B similarly shows a cross-sectional view of the same valve 10, but in an open mode. In summary, the valve 10 includes four snap-fit components. Specifically, the valve 10 includes an inlet housing 18 having the inlet 12, and an outlet housing 20 having the outlet 16. The two housing portions 18 and 20 together form the valve body/housing 14. It should be noted that although some embodiments are discussed as being snap-fit components, various embodiments of the invention may be coupled by either snap-fit or other means, such as by ultrasonic welding. Accordingly, such embodiments are not intended to be limited to snap-fit components.


The remaining two components cooperate to valve fluid through the housing 14. Specifically, the valve 10 also has a stretchable, resilient, and compressible member (referred to in various embodiments herein as “gland 22”) secured between the inlet housing 18 and outlet housing 20, and a longitudinally movable plug 24 (also more generally referred to as a “plug member” due in part to its plugging function) secured within the valve 10 by the gland 22.


The gland 22 is considered to have three contiguous sections that cooperate with the plug 24 to provide a valving function. In particular, those sections include 1) a proximally located swabbable seal section 26 to provide a low pressure, proximally located seal, 2) a tubular section 28 that cooperates with the plug 24 to provide a proximal bias to the plug 24, and 3) an attachment section 30 to secure the gland 22 within the valve 10 and cooperate with the plug 24 to provide the noted internal seal 40. Each of these sections are discussed below.


The seal section 26 has a normally closed aperture 32 to provide the above noted low pressure seal. Among other things, the aperture 32 may be, for example, a pierced hole or a slit. A nozzle or syringe thus may open the low pressure seal by deforming the seal section 26. Details of this deformation are discussed below.


The aperture 32 illustratively is formed to be normally closed when the gland 22 is not even mounted within the housing. No radial force thus is required by the housing to close the aperture 32. In fact, in some embodiments, the outer dimension of the seal section 26 is smaller than the inner dimension of the inlet 12. In alternative embodiments, however, the inner dimension of the inlet 12 is smaller than the outer dimension of the seal section 26 of the gland 22. Consequently, in such embodiments, the housing squeezes the seal section 26, thereby forcing the aperture 32 closed.


When the valve 10 is in the fully closed position, the seal section 26 is flush with, or extends slightly above, the exterior inlet face 34 of the housing. The seal section 26 and the exterior inlet face 34 thus present a swabbable surface. In other words, the seal section 26 and the exterior inlet face 34 may be easily wiped clean by any conventional means, such as with an alcohol swab. As mentioned in the above noted incorporated patent, valves having swabbable surfaces are known in the art as “swabbable valves.” In other embodiments, however, the valve 10 is not a swabbable valve.


The second section of the gland 22, the tubular section 28, provides a number of functions. Primarily, the tubular section 28 is both resilient and compressible. Accordingly, the tubular section 28 effectively acts as a spring to normally maintain the gland 22 in the closed mode. Moreover, the tubular section 28 is radially expandable and contactable, thus providing the valve 10 with the noted anti-drawback capabilities. More specifically, the tubular section 28 forms an internal fluid chamber 36 that is a part of the fluid path within the valve 10. As discussed in greater detail below, the plug 24 radially expands the tubular section 28 as the valve 10 transitions from the closed position toward the open position. In a similar manner, the tubular section 28 contracts as the valve 10 transitions from the open position toward the closed position. Fluid thus should be forced out the distal port 16 as the volume of the tubular section 28 reduces toward its at rest volume.


In illustrative embodiments, the tubular section 28 of the gland 22 is formed to have a varying thickness. For example, the portions of the tubular section 28 being expanded may be thinner than those portions that are not being expanded. In some embodiments, the tubular section 28 actually may be rectangularly shaped, where a first pair of opposing walls are thinner than the other (second) pair opposing walls. The first pair of opposing walls permit the plug 24 to more easily expand the tubular section 28, while the second pair of opposing walls provide more structural strength to the overall gland structure.


The final one of the above listed gland sections, the attachment section 30, serves several important functions. Primarily, it at least partially secures the gland 22 within the housing. To that end, the attachment section 30 is secured between the inlet and outlet housings 18 and 20. To provide a more secure fit, the housing portions also include a pair of opposed annular upstanding ridges 38 that normally are forced into the proximal and distal surfaces of the attachment section 30. In addition, the attachment section 30 rests on a relatively flat inner surface of the housing, thus providing a base from which the tubular section 28 can provide its spring (i.e., proximal biasing) functionality.


The attachment section 30 also cooperates with the plug 24 to provide the noted internal seal 40. Specifically, the attachment section 30 has a distal opening 41 that normally is occluded by the plug 24. As more clearly shown in FIGS. 3 and 4, the plug 24 has a proximal portion 42 secured within the valve 10 by gland seal section 26, a pair of legs 44 extending distally from the proximal portion 42 and terminating at a distal base portion 46. The plug 24 is normally is biased so that, in the absence of a distally directed force, the distal base portion 46 of the plug 24 occludes fluid flow through the distal opening 41 of the attachment section 30.


The internal seal 40 is formed so that it can withstand relatively high pressures (e.g., those higher pressures that may occur during anticipated use, such as pressures greater than about 60 p.s.i.). To that end, the distal base portion 46 of the plug 24 is formed to have a geometry that is matched to that of the distal opening 41 of the attachment section 30. For example, the distal base portion 46 may have an outer diameter that is larger than the inner diameter of the distal opening 41 of the attachment section 30. In addition, the proximally facing surface of the distal base portion 46 should have a contour and shape that permits it to mate with the gland distal opening 41 to seal against high back pressures. Accordingly, due to the performance of the internal seal 40, it is not necessary for the low pressure seal (i.e., the aperture 32 through the seal section 26) to resist large back pressures. In some embodiments, however, the low pressure seal may be formed to also resist relatively high back pressures.


The legs 44 of the plug 24 illustratively are formed to be normally bowed outwardly. In addition, although not necessary, each leg 44 also may have an enlarged portion 48 to ensure that the two legs 44 do not inadvertently flex inwardly either when the valve 10 is actuated, and during assembly (i.e., when the plug 24 is inserted into the gland 22). The enlarged portions 48 normally contact each other. In alternative embodiments, only one leg 44 may have an enlarged portion 48. It should be noted that although only two legs 44 are discussed, other embodiments may have more than two legs 44. In some embodiments, the plug 24 may have only a single leg 44 that performs the same function of radially expanding the gland 22.


As shown in FIG. 2B, insertion of a nozzle (e.g., a blunt tip syringe) forces the seal section 26 of the gland 22 to collapse onto the proximally facing surface of the plug 24, thus opening the aperture 32. In addition, this force also causes the plug 24 to move distally within the valve 10 (against the proximal bias of the gland 22). This distal movement unseats the distal base portion 46 of the plug 24 from the distal opening 41 of the gland 22, thus opening the internal seal 40. Accordingly, when the internal seal 40 is open, the valve 10 is considered to have an open fluid channel extending between the proximal and distal ports 12 and 16.


The plug 24 moves distally until its distal base portion 46 contacts a stop 50 within the interior of the outlet housing 20. After the plug 24 contacts the stop 50, the legs 44 begin to bow outwardly as the nozzle applies more distally directed force. This bowing forces the tubular section 28 of the gland 22 to also expand, consequently expanding the internal fluid chamber 36 discussed above. Fluid from the nozzle thus may travel through the above noted fluid channel. Specifically, fluid flows through the aperture 32 and into the fluid chamber 36. From there, fluid travels though a distal channel formed by the outlet housing 20, and out through the distal port 16.


Removal of the distally directed force thus causes a similar, but opposite, effect. Specifically, the legs 44 begin moving radially inwardly, consequently reducing the volume of the internal chamber 36. Fluid remaining within the internal chamber 36 thus is forced distally through the distal port 16. After the legs 44 have retracted to their at-rest position (i.e., when not forced to bow radially outwardly), the plug 24 moves proximally until the internal seal 40 is reformed. In other words, the plug 24 moves proximally until the distal base portion 46 of the plug 24 reseats against the distal opening of the gland 22. The proximal seal also is completely resealed after the nozzle is removed from the valve 10.


In illustrative embodiments, the gland 22 is manufactured from a resilient elastomeric material, such as rubber or silicone. Other materials having similar properties may be used, however, so long as they can perform the functions discussed herein. The plug 24 illustratively is formed from a flexible and resilient plastic (e.g., polypropylene). Again, in a manner similar to the gland 22, other materials having similar properties may be used as long as they can perform the functions discussed herein.



FIG. 5A schematically shows a cross-sectional view of a second embodiment of the medical valve 10 (shown in FIG. 1 along line X—X) in a closed mode. FIG. 5B similarly shows a cross-sectional view of the same valve 10, but in an open mode. This embodiment includes the same components as the first embodiment. The difference, however, is the shape and operation of the plug 24. In particular, each of the legs 44 of the plug 24 has three living hinge areas 52 to facilitate radial outward movement of the gland 22. In some embodiments, the legs 44 are normally bowed outwardly. In other embodiments, however, the legs 44 are not normally bowed outwardly. The plug 24 also includes a vertical member to ensure that the legs 44 to not bow inwardly when a distally directed force is applied. Also, in a manner similar to the embodiment shown in FIGS. 2A and 2B, the valve 10 also includes the internal high-pressure seal 40.


The seal section 26 of the gland 22 is shown in this embodiment as having an accordion-type structure. This structure relieves the seal section 26 when being forced to collapse. This feature is optional.


Operation of this embodiment is substantially similar to that of the embodiment shown in FIGS. 2A and 2B. Specifically, insertion of a nozzle (e.g., a blunt tip syringe) forces the seal section 26 of the gland 22 to collapse onto the proximally facing surface of the plug 24, thus opening the aperture 32. In addition, this force also causes the plug 24 to move distally within the valve 10, consequently unseating the distal base portion 46 of the plug 24 from the distal opening of the gland 22.


The plug 24 moves distally until its distal base portion 46 contacts a stop 50 within the interior of the outlet housing 20. After the plug 24 contacts the stop 50, the legs 44 begin to bow outwardly as the nozzle applies more distally directed force. This bowing forces the tubular section 28 of the gland 22 to also expand, thus expanding the internal fluid chamber 36 discussed above.


Removal of the distally directed force thus causes a similar, but opposite, effect. Specifically, the legs 44 begin moving radially inwardly, consequently reducing the volume of the internal chamber 36. Fluid remaining within the internal chamber 36 thus is forced distally through the distal port 16. After the legs 44 have retracted to their at-rest position (i.e., when not forced to bow radially outwardly), the plug 24 moves proximally until the internal seal 40 is reformed. The proximal seal also is completely resealed after the nozzle is removed from the valve 10.



FIG. 6A schematically shows a cross-sectional view of a third embodiment of the medical valve 10 (shown in FIG. 1 along line X—X) in a closed mode. FIG. 6B similarly shows a cross-sectional view of the same valve 10, but in an open mode. This embodiment includes the same components as the first and second embodiments. In particular, this embodiment includes the inlet and outlet housing portions, the plug 24 and the gland 22.


The differences between this embodiment and the earlier mentioned embodiment is the configuration of the different components. In particular, the inlet and outlet housing portions meet to secure the gland attachment section 30 at a location that is proximal to that location on the first and second embodiments.


More significant, however, is the shape and operation of the plug 24. In particular, the plug 24 illustratively is split down its center and thus, separable. To that end, the plug 24 illustratively includes an occluded portion 54 that has two longitudinal plug sections normally flush against one another. When flush, as shown in FIG. 6A, this occluded portion 54 acts as the noted high pressure internal seal 40. The plug 24 also includes a pair of legs 44 normally in contact with the lower portion of the housing interior, and vertical member to ensure that the two housing halves separate when open.


As shown in FIGS. 6A and 6B, insertion of a nozzle forces the seal section 26 of the gland 22 to collapse onto the proximally facing surface of the plug 24, thus opening the aperture 32. The force also causes the legs 44 to bow radially outwardly, thereby permitting the two longitudinal plug sections to separate. This separation consequently expands the overall fluid volume within the valve 10, thus providing the desired anti-drawback functionality. Fluid thus flows through the proximal port 12, through the occluding portion 54 and valve interior, through holes at the base of the plug 24, and out the distal port 16.



FIG. 7 schematically shows a cross-sectional view of a fourth embodiment of the valve 10 shown in FIG. 1. This embodiment is very similar to the third embodiment, except that it does not include the vertical member, and its legs 44 are normally tapered as they extend distally. Application of a distally directed force forces the two plug portions (of the occluding portion) to separate, consequently increasing the internal volume. Also in a manner similar to the previous embodiment, the occluding portion of the plug 24 acts as a high-pressure seal 40.


The plug 24 in both the third and forth embodiments illustratively may be formed to have a more pliable, sealing material on the plug portions that normally are flush. For example, a conventional two shot process may be used to apply an elastomeric layer to that surface. In illustrative embodiments, the entire plug 24 is formed to be a long strip of material that, during assembly, is folded into the form shown in FIGS. 5A–7.


It should be noted that measurements, other numbers, and various indicia on the figures not discussed are exemplary. Accordingly, various embodiments are not intended to be limited to such numbers and/or indicia.


Although various exemplary embodiments of the invention are disclosed above, it should be apparent to those skilled in the art that various changes and modifications can be made that will achieve some of the advantages of the invention without departing from the true scope of the invention.

Claims
  • 1. A medical valve having an open mode to permit fluid flow and a closed mode to prevent fluid flow, the medical valve comprising: a body forming an interior, a proximal port, and a distal port, the interior having a fluid channel between the proximal port and the distal port; anda valving element within the interior of the body, the valving element controlling fluid flow between the proximal and distal ports,the valving element including a resilient member and a plug, the resilient member forming a fluid chamber within the interior of the body, the fluid chamber being at least a part of the fluid channel,the plug cooperating with the resilient member to provide an internal seal within the interior of the body, the internal seal being spaced from the proximal port,the plug radially stretching the resilient member when the valve transitions from the closed mode to the open mode, the radial expansion causing the fluid chamber to have a larger volume when in the open mode than when in the closed mode, the radial expansion also causing the fluid channel to have a larger volume when in the open mode than when in the closed mode.
  • 2. The medical valve as defined by claim 1 wherein the resilient member forms a proximal seal at the proximal port.
  • 3. The medical valve as defined by claim 1 wherein the plug includes a plurality of legs that bow outwardly upon application of a distally directed force.
  • 4. The medical valve as defined by claim 1 wherein the plug includes a plurality of legs that normally bow outwardly.
  • 5. The medical valve as defined by claim 1 wherein the plug includes a plurality of legs and a leg separator to prevent contact of the legs.
  • 6. The medical valve as defined by claim 1 wherein the interior includes a stop, the plug longitudinally moving distally within the interior to contact the stop, the plug radially expanding the resilient member after the plug contacts the stop.
  • 7. The medical valve as defined by claim 1 wherein the plug includes a distal end, the resilient member having an open distal end, the plug distal end cooperating with the resilient member open distal end to form the internal seal.
  • 8. The medical valve as defined by claim 7 wherein the internal seal is closed when the resilient member open distal end is occluded by the plug distal end.
  • 9. The medical valve as defined by claim 1 wherein the valve element is swabbable.
  • 10. A medical valve having an open mode to permit fluid flow and a closed mode to prevent fluid flow, the medical valve comprising: a body forming an interior, a proximal port, and a distal port, the interior having a fluid channel between the proximal port and the distal port;a valving element within the interior of the body, the valving element controlling fluid flow through the fluid channel between the proximal and distal ports; anda variable volume fluid chamber that is located within the interior of the body and is at least a part of the fluid channel, the fluid chamber and fluid channel having a larger volume when in the open mode than when the valve is in the closed mode; anda swabbable proximal seal that is spaced from the internal seal;the valving element including: an internal seal within the interior of the body, the internal seal being spaced from the proximal port; anda plug member at least in part within a resilient member, wherein the plug member radially stretches a wall of the resilient member as the valve transitions toward the open mode.
  • 11. The medical valve as defined by claim 10 wherein the valving element includes a split plug member forming at least two portions with separable opposing faces, the opposing faces being substantially flush against each other when in the closed mode.
  • 12. A medical valve having an open mode to permit fluid flow and a closed mode to prevent fluid flow, the medical valve comprising: a body forming an interior, a proximal port, and a distal port, the interior having a fluid channel between the proximal port and the distal port;valving means for controlling fluid flow between the proximal and distal ports; anda variable volume fluid chamber within the interior of the body, the fluid chamber being at least a part of the fluid channel, the fluid chamber and fluid channel having a larger volume when in the open mode than when the valve is in the closed mode,the valving means including internal seal means for sealing the valve within the interior of the body, the internal seal means being spaced from the proximal port.
  • 13. The medical valve as defined by claim 12 wherein the valving means includes a swabbable seal means.
  • 14. The medical valve as defined by claim 12 wherein the valving means includes a plug within an resilient member.
  • 15. The medical valve as defined by claim 14 wherein the plug includes means for radially expanding the resilient member when the valve transitions to the open mode.
  • 16. The medical valve as defined by claim 14 wherein the plug has a plurality of legs that bow outwardly upon application of a distally directed force.
  • 17. The medical valve as defined by claim 10 wherein the resilient member forces fluid distally toward the distal port when the valve transitions toward the closed mode.
  • 18. The medical valve as defined by claim 1, wherein: the valving element defines an opening; andthe plug cooperates with the resilient member to provide the internal seal within the interior of the body to close the opening defined by the resilient member when the valve is in the closed mode.
  • 19. The medical valve as defined by claim 1, wherein, when the valve transitions from the closed mode to the open mode, the plug radially stretches the resilient member by exerting a force on at least a portion of the inside of the fluid chamber.
PRIORITY

This patent application claims priority from provisional U.S. patent application No. 60/422,074, filed Oct. 29, 2002, entitled, “POSITIVE PUSH MEDICAL VALVE WITH INTERNAL SEAL,” and naming Brian L. Newton and Andrew L. Cote. as inventors, the disclosure of which is incorporated herein, in its entirety, by reference.

US Referenced Citations (162)
Number Name Date Kind
2594405 Deters Apr 1952 A
2693801 Foreman Nov 1954 A
2705501 Frizsch et al. Apr 1955 A
2756740 Deane Jul 1956 A
2899975 Fernandez Aug 1959 A
2999499 Willett Sep 1961 A
3087492 Garth Apr 1963 A
3105511 Murphy, Jr. Oct 1963 A
3192949 De See Jul 1965 A
3385301 Harautuneian May 1968 A
3399677 Gould et al. Sep 1968 A
3416567 Von Dardel et al. Dec 1968 A
3506005 Gilio et al. Apr 1970 A
3538950 Porteners Nov 1970 A
3570484 Steer Mar 1971 A
3572375 Rosenberg Mar 1971 A
3726282 Patel Apr 1973 A
3806086 Cloyd Apr 1974 A
3831629 Mackal et al. Aug 1974 A
3838843 Bernhard Oct 1974 A
3923065 Nozick et al. Dec 1975 A
3965910 Fischer Jun 1976 A
3994293 Ferro Nov 1976 A
4063555 Ulinder Dec 1977 A
4080965 Phillips Mar 1978 A
4094195 Friswell et al. Jun 1978 A
4094196 Friswell Jun 1978 A
4116201 Shah Sep 1978 A
4121585 Becker, Jr. Oct 1978 A
4143853 Abramson Mar 1979 A
4223808 Williams et al. Sep 1980 A
4300571 Waldbillig Nov 1981 A
4324239 Gordon et al. Apr 1982 A
4333455 Bodicky Jun 1982 A
4334551 Pfister Jun 1982 A
4344435 Aubin Aug 1982 A
4387879 Tauschinski Jun 1983 A
4401432 Schwartz Aug 1983 A
4421296 Stephens Dec 1983 A
4458480 Irwin Jul 1984 A
4496348 Genese et al. Jan 1985 A
4498658 Mikiya Feb 1985 A
4534758 Akers et al. Aug 1985 A
4535820 Raines Aug 1985 A
4550785 Hibbard et al. Nov 1985 A
4551136 Mandl Nov 1985 A
4585435 Vaillancourt Apr 1986 A
4596557 Pexa Jun 1986 A
4611973 Birdwell Sep 1986 A
4617015 Foltz Oct 1986 A
4661110 Fortier et al. Apr 1987 A
4675003 Hooven Jun 1987 A
4681132 Lardner Jul 1987 A
4683905 Vigneau et al. Aug 1987 A
4683916 Raines Aug 1987 A
4698061 Makaryk et al. Oct 1987 A
4710168 Schwab et al. Dec 1987 A
4712583 Pelmulder et al. Dec 1987 A
4743235 Waldbillig et al. May 1988 A
4745950 Mathieu May 1988 A
4749003 Leason Jun 1988 A
4752287 Kurtz et al. Jun 1988 A
4752292 Lopez et al. Jun 1988 A
4758224 Siposs Jul 1988 A
4776369 Lardner et al. Oct 1988 A
4809679 Shimonaka et al. Mar 1989 A
4816020 Brownell Mar 1989 A
4819684 Zaugg et al. Apr 1989 A
4842591 Luther Jun 1989 A
4850978 Dudar et al. Jul 1989 A
4874377 Newgard et al. Oct 1989 A
4915687 Sivert Apr 1990 A
4917668 Haindl Apr 1990 A
4935010 Cox et al. Jun 1990 A
4966199 Ruschke Oct 1990 A
5006114 Rogers et al. Apr 1991 A
5041087 Loo et al. Aug 1991 A
5048537 Messinger Sep 1991 A
5049128 Duquette Sep 1991 A
5059175 Hanover et al. Oct 1991 A
5065783 Ogle, II Nov 1991 A
5080654 Picha et al. Jan 1992 A
5085645 Purdy et al. Feb 1992 A
5100394 Dudar et al. Mar 1992 A
5108380 Herlitze et al. Apr 1992 A
5147333 Raines Sep 1992 A
5171230 Eland et al. Dec 1992 A
5199947 Lopez et al. Apr 1993 A
5201715 Masters Apr 1993 A
5203775 Frank et al. Apr 1993 A
5215538 Larkin Jun 1993 A
5221271 Nicholson et al. Jun 1993 A
5230706 Duquette Jul 1993 A
5242393 Brimhall et al. Sep 1993 A
5242432 DeFrank Sep 1993 A
5269771 Thomas et al. Dec 1993 A
5280876 Atkins Jan 1994 A
5300034 Behnke et al. Apr 1994 A
5320328 Decloux et al. Jun 1994 A
5330435 Vaillancourt Jul 1994 A
5349984 Weinheimer et al. Sep 1994 A
5360413 Leason et al. Nov 1994 A
5380306 Brinon Jan 1995 A
5390898 Smedley et al. Feb 1995 A
5401255 Sutherland et al. Mar 1995 A
5439451 Collinson et al. Aug 1995 A
5465938 Werge et al. Nov 1995 A
5474536 Bonaldo Dec 1995 A
5474544 Lynn Dec 1995 A
5509433 Paradis Apr 1996 A
5509912 Vaillancourt et al. Apr 1996 A
5520666 Choudhury et al. May 1996 A
5533708 Atkinson et al. Jul 1996 A
5533983 Haining Jul 1996 A
5535771 Purdy et al. Jul 1996 A
5549566 Elias et al. Aug 1996 A
5569209 Roitman Oct 1996 A
5569235 Ross et al. Oct 1996 A
5573516 Tyner Nov 1996 A
5578059 Patzer Nov 1996 A
5616129 Mayer Apr 1997 A
5616130 Mayer Apr 1997 A
5620434 Brony Apr 1997 A
5674206 Allton et al. Oct 1997 A
5676346 Leinsing Oct 1997 A
5685866 Lopez Nov 1997 A
5694686 Lopez Dec 1997 A
5695466 Lopez et al. Dec 1997 A
5699821 Paradis Dec 1997 A
5700248 Lopez Dec 1997 A
5730418 Feith et al. Mar 1998 A
5749861 Guala et al. May 1998 A
RE35841 Frank et al. Jul 1998 E
5806831 Paradis Sep 1998 A
5820601 Mayer Oct 1998 A
5921264 Paradis Jul 1999 A
6029946 Doyle Feb 2000 A
6036171 Weinheimer et al. Mar 2000 A
6039302 Cote, Sr. et al. Mar 2000 A
6048335 Mayer Apr 2000 A
6050978 Orr et al. Apr 2000 A
6063062 Paradis May 2000 A
6068011 Paradis May 2000 A
6079432 Paradis Jun 2000 A
6089541 Weinheimer et al. Jul 2000 A
6152900 Mayer Nov 2000 A
6168137 Paradis Jan 2001 B1
6228069 Barth et al. May 2001 B1
6245048 Fangrow, Jr. et al. Jun 2001 B1
6290206 Doyle Sep 2001 B1
6344033 Jepson et al. Feb 2002 B1
6428520 Lopez et al. Aug 2002 B1
6543745 Enerson Apr 2003 B1
6595964 Finley et al. Jul 2003 B2
6609696 Enerson Aug 2003 B2
6669673 Lopez Dec 2003 B2
6761286 Py et al. Jul 2004 B2
20030050610 Newton et al. May 2003 A1
20030093061 Ganem May 2003 A1
20030098430 Leinsing et al. May 2003 A1
20030141477 Miller Jul 2003 A1
20040073171 Rogers et al. Apr 2004 A1
Foreign Referenced Citations (16)
Number Date Country
0268480 May 1988 EP
0629418 Dec 1994 EP
1243285 Sep 2002 EP
2 079 162 Jan 1982 GB
0120218 Mar 2001 GB
8302559 Aug 1983 WO
9311828 Jun 1993 WO
9600107 Jan 1996 WO
9739791 Oct 1997 WO
9822178 May 1998 WO
9826835 Jun 1998 WO
9839594 Sep 1998 WO
0044433 Aug 2000 WO
WO 03018104 Mar 2003 WO
WO 03018105 Mar 2003 WO
WO 2004060466 Jul 2004 WO
Related Publications (1)
Number Date Country
20040133171 A1 Jul 2004 US
Provisional Applications (1)
Number Date Country
60422074 Oct 2002 US