The present invention generally relates to post hole diggers. The present invention more specifically relates to a post hole digger that enables a user to conveniently produce a vertical hole in the ground with minimal interference between the post hole digger and the sides of the vertical hole.
It is generally known to provide a post hole digger for digging holes within the earth for placement of a post therein. Traditional post hole diggers include two concave blades that face one another to form a cylindrical region generally about six inches in diameter. The blades are pivotally connected to one another proximate the top portion of the blades. Extending from each blade is a fixture or cap supporting a shaft handle extending approximately four feet in height. The blades are spaced apart from one another such that each shaft is proximate the inner surface of each of the blades. By thrusting the blades into the ground, the earth is secured between the blades by moving the upper end of the handles away from one another forcing the blades to pivot about the pivot toward one another.
As the hole becomes deeper, the pivoting motion of the blades results in the shafts contacting the edge of the hole proximate the top of the hole. This minimizes the pivoting motion of the blades and thereby reduces the amount of dirt that can be pulled out with each pivoting motion of the shafts. As a result, a user is often forced to widen the width of the hole in order to accommodate the shafts. This can result both in excess effort from the user, as well as an increased use of cement and/or other type of filling for the hole. Further, the use of the fixtures extending from the blades to support the shafts can often interfere with the sight line of the user with respect to the blades, thereby inhibiting free visual access to the hole during use of the post hole digger. Additionally, the traditional wood and plastic handles or shafts are subject to breaking near the fixture that holds them. Further, the nuts and bolts that connect the handles to the fixtures typically loosen during use.
Accordingly, it would be advantageous to provide a post hole digger that allows for full pivoting of the blades relative to one another while minimizing the contact between the shafts and the upper edge of the hole. It would also be advantageous to provide a post hole digger that enables a user to dig deeper post holes without having to increase the diameter of the hole opening as the depth of the hole increases. It would also be advantageous to provide a post hole digger that enables a user to close the blades of the post hole digger without having the handles or shafts wider than the diameter of the top of the hole. It would also be desirable to provide a post hole digger having shafts with a configuration that maximizes the sight line of the post hole digger. It would also be desirable to provide a post hole digger having a handle arrangement and blade attachment that minimizes the chances of the handles breaking or loosening during use.
It would be advantageous to provide a post hole digger or the like of a type disclosed in the present application that provides any one or more of these or other advantageous features. The present invention further relates to various features and combinations of features shown and described in the disclosed embodiments. Other ways in which the objects and features of the disclosed embodiments are accomplished will be described in the following specification or will become apparent to those skilled in the art after they have read this specification. Such other ways are deemed to fall within the scope of the disclosed embodiments if they fall within the scope of the claims which follow.
One embodiment of the invention relates to a post hole digger. The post hole digger comprises a first shaft pivotally coupled at a pivot to a second shaft, the first shaft and the second shaft each comprising an upper end, a lower end, and a central portion having a central axis, and a first blade coupled to the first shaft at the lower end of the first shaft and a second blade coupled to the second shaft at the lower end of the second shaft. The central axis of the first shaft and the central axis of the second shaft generally define a plane when the first blade and the second blade are provided in an open configuration. The first blade and the upper end of the first shaft are located on a first side of the plane when the first blade and the second blade are provided in the open configuration. The second blade and the upper end of the second shaft are located on a second side of the plane when the first blade and the second blade are provided in the open configuration. The upper end of the first shaft and the upper end of the second shaft may be pivoted away from one another to position the blades in a substantially closed configuration.
Another embodiment of the invention relates to a post hole digger. The post hole digger comprises a first handle pivotally coupled to a second handle, the first handle and the second handle each having a longitudinal axis, and a first blade coupled to the first handle and a second blade coupled to the second handle. The first blade and the second blade are configured to pivot from an open configuration to a closed configuration by pivoting the first handle and the second handle away from one another. The first handle and the second handle extend along a plane defined generally by the longitudinal axis of the first handle and the longitudinal axis of the second handle when the first blade and the second blade are in the open configuration. The first blade and the second blade are generally parallel to the plane and spaced apart from the plane when provided in the open configuration.
Another embodiment of the invention relates to a method of producing a post hole digger. The method comprises providing a first shaft pivotally coupled to a second shaft, the first shaft and the second shaft comprising an upper end, a lower end, and a central portion having a longitudinal axis, and providing a first blade coupled to the first shaft and a second blade coupled to the second shaft. The method comprises configuring the first blade and the second blade to pivot from an open configuration to a closed configuration by pivoting the upper ends of the first shaft and the second shaft away from one another. The method comprises configuring the central portions of the first shaft and the second shaft to extend along a plane generally defined by the longitudinal axis of the first and second shaft when the first blade and the second blade are in the open configuration. The method comprises configuring the first blade and the second blade to be generally parallel to the plane and spaced apart from the plane when provided in the open configuration.
Before explaining a number of preferred, exemplary, and alternative embodiments of the invention in detail, it is to be understood that the invention is not limited to the details or methodology set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or being practiced or carried out in various ways. It is also to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
A system (shown as a post hole digger 10) for digging holes within the earth (e.g., for the placement of posts, fences, poles, etc.) is shown in
Referring to
According to an exemplary embodiment, as shown in
Referring to
Referring to
According to an exemplary embodiment, bearing 36 includes an arcuate inner surface 46 located opposite bearing surface 38 that is proximate shaft 12. In one embodiment, each bearing 36 is welded to the outer surface of each respective shaft 12 such that inner surface 46 is adjacent shaft 12. According to an exemplary embodiment, a pivot pin 48 need only extend through bearings 36 and not necessarily through shafts 12. In an alternative embodiment, pivot pin 48 extends through each shaft 12 and through each opening 50 extending through each bearing 36. According to various alternative embodiments, it is also possible to both weld bearing 36 to each shaft as well as to have pivot pin 48 extend through the shafts. Regardless of whether the bearing is welded to or mechanically attached to shafts 12, the bearing surface 38 preferably rotates within plane 34.
Referring to
To operate the post hole digger 10, a user grasps and hold grips 18 in the non-extended position shown in
According to various exemplary embodiments, the assemblies and components of the post hole digger may be constructed from various different materials. According to a preferred embodiment, the assemblies and components of the post hole digger may be constructed from materials that are durable, substantially non-corroding, and light weight. For example, a variety of plastics (e.g., high-impact), polymers, rubber, etc. may be used for construction or assembly of the grip. Using rubber or plastic offers several advantages including that the grip may be constructed in a variety of different colors, surface finishes, textures, opacity, etc. According to various exemplary embodiments, a variety of suitable materials may be used for other components (such as the shafts and blades) of the post hole digger, including metals, alloys, composites, aluminum, stainless steel, fiberglass, wood, etc. Further, various parts of the post hole digger may be constructed and assembled as a single integrally formed piece or may be constructed and assembled from multiple parts.
It is important to note that the construction and arrangement of the elements of the post hole digger as shown in the various embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g. variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter disclosed in this application. For example, referring to
The present application claims the benefit of and priority as available under 35 U.S.C. §§ 119-21 to the following U.S. patent application (which is incorporated by reference in the present application): U.S. Provisional Patent Application No. 60/461,089 titled “POST HOLE DIGGER” filed Apr. 8, 2003.
Number | Name | Date | Kind |
---|---|---|---|
126773 | Ball | May 1872 | A |
171942 | Lee | Jan 1876 | A |
208703 | Avery | Oct 1878 | A |
281137 | Rhodes | Jul 1883 | A |
429903 | Gregg | Jun 1890 | A |
437466 | Vogel | Sep 1890 | A |
715260 | Griffin | Dec 1902 | A |
752115 | Smith | Feb 1904 | A |
931061 | Hardy | Aug 1909 | A |
1222711 | Armstrong, Sr. | Apr 1917 | A |
1706332 | Theriot | Mar 1929 | A |
1888929 | McDowell | Nov 1932 | A |
1889929 | McDowell | Dec 1932 | A |
2028680 | Mayede et al. | Jan 1936 | A |
2074691 | Gilkerson | Mar 1937 | A |
2192399 | Downes | Mar 1940 | A |
2230498 | Loos et al. | Feb 1941 | A |
2435473 | Sonnenberg | Feb 1948 | A |
2644455 | Benoit | Jul 1953 | A |
2654626 | Rice | Oct 1953 | A |
2710765 | Arens | Jun 1955 | A |
2791879 | Truran | May 1957 | A |
4042270 | Weiland | Aug 1977 | A |
4057277 | Burkholder | Nov 1977 | A |
5273331 | Burnham | Dec 1993 | A |
5320363 | Burnham | Jun 1994 | A |
5427424 | Robinson | Jun 1995 | A |
5478128 | Aaland | Dec 1995 | A |
5669648 | Luck | Sep 1997 | A |
5727828 | Jones | Mar 1998 | A |
5743579 | Ranburger | Apr 1998 | A |
5820183 | Marcus | Oct 1998 | A |
6089632 | Pickren | Jul 2000 | A |
6273482 | Pickren | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
43860 | Apr 1910 | DE |
1032172 | Jun 1958 | DE |
115 715 | May 1918 | GB |
180 839 | Jun 1922 | GB |
909 060 | Oct 1962 | GB |
8300259 | Aug 1984 | NL |
Number | Date | Country | |
---|---|---|---|
20040201234 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
60461089 | Apr 2003 | US |