Embodiments of the disclosure relate to cybersecurity. More particularly, one embodiment of the disclosure relates to detection of cyber-attacks within enterprise networks.
Electronic computing systems provide useful and necessary services that assist individuals in business and in their everyday lives. In recent years, a growing number of cyber-attacks are being conducted on governmental agencies and private enterprises. These cyber-attacks tend to focus on computing systems with network connectivity (referred to as “network devices”) communicatively coupled to a network within the governmental agency or private enterprise. Herein, such a network is called an enterprise network, which term is used to refer to a proprietary, non-public, private or local network in contra-distinction to a public network such as the Internet.
Normally, cyber-attacks are started by exploiting a security vulnerability in measures or devices employed to protect the network, or in computer systems or software installed and operating on the computing systems, thereby allowing threat actors and/or malicious software (malware) to gain entrance into the network and onto the network device. For example, the threat actor may want to gain entrance for any of a variety of malicious purposes, such as to (i) monitor (e.g., surveil) activity on a network or network device, or (ii) cause harm to the network or network device, such as intentional corruption, lock down or theft (exfiltration) of data (e.g., credentials, financial information such as credit card information, identity information, military secrets, or the like). Examples of malware may include, but are not limited or restricted to, viruses, trojan horses, rootkits, worms, advanced persistent threats (APTs), keyloggers, and/or other programs intended to compromise network devices as well as the data stored on the network device and other resources connected to the network.
For cyber-defense, enterprises will often employ security devices to detect cyber-attacks at the periphery of its enterprise network as well as on computer devices (e.g., anti-virus programs) connectable to the network. The security devices deployed at the periphery of the enterprise network are located where network traffic transits into a trusted zone established by the enterprise network from an untrusted network such as a public network (e.g., the Internet). These periphery-deployed security devices may include firewalls, intrusion detection devices (IDS's), and other devices to detect malware in the network traffic entering the local network, and, for some devices, in outbound traffic leaving the enterprise network. These security devices are designed to detect early phases of Web-based attacks, such as initial infiltration, malware downloads, and command and control (CnC) callbacks.
Conventional security measures are also deployable on a network device itself (also referred to as an endpoint or host), for example, a laptop, notebook, tablet, smart phone, server, and any other computer system or device adapted for communication over the enterprise network. These security measures may include anti-virus software that attempts to match the network traffic against a library of signatures of known malware. Still other security measures intended for deployment on hosts may include software agents installed on the hosts that monitor processing activities, seeking to identify indicators of compromise (IOCs) evidencing unauthorized activities on the host and thus suggesting a cyber-attack may be underway. Upon detecting malware or IOCs, the security measures deployed at the periphery of the network or on the host may present an alert to a network or security administrator or a user for her or his situational evaluation and, if appropriate, to prompt and guide remedial action.
While security measures deployed at the periphery of the enterprise networks and in hosts can protect against many cyber-attacks, they may be unable to provide a desired high level of cyber protection. For instance, threat actors may design their malware to constantly change (mutate) in form to defeat signature matching techniques employed by firewalls, IDS's, anti-virus programs and the like. This type of advanced malware is referred to as “polymorphic malware.” Also, the threat actors may utilize new malware in an attack that has not previously been detected, that is, “zero day” malware, for which signatures have not been developed. Moreover, malware may be introduced into an enterprise network other than through network traffic entering at the periphery of the enterprise network, for example, by a previously infected, portable storage device or memory stick connected directly to a host within the enterprise network.
Security measured may also be limited in effectiveness for additional reasons. For example, the IOC detection utilized by hosts can be challenging as, after infiltration of the malware onto the hosts, the operations by the malicious software may bear a strong similarity to legitimate and typical processing activities on the host, resulting in the potential for a high number of false positives or false negatives in detection. In addition, threat actors may gain entrance to an enterprise network or network device without relying on malware for system or software exploitation, such as through phishing email, credential stealing or otherwise taking advantage of inattentive users and administrators.
Moreover, sophisticated malware may be designed to further a multi-phase cyber-attack. As an example of such an attack, in a first phase, the malware infiltrates an enterprise network and obtains a foothold within a network device, thereby defeating or evading detection by the security devices employed at both “lines” of defense (i.e., the network periphery and the network device). Thereafter, after the victim network device is compromised, in subsequent phases, the malware may instigate various types of malicious network activities inside the enterprise network, including, for example, the malware moving laterally within the network to infect other network devices within the network or the malware surveilling network activities, inventorying network resources (e.g., network mapping, host enumeration), or accessing data stored in data centers or elsewhere within the network.
It would be desirable to provide a third line of defense that can detect cyber-attacks during lateral movement within the enterprise network, and differentiate the malicious activities from normal network activities to detect the cyber-attacks during such post-infiltration phases.
Embodiments of the disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
I. Overview
Embodiments of the invention can find applicability in a variety of contexts including detection of cyber-attacks during lateral movement within an enterprise network after gaining entry (post-intrusion) into the enterprise network and compromising a network device within the enterprise network. Lateral movement of a cyber-attack can take the form of malicious traffic traversing between network devices within the enterprise network. This malicious traffic is sometimes referred to as “east-west” traffic, and generally involves communications between network devices within the enterprise network, in contradistinction to “north-south” traffic which involves communications intended to traverse the periphery of the network.
Detection of cyber-attacks by inspecting intercepted internal enterprise network traffic can be challenging as much of the malicious traffic can bear a strong similarity to legitimate, normal traffic exchanged within the network. For example, the malicious traffic can include communications which further the cyber-attack while not containing malware. These communications may include, for example, server-client communications and requests/responses regarding privilege escalation, remote task execution, data access and/or exfiltration, and the like.
In general, a cyber-attack analysis system in accordance with embodiments of the invention includes logic to capture communications in internal traffic traversing the enterprise network from one network device to another within the enterprise network. Often the second network device is a file or application server (e.g., within a data center) and thus the captured communications often employs a client-server protocol (such as a Server Message Block (SMB) protocol). Other times, the second network device is another user's computer (endpoint), server or other computer system or resource.
The cyber-attack analysis system according to these embodiments also includes analysis logic to analyze the communications to identify and collect indicators of potential compromise associated with analyzed communications and their content within the enterprise network traffic. An “indicator” is analytical information resulting from an analysis of an object (that is, one or more of the communications themselves or content within and extracted from the communications). Herein, the detection involves static analysis of an object (e.g., analysis of the characteristics of the object without execution of the object) and/or dynamic analysis of an object (e.g., executing the object and monitoring the behavior of the object and/or the software used in execution of the object).
The cyber-attack analysis system according to these embodiments also includes correlation logic to assemble one or more groups of “weak” indicators, each group consisting of multiple (i.e., two or more) “weak” indicators from the set of indicators. A weak indicator corresponds to data that, by itself, is not definitive as to a determination of a cyber-attack. The indicators may be assigned to a group based on one or more “relatedness” (grouping) factor that the indicators of a group share in common, sometimes referred to as an index parameter. For example, the “weak” indicators may be grouped according to a selected time period during which each of these indicators was detected. The selected time period (i.e., sliding window) may vary depending on the resources (e.g., processing capacity, available memory, etc.) available to the cyber-attack analysis system. Furthermore, the set of indicators may be grouped in accordance with dynamically modifiable rules available to the correlation logic. After this grouping, the correlation logic conducts an analysis to determine whether the group of indicators is correlated with known malicious patterns or sequences (ordering) of indicators, thereby producing a “strong” indicator. A strong indicator assists the cyber-attack analysis system in determining that a cyber-attack is being conducted on a particular computer system or enterprise, and a presence of the strong indicator may be reported as part of an alert (warning) to a security or network administrator.
Accordingly, as described, the correlation logic is configured to improve cyber-attack detection effectiveness while monitoring internal network traffic (e.g., identifying compromised network devices communicating inside an enterprise network). More specifically, based on a plurality of prescribed correlation rules that are formulated and coded from experiential knowledge and previous malware analysis results, the correlation logic is configured to generate a “strong” indicator of malware or a cyber-attack (hereinafter, “indicator”) from a group of weak indicators. Herein, a “strong indicator” corresponds to data that, based on its presence alone, represents a high likelihood (e.g., probability exceeding a first selected threshold of a cyber-attack. In contrast, a “weak indicator” represents a likelihood less than the first selected threshold of a cyber-attack. The weak indicator has (i) a low correlation with known cyber-attacks (e.g., malware), (ii) a high correlation with normal or expected characteristics or behaviors (during execution) of the internal traffic, or (iii) both. The correlation levels for a weak indicator are such that a conventional cyber-attack analysis schemes would not generally base a determination of a cyber-attack (e.g., malware) on such a weak indicator without a high risk (likelihood) of the determination being a false positive.
According to one embodiment of the disclosure, operating in accordance with the prescribed correlation rules, the correlation logic receives the plurality of indicators from one or more sources (e.g., the described analysis logic) and may separate the strong indicators from the weak indicators. In conventional malware analysis schemes, the weak indicators may be discarded; however, as set forth in this disclosure, some or all of the received weak indicators are combined to form one or more groups (i.e., combinations) of indicators, each group includes plural weak indicators. The group of indicators may be based on a temporal relationship such as, for example, each weak indicator from the group occurred during a predetermined period of time (i.e., a prescribed window). Alternatively, or in addition to receipt (or occurrence) of the indicators within the predetermined time period, the group of indicators may be based, at least in part, on particulars associated with the prescribed correlation rules. These particulars may include weightings assigned to each type of weak indicator or frequency of occurrence of certain weak indicators for example.
After forming the group of indicators, the correlation logic conducts an analysis to determine whether the group of indicators (or a portion thereof) corresponds to a strong indicator. This analysis is conducted to determine compliance (or non-compliance) with the prescribed correlation rules that constitute rule-encoded attack characteristics and/or behaviors. Stated differently, the correlation logic determines, through experiential knowledge and intelligence from a variety of sources (e.g., deployed malware detection systems, incident response findings, and intelligence on malicious actors), whether there is a first prescribed level of correlation between the group of indicators and different patterns and/or sequences (ordering) of indicators of known malware (e.g., identical indicators, or substantially similar indicators, e.g., prescribed comparison rate, etc.). Responsive to determining that the first prescribed level of correlation has been achieved, the group of indicators collectively corresponds to a newly determined strong indicator. The correlation logic provides information associated with the newly determined strong indicator to reporting logic while, depending on the correlation rules governing the analysis, certain groups of indicators (e.g., a group of indicators that almost constitutes a “strong” indicator) may be returned to the correlation logic for further malware analysis.
The further analysis may involve, for example, combining the group of weak indicators with one or more additional indicators, modifying the prescribed level of correlation (matching) to thereby reconstitute the group (eliminating some indictors or adding additional ones, or otherwise modifying the group). Furthermore, the prescribed correlation rules may be updated and modified, as the strength of indicators typically change over time as the threat landscape evolves. Also, the rules may be altered based on new intelligence gathered from internal heuristics, incident response filing, third party sources, or the like.
An illustrative example of the operations conducted by the correlation logic to generate a “strong” indicator from a group of “weak” indicators is described below. First, the correlation engine receives indicators, which may include strong indicators and/or weak indicators. Second, according to one embodiment of the disclosure, a plurality of the received indicators, wholly or at least primarily weak indicators, are extracted from the received information. (Weak indicators may be grouped in some applications of the invention with one or more strong indicators to produce an even stronger indicator.) Third, the correlation logic conducts (i) a first grouping operation on the plurality of indicators in accordance with a first index parameter (i.e., first factor) to produce a first group (e.g., two or more) of indicators and (ii) a second grouping operation on the first group of indicators in accordance with a second index parameter (i.e., second factor) to produce a second group (e.g., two or more) of indicators. Weak indicator correlation rules specify a grouping scheme based on specified indicator factors and index parameters. The first index parameter may be a time-based index parameter (e.g., indicators occurring or detected during a predetermined period of time) while the second index parameter may be based on certain context information that may accompany the indicators such as a source identifier that identifies the network device providing the received indicator (e.g., source Internet Protocol “IP” address, host name, user name, etc.). Fourth, the correlation logic determines, for each of the first and second groups, whether there exists a first prescribed level of correlation between the group of indicators and different patterns and/or sequences of indicators of known cyber-attacks (e.g., malware) or, where a positive determination means that one or both of the first and second groups is a strong indicator. Fifth, the correlation logic determines that a cyber-attack is in progress or has occurred based, at least in part, on the strong indicator or indicators represented by the first and second groups. Finally, reporting logic issues an alert to a security administrator, e.g., an email sent over a communication or computer network, as to the classification indicating a cyber-attack.
In one embodiment of the disclosure, a cyber-attack analysis system implementing the above-described communications capture logic, analysis logic, and correlation logic is resident in a network device that resides on-premises and within the enterprise network (e.g., local area network). The cyber-attack analysis system is configured to analyze the internal network traffic including information (including weak indicators) between any and all network devices connected to the enterprise network (e.g., network traffic sent from one network device connected to the enterprise network to another network device connected to the same enterprise network. As an alternative embodiment, the cyber-attack analysis system may be a virtual implemented as a (software) deployment, with the operability of the cyber-attack analysis system being provided, at least in part, by an operating system or other software running on an on-premises network device or remote analysis service. In other alternative embodiments, a first network device serves as a communications capture device to capture the traffic in flight, and a remotely located, second network device includes the analysis logic and correlation logic. Both the first and second network devices may be sold as separate executable software packages for on-premises enterprise deployment or the communications capture device can be sold as a software package and the analysis device sold as a cloud-based service coupled over a public network to the receive the communications. In a variation of this scheme, the first network device can include both the communications capture device and the analysis logic and the second network device or the cloud-based service can include the correlation logic.
Aspects of the invention may find application in a variety of cybersecurity contexts—for instance, in analyzing the internal network traffic between network devices (e.g., hosts) connected for communication over an enterprise network during or after a potential cyber-attacks as described above, and/or in analyzing internal network traffic traversing between enterprise networks—with or without an intermediate public network—thereby enhancing the detection of cyber-attacks moving between network devices in a variety of networking architectures. Regardless of the deployment architecture, the cyber-attack analysis system described above receives internal network traffic captured during transit over an enterprise network, identifies indicators, groups, correlates and classifies the indicators and, when applicable, issues alerts to administrators to identify threats resident in the enterprise network. However, in alternative applications, aspects of the invention can also be deployed to detect cyber-attacks and/or malware from weak indicators obtained from other types of sources.
Hence, the cyber-attack analysis system is advantageous over conventional analyses in that it provides a further “line of defense” to enhance detection of cyber-attacks even where only weak indicators of the cyber-attack are available.
Terminology
In the following description, certain terminology is used to describe various features of the invention. For example, each of the terms “logic” and “component” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term logic (or component) may include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.
Additionally, or in the alternative, the logic (or component) may include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (dll), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic (or component) may be stored in persistent storage.
Herein, a “communication” generally refers to related data that is received, transmitted, or exchanged, such as within a communication session between network devices, and including communications propagated over an enterprise network. The data may include a plurality of packets, where a “packet” broadly refers to a series of bits or bytes having a prescribed format. Alternatively, the data may include a collection of data that may take the form of an individual or a plurality of packets carrying related payloads, e.g., a single webpage received over a network.
The phrase “client-server communication protocol” generally refers to a communication protocol used for communications between a client and a server. In a client/server model of information delivery, many clients access data and other resources of servers located, e.g., remotely in a data center. In this model, the client may comprise an endpoint, or more specifically, an application executing on an endpoint that “connects” to a server over an enterprise network, such as a point-to-point link, shared local area network (LAN), wide area network (WAN), or virtual private network (VPN) implemented over a public network such as the Internet.
Examples of a client-server communication protocol include the Server Message Block Protocol (“SMB”), and its variants, implementations, and dialects. The SMB protocol is a response-request protocol in that a plurality of messages are exchanged between the client and the server to establish a connection for communication between the client and server. The communication messages exchanged may include a client request and a server response. More specifically, a client may request the services of the server by issuing file-based and block-based protocol messages (in the form of packets) called client requests to the remote server over the enterprise network. For example, the client may use such messages to request to open, read, move, create, update the data. The client may also use the request to communicate with a server program (e.g., print services) operating on the server. The server may respond, after authentication and authorization, by fulfilling the client's request, e.g., accessing data stored on the server or stored remotely in a database or other network storage to provide the requested data to the client or otherwise executing the requested operation. In the OSI networking model, the SMB protocol typically operates as an Application layer or a Presentation layer protocol. Depending on the dialect, the SMB Protocol can be used without a separate Transport protocol, or can rely on lower-level protocols for transport. Typical current implementations support SMB directly over TCP/IP.
The term “object,” as used herein, generally relates to a communication or a group of one or more communications, or content (or a reference for accessing such content), including content within the communication or communications. Typically, the communication has a logical structure or organization. The content may include messages, commands, requests or responses to requests, as are often specified by applicable communication protocols to which the communications may comply, more or less. The content may also include an executable, an application, program, code segment, a script, dynamic link library “dll” or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a storage file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), or simply a collection of related data (e.g., packets).
The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. The term “data store” generally refers to a data storage device such as the non-transitory storage medium described above, which may include a repository for non-persistent or persistent storage of collected data.
According to one embodiment of the disclosure, the term “malware” may be broadly construed as any instructions, codes, or communications that initiate or further a cyber-attack. Malware may prompt or cause unauthorized, anomalous, unintended and/or unwanted behaviors or operations constituting a security compromise of information infrastructure. For instance, malware may correspond to a type of malicious computer code that, as an illustrative example, executes an exploit to take advantage of a vulnerability in a network, network device or software, to gain unauthorized access, harm or co-opt operations of the network, the network device of the software or to misappropriate, modify or delete data. Alternatively, as another illustrative example, malware may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience anomalous (unexpected or undesirable) behaviors. The anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an atypical manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context.
A “characteristic” includes data associated with an object under analysis that may be collected without execution of the object such as metadata associated with the object (e.g., size, name, path, etc.) or content of the object (e.g., communications headers and payloads) without execution of the selected object. A “behavior” is an activity that is performed in response to execution of the object.
The term “network device” may be construed as any electronic computing system with the capability of processing data and connecting to a network. The network may be a non-public (private) network such as an enterprise network, a wireless non-public area network (WLAN), a local area network (LAN), a wide area network (WAN), a virtual private cloud (VPC), or the like. Examples of a network device may include, but are not limited or restricted to an endpoint (e.g., a laptop, a mobile phone, a tablet, a computer, an industrial controller, an info-entertainment console, a copier, etc.), a standalone appliance, a host, a server, a router or other intermediary communication device, a firewall, etc.
The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using radio frequency (RF) or infrared (IR), may be used. A logical communication path may simply represent a communication path between two or more network devices or between components within a network device.
Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
General Architecture
Referring to
The communications intercepted by the cyber-attack analysis system 100 may appear normal, though may be indicative, particularly in combination with other communications, of a cyber-attack. For example, the first network device 102 may be an endpoint or host under user control, and the second network device 104 may be another host or may be a server in a data center. In this case, a communication sent by the first network device 102 may be a request for information as to what other hosts are on the enterprise network (i.e., host mapping), a request for privilege escalation, a remote task execution (e.g., modify a registry, access event logs, or execute commands on remote network device), or a request to access data stored, for example, in the data center. The responses to these communications, for example, sent by the second network device 104, are also communications of interest. If a communication appears normal, it, in and of itself, may be a weak indicator of a cyber-attack; however, the combination of one or more of the original communications, say from the first network device 102 and one or more response communications, say from the second network device 104, may constitute a strong indication of a cyber-attack, perhaps representing different phases of the attack. Of course, the communication may itself be a strong indicator of a cyber-attack, for example, where the communication, or a portion thereof, matches a signature of known malware.
Referring to
It should be noted that other communications may be received (e.g., downloaded) from or sent to the public network 116 and passed through the firewall 114 and the cores switch 110 (or vice versa), which may route these to a destination network device in subnets 190. Operationally interposed between the firewall 114 and the core switch 110 is a cyber-attack analysis system 112, which is deployed at the periphery of the enterprise network 105 to analyze the downloads (and communications directed to or from the public network 116) for malware or other indicators of a cyber-attack. Accordingly, it should be understood that the cyber-attack analysis system 100 examines east-west traffic (where communications are pursuant, for example, to client-server communication protocols), while the cyber-attack analysis system examines north-south traffic (where communications are pursuant, for example, public network protocols, such as the Internet Protocol (IP), Transmission Control Protocol/Internet Protocol (TCP/IP) or Hypertext Transfer Protocol (HTTP).
In some embodiments, the cyber-attack analysis systems 100 and 112 may be deployed as a single system with combined functionality to perform cyber-attack analysis on both east-west and north-south traffic. In the same embodiments or other embodiments, the combined cyber-attack analysis system may base its determination of cyber-attacks on any of (i) strong indicators alone, (ii) a combination of strong and weak indicator indicators, or (iii) one or more groups of weak indicators that together produce one or more strong indicators.
Referring now to
The processor 110 is a multi-purpose, programmable component that accepts digital data as input, processes the input data according to stored instructions, and provides results as output. One example of a processor may include an Intel® x86 central processing unit (CPU) with an instruction set architecture. Alternatively, the processor 110 may include another type of CPU, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a field-programmable gate array (FPGA), or the like.
According to one embodiment of the disclosure, the processor 110 is communicatively coupled to the memory 120 and the data store 130 via the transmission medium 160. The data store 130 is adapted to store at least indicators (herein, “indicators”). These indicators include characteristics and/or behaviors collected from analyses conducted remotely from the cyber-attack analysis system 100 (e.g., indicators from different network devices such as endpoint device, security appliance, and/or cloud-based security services). Additionally, or in the alternative, the indicators may be based on analyses conducted internally within the cyber-attack analysis system 100. For instance, the cyber-attack analysis system 100 may be adapted to intercept communications originating from a first network device 102 (
Referring still to
Besides the static analysis logic 122 and the dynamic analysis logic 124, the memory 120 includes software that controls functionality of the processor 110, such as correlation logic 180. The correlation logic 180 analyzes certain received indicators for patterns and/or sequences that are associated with known (e.g., previously detected) malware or other cyber-attacks, as described below. The analyses conducted by the correlation logic 180 are governed, at least in part, by correlation rules loaded into the rules database 140.
The rules database 140 includes a first plurality of correlation rules for use in determining “strong” indicators from a subset of the indicators stored in the indicator data store 132 along with a second plurality of correlation rules for use in determining whether any “strong” indicators are uncovered from a combination of a plurality of “weak” indicators. The second plurality of correlation rules are configured to now analyze indicators that were not fully considered. It is contemplated that the correlation rules within the rules database 140 may be dynamic to select various combinations of indicators for analysis, where the selected combinations (groups) may be static (i.e. preselected indicators) or dynamic in nature. The dynamically selected groups may be based on a weighting scheme where certain combinations of “weak” indicators, which are generally known from machine learning or experiential knowledge from past analyses of indicators known to have higher levels of correlation to indicators associated with known malware or other cyber-attacks, are selected as part of the group.
The network interfaces 1501-150M may include one or more network ports containing the mechanical, electrical and/or signaling circuitry needed to connect the cyber-attack analysis system 100 to a network to thereby facilitate communications to other remotely located electronic devices. To that end, the interfaces 1501-150M may be configured to transmit and/or receive messages using a variety of communication protocols, as described elsewhere herein. As an illustrated example, a first interface 1501 may be adapted to receive data traffic propagating over the monitored enterprise network (or a copy thereof) while a second interface 1502 may be adapted to receive indicators from one or more network (source) devices 190 remotely located from the cyber-attack analysis system 100. Additionally, a third network interface 1503 may be adapted to receive security content including software-based correlation rules 195 from a remote source. The correlation rules 195 are processed by the correlation logic 180 in determining whether any combination of (weak) indicators results in the finding of a strong indicator. The contents of the strong indicator are reported by a network administrator by reporting logic 185 via a fourth interface 1504 (described below).
Operability of the Cyber-Attack Analysis System
Referring now to
More specifically, network interface 150 may be configured to receive communications being transmitted as part of the internal network traffic 205. The communications capture logic 121 extracts one or more objects, for example, one or more related communications or contents of one or more related communications and provides the object or objects 210 (hereinafter, “object”) to the data analyzer 200. The data analyzer 200 (e.g., static analysis logic 122 functionality) may be configured to analyze the object, for example, the communication or its contents constituting the object 210. Hence, the data analyzer 200 (e.g., static analysis logic 122 functionality) may determine characteristics of the object 210, such as the object name, object type, object size, source IP address (corresponding to a network device, e.g., device 102), destination IP address (corresponding to a network device, e.g., device 104), presence of particular fields, formats, parameters or structures, or the like. The characteristics may be provided as part of the indicators 230 to the correlation logic 180 along with metadata associated with these characteristics. Examples of metadata may include, but are not limited or restricted to an object identifier (ID), time-stamps each identifying the time of detection of the characteristics for example.
The dynamic analysis logic 124 is configured to process the object 210, where such processing may occur before, after or contemporaneously (i.e., at least partially occurring at the same time) with the analysis performed by the static analysis logic 122. The processing may be performed by at least one virtual machine (VM) 215, operating as part of the dynamic analysis logic 124, which executes the object 210 and monitors resultant behaviors 225. The monitored behaviors 225 may include (i) behaviors of the object 210 during processed within the VM 215, (ii) behaviors of software (e.g., operating system, applications, etc.) that is processing the object 210 within the VM 215, and/or (iii) behaviors of the VM 215 itself. Metadata 227 associated with the behaviors 225, such as a time-stamp identifying the time of occurrence of each behavior or a source of code whose execution caused the behavior for example, may be collectively provided as indicators 235 to the correlation logic 180. These indicators 230 and 235 are identified as being sourced by the cyber-attack analysis system 100.
Furthermore, in some embodiments, indicators (e.g., characteristics and/or behaviors) 240 resulting from cyber-attack analyses by one or more network devices (e.g., network devices 190 of
The correlation logic 180 comprises indicator detection logic 250. According to one embodiment of the disclosure, the indicator detection logic 250 features a strong indicator detection logic 260 and a weak indicator detection logic 270. The strong indicator detection logic 260 and the weak indicator detection logic 270 may be deployed as separate logic or portions of the same logic that operates iteratively to detect any strong indicators 262. The detected strong indicators 262 are provided to the reporting logic 185, and thereafter, the remaining (weak) indicators 264 are grouped for further analysis as illustrated in
Operating in accordance with a first plurality of correlation rules 266, which may be formulated through machine learning (e.g., prior results from analyses of other objects by the cyber-attack analysis system 100) and intelligence gathered from other sources (e.g., incident response analytics, third party analytics, etc.), the strong indicator detection logic 260 determines whether a first prescribed level of correlation exists between each of the indicators 235 and/or 240 and the indicators associated with known malware or other cyber-attacks. This correlation activity may include conducting comparisons between (i) any or all of the individual indicators 235 and/or 240 and (ii) indicators associated with known malware or other cyber-attacks, and optionally, one or more comparisons between (a) a plurality of the indicators 235 and/or 240 assembled in accordance with a first grouping scheme and (b) a first plurality of patterns and/or sequences of indicators associated with known malware or other cyber-attacks. Although not shown, the indicators associated with known malware or other cyber-attacks and the first plurality of patterns and/or sequences of indicators associated with known malware or other cyber-attacks may be statically or dynamically stored and accessible by the first plurality of correlation rules 266.
In response to the correlation exceeding a first threshold (e.g., a level of correlation greater than a particular threshold (e.g., percentage)), the individual indicator or indicators assembled in accordance with a first grouping scheme is provided as a strong indicator 262 to the reporting logic 185. Additionally, the individual indicators 235 and/or 240 that do not constitute “strong” indicators, referred to as the “set of indicators” 264, are provided to the weak indicator detection logic 270.
Operating in accordance with a second plurality of correlation rules 272, the weak indicator detection logic 270 determines whether a second prescribed level of correlation exists between certain groups of indicators assembled from the set of indicators 264 and a second plurality of patterns and/or sequences of indicators associated with known malware or other cyber-attacks. The second plurality of correlation rules 272, also formulated through machine learning and intelligence gathered from other sources, is different than the first plurality of correlation rules 266. For instance, the second plurality of correlation rules 272 may be directed on one or more patterns or sequences that are observed less frequently (or associated with less harmful malware) than patterns and/or sequences set forth in the first plurality of correlation rules 266. Also, the second prescribed level of correlation may be identical to, less, or greater than the first prescribed level of correlation.
The correlation operations performed by the weak indicator detection logic 270 may include one or more comparisons between (a) one or more groups of indicators assembled from the set of indicators 264 in accordance with a second grouping scheme and (b) the second plurality of patterns and/or sequences of indicators associated with known malware or other cyber-attacks, which partially or wholly differs from the first plurality of patterns and/or sequences of indicators associated with known malware or other cyber-attacks. Although not shown, the patterns and/or sequences of indicators associated with known malware or other cyber-attacks may be statically or dynamically stored and accessible by the second plurality of correlation rules 272.
Responsive to the comparison resulting in a measured correlation greater than a second prescribed threshold (e.g., the level of correlation being greater than a selected comparison percentage), the particular group or groups of indicators are provided as strong indicators 274 to the reporting logic 185. However, depending on the correlation rules 272, a particular group of indicators may be provided as feedback over line 276 to the weak indicator detection logic 270 for use in subsequent analyses. Of course, it is contemplated that the recursive feedback of indicators may be conducted for each weak indicator individually where the weak indicators may be grouped separately in subsequent analyses or a recursive feedback may be conducted for one or more strong indicators.
It is contemplated that the correlation logic 180 is rules driven. Hence, the correlation logic may be configured to issue an alert or not, reinject one or more weak indicator back into an internal data store of the weak indicator detection logic 270 for subsequent correlation analyses or reinject one or more strong indicators back into an internal data store of the strong indicator detection logic 260 for subsequent correlation analyses is rules dependent. According to one embodiment of the disclosure, once an indicator is identified as a strong indicator (e.g., results in an alert), the indicator will continue to remain as a strong indicator; however, one or more weak indicators, especially a pattern of a plurality of weak indicators, may be collectively determined to constitute a strong indicator.
The reporting logic 185 is configured to receive the “strong” indicators 262 and 274 from both the strong indicator detection logic 260 and the weak indicator detection logic 270, respectively. The reporting logic 185 is further configured to generate alerts 280 for display and evaluation by network administrators. In accordance with one embodiment, an “alert” includes a message that includes display or other user presentation of information that specifies a cyber-attack is in progress or has occurred and may also identify the strong indicators that support the determination of the cyber-attack.
Referring to
Based on the second plurality of correlation rules 272, the weak indicator analysis logic 320 accesses one or more groups of indicators within the first data store 310 via medium 360. Within the first data store 310, the indicators 330 are organized in accordance with one or more selected index parameters such as a time window, one or more indicator types including an identifier (e.g., source identifier, destination identifier, geographic location identifiers, etc.), or an operation event (e.g., log-on/off, data download, file operation, crash, etc.). The time window may vary in duration depending on the available resources (e.g., processing capacity, memory, etc.) within the cyber-attack analysis system 100, where the time window may be increased in size as more resources are available without hampering normal operability of the cyber-attack analysis system 100. Hence, window size may be determined based on the amount of available resources, and thus, is platform dependent.
For example, the window size is adjusted with a smaller duration (e.g., 1-2 minutes) when operating within a network device due to a constraint in resources (e.g., CPU and memory). However, when the cyber-attack analysis system 100 or the weak indicator detection logic 270 is running within a public or private cloud service (e.g., Amazon Web Services “AWS”, Microsoft® Azure, etc.), the window size may be increased to over an hour and allow the correlation of a longer sequence of events.
Based on the correlation rules 272, a group of indicators 370 from a particular source or sources and/or within a selected time window (e.g., a sliding time window normally less than two minutes) may be fetched by the weak indicator analysis logic 320. The group of indicators 370 is analyzed by the weak indicator analysis logic 320 to determine whether a measured correlation greater than the second prescribed threshold exists between (i) the indicators 330 and (ii) the second plurality of patterns and/or sequences of indicators associated with known malware or other cyber-attacks. If so, the group of indicators 370 constitutes a “strong” indicator and information associated with the group of indicators 370 (and/or the indicators 370 as well) may be provided to the reporting logic 185.
Referring to
Thereafter, the aggregated indicators are organized in accordance with a plurality of index parameters forming the first schema (block 430). For instance, as an illustrated example, the aggregated indicators may be organized in accordance with a first index parameter (e.g., by time of occurrence of the indicator) and a second index parameter (e.g., by source identifier) as illustrated in blocks 435 and 440. The organization can be conducted in accordance with multiple index parameters utilized by the second plurality of correlation rules that at least partially control operability of the weak indicator detection logic 270 within the cyber-attack analysis system 100 of
In response to a triggering event (e.g., a predetermined amount of data is loaded in the first data store 310 of
Referring now to
For these indicators, the “strong” indicators may be removed (block 520). More specifically, an analysis is conducted for each of these indicators to determine whether a correlation between that indicator and one or more indicators associated with known malware or other cyber-attacks exceeds a first threshold. If so, the indicator is a “strong” indicator. The remaining indicators are considered to be the “weak” indicators.
Thereafter, the “weak” indicators are organized in accordance with a plurality of index parameters forming the first schema (block 525). As an illustrated example, the “weak” indicators may be organized in accordance with a first index parameter (e.g., by time of occurrence of the indicator thereby organized in accordance with a sliding window where the weak indicators reside within a prescribed time period) and a second index parameter, such as the identifier of the source of the indicator, referred to as the “source identifier.” In some embodiments, the organization can be conducted in accordance with a single parameter or multiple parameters.
In response to a selected triggering event (e.g., the “weak” indicators are loaded in a data store, expiration of a prescribed time where periodic analyses are conducted, receipt of the data, etc.), correlation operations are performed on different combinations (groups) of “weak” indicators and patterns and/or sequences associated with known malware or other cyber-attacks (blocks 530, 535 and 540). The correlation operations may be in accordance with one or more of the second plurality of correlation rules. If any of these combinations correlates to any patterns and/or sequences associated with known malware or other cyber-attacks, the combination of weak indicators corresponds to a strong indicator, and thus, information associated with the strong indicator (and perhaps the combination of weak indicators themselves) is reported to the reporting logic (blocks 545 and 550).
Otherwise (and concurrently or after the reporting of the strong indicator in blocks 545 and 550), a determination is made as to whether all of the second plurality of correlation rules have been considered in an analysis of the combination of weak indicators (block 555). If not, correlation operations in accordance with different correlation rule(s) may be performed on the combination of weak indicators (blocks 560 and 540-545). If so, a determination is made as to whether all combinations of the weak indicators have been evaluated (block 565). If all combinations of the weak indicators have not been evaluated, a new combination of weak indicators is selected and undergo the correlation operations with the patterns and/or sequences associated with known malware or other cyber-attacks (blocks 570 and 535-550). Otherwise, the analysis of the received data is completed for the received data, but continues in an iterative manner (block 575).
Referring to
Herein, the “Rule Id 1” 610 is directed to an identifier assigned to a pattern (e.g., “pattern 1”) that includes a number of events (weak indicators). Any matching results are assigned a particular level of severity 620 (e.g., the highest severity being “10” out of 10). The severity 620 may identify, upon successful detection of the particular pattern (weak indicator 1 followed by weak indicator 2), a cyber-attack has been attempted (or is in process). Additionally, or in the alternative, the cyber-attack analysis system may utilize the severity 620 to determine an ordering of processing (e.g., rules associated with the highest severity are processed first with rules associated with lesser severity are processed as time permits).
The “name” field 630 is utilized to subsequently reference a particular collection (pattern) of indicators that are analyzed in accordance with a specified rule 640. The rule 640 identifies sources of the indicators (source field) 650, grouping scheme (group field) 660, analysis particulars (condition field) 670 and a pattern name 680 assigned to the newly analyzed patterns of weak indicators. The condition field 670 identifies what combination of index parameters are relied upon for grouping of the incoming indicators from sources. For this illustrative embodiment, the incoming indicators are group by IP source address and IP destination address, as identified in the group field 660. Of course, it is contemplated that other index parameters may be used. The condition field 670 specifically describes the particular pattern under review after grouping of the weak indicators. For this example, the cyber-attack analysis system is looking for a pattern in which a particular group (source and destination IP addresses) undercovers a targeted sequence 670 of events (e.g., first weak indicator “WI-1), second weak indicator “WI-2”). Upon detection of the matching sequence, a strong indicator has been determined from a sequence of weak indicators.
It is contemplated that the components forming the rules are modifiable and can be organized in a plurality of nesting arrangements. For example, as shown in
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
This application is a continuation-in-part application of U.S. patent application Ser. No. 15/638,262 filed Jun. 29, 2017, the entire contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5319776 | Hile et al. | Jun 1994 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5802277 | Cowlard | Sep 1998 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5878560 | Johnson | Mar 1999 | A |
5960170 | Chen et al. | Sep 1999 | A |
5978917 | Chi | Nov 1999 | A |
5983348 | Ji | Nov 1999 | A |
6013455 | Bandman et al. | Jan 2000 | A |
6088803 | Tso et al. | Jul 2000 | A |
6092194 | Touboul | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6154844 | Touboul et al. | Nov 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack et al. | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7058822 | Edery et al. | Jun 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7546638 | Anderson et al. | Jun 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937387 | Frazier et al. | May 2011 | B2 |
7937761 | Bennett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8230505 | Ahrens | Jul 2012 | B1 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566476 | Shiffer et al. | Oct 2013 | B2 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dadhia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793278 | Frazier et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881271 | Butler, II | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8949257 | Shiffer et al. | Feb 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106630 | Frazier et al. | Aug 2015 | B2 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9197664 | Aziz et al. | Nov 2015 | B1 |
9223972 | Vincent et al. | Dec 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9268936 | Butler | Feb 2016 | B2 |
9275229 | LeMasters | Mar 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9336239 | Hoffmann | May 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
9413781 | Cunningham et al. | Aug 2016 | B2 |
9426071 | Caldejon et al. | Aug 2016 | B1 |
9430646 | Mushtaq et al. | Aug 2016 | B1 |
9432389 | Khalid et al. | Aug 2016 | B1 |
9438613 | Paithane et al. | Sep 2016 | B1 |
9438622 | Staniford et al. | Sep 2016 | B1 |
9438623 | Thioux et al. | Sep 2016 | B1 |
9459901 | Jung et al. | Oct 2016 | B2 |
9467460 | Otvagin et al. | Oct 2016 | B1 |
9483644 | Paithane et al. | Nov 2016 | B1 |
9495180 | Ismael | Nov 2016 | B2 |
9497213 | Thompson et al. | Nov 2016 | B2 |
9507935 | Ismael et al. | Nov 2016 | B2 |
9516057 | Aziz | Dec 2016 | B2 |
9519782 | Aziz et al. | Dec 2016 | B2 |
9536091 | Paithane et al. | Jan 2017 | B2 |
9537972 | Edwards et al. | Jan 2017 | B1 |
9560059 | Islam | Jan 2017 | B1 |
9565202 | Kindlund et al. | Feb 2017 | B1 |
9591015 | Amin et al. | Mar 2017 | B1 |
9591020 | Aziz | Mar 2017 | B1 |
9594904 | Jain et al. | Mar 2017 | B1 |
9594905 | Ismael et al. | Mar 2017 | B1 |
9594912 | Thioux et al. | Mar 2017 | B1 |
9609007 | Rivlin et al. | Mar 2017 | B1 |
9626509 | Khalid et al. | Apr 2017 | B1 |
9628498 | Aziz et al. | Apr 2017 | B1 |
9628506 | Plan et al. | Apr 2017 | B1 |
9628507 | Haq et al. | Apr 2017 | B2 |
9633134 | Ross | Apr 2017 | B2 |
9635039 | Islam et al. | Apr 2017 | B1 |
9641546 | Manni et al. | May 2017 | B1 |
9654485 | Neumann | May 2017 | B1 |
9661009 | Karandikar et al. | May 2017 | B1 |
9661018 | Aziz | May 2017 | B1 |
9674298 | Edwards et al. | Jun 2017 | B1 |
9680862 | Ismael et al. | Jun 2017 | B2 |
9690606 | Ha et al. | Jun 2017 | B1 |
9690933 | Singh et al. | Jun 2017 | B1 |
9690935 | Shiffer et al. | Jun 2017 | B2 |
9690936 | Malik et al. | Jun 2017 | B1 |
9736179 | Ismael | Aug 2017 | B2 |
9740857 | Ismael et al. | Aug 2017 | B2 |
9747446 | Pidathala et al. | Aug 2017 | B1 |
9756074 | Aziz et al. | Sep 2017 | B2 |
9773112 | Rathor et al. | Sep 2017 | B1 |
9781144 | Otvagin et al. | Oct 2017 | B1 |
9787700 | Amin et al. | Oct 2017 | B1 |
9787706 | Otvagin et al. | Oct 2017 | B1 |
9792196 | Ismael et al. | Oct 2017 | B1 |
9824209 | Ismael et al. | Nov 2017 | B1 |
9824211 | Wilson | Nov 2017 | B2 |
9824216 | Khalid et al. | Nov 2017 | B1 |
9825976 | Gomez et al. | Nov 2017 | B1 |
9825989 | Mehra et al. | Nov 2017 | B1 |
9838408 | Karandikar et al. | Dec 2017 | B1 |
9838411 | Aziz | Dec 2017 | B1 |
9838416 | Aziz | Dec 2017 | B1 |
9838417 | Khalid et al. | Dec 2017 | B1 |
9846776 | Paithane et al. | Dec 2017 | B1 |
9876701 | Caldejon et al. | Jan 2018 | B1 |
9888016 | Amin et al. | Feb 2018 | B1 |
9888019 | Pidathala et al. | Feb 2018 | B1 |
9910988 | Vincent et al. | Mar 2018 | B1 |
9912644 | Cunningham | Mar 2018 | B2 |
9912681 | Ismael et al. | Mar 2018 | B1 |
9912684 | Aziz et al. | Mar 2018 | B1 |
9912691 | Mesdaq et al. | Mar 2018 | B2 |
9912698 | Thioux et al. | Mar 2018 | B1 |
9916440 | Paithane et al. | Mar 2018 | B1 |
9921978 | Chan et al. | Mar 2018 | B1 |
9934376 | Ismael | Apr 2018 | B1 |
9934381 | Kindlund et al. | Apr 2018 | B1 |
9946568 | Ismael et al. | Apr 2018 | B1 |
9954890 | Staniford et al. | Apr 2018 | B1 |
9973531 | Thioux | May 2018 | B1 |
9985980 | Kolman | May 2018 | B1 |
9985982 | Bartos | May 2018 | B1 |
10002252 | Ismael et al. | Jun 2018 | B2 |
10009374 | Jing | Jun 2018 | B1 |
10019338 | Goradia et al. | Jul 2018 | B1 |
10019573 | Silberman et al. | Jul 2018 | B2 |
10025691 | Ismael et al. | Jul 2018 | B1 |
10025927 | Khalid et al. | Jul 2018 | B1 |
10027689 | Rathor et al. | Jul 2018 | B1 |
10027690 | Aziz et al. | Jul 2018 | B2 |
10027696 | Rivlin et al. | Jul 2018 | B1 |
10033747 | Paithane et al. | Jul 2018 | B1 |
10033748 | Cunningham et al. | Jul 2018 | B1 |
10033753 | Islam et al. | Jul 2018 | B1 |
10033759 | Kabra et al. | Jul 2018 | B1 |
10050998 | Singh | Aug 2018 | B1 |
10068091 | Aziz et al. | Sep 2018 | B1 |
10075455 | Zafar et al. | Sep 2018 | B2 |
10083302 | Paithane et al. | Sep 2018 | B1 |
10084813 | Eyada | Sep 2018 | B2 |
10089461 | Ha et al. | Oct 2018 | B1 |
10097573 | Aziz | Oct 2018 | B1 |
10104101 | Thakar | Oct 2018 | B1 |
10104102 | Neumann | Oct 2018 | B1 |
10108446 | Steinberg et al. | Oct 2018 | B1 |
10121000 | Rivlin et al. | Nov 2018 | B1 |
10122746 | Manni et al. | Nov 2018 | B1 |
10133863 | Bu et al. | Nov 2018 | B2 |
10133866 | Kumar et al. | Nov 2018 | B1 |
10146810 | Shiffer et al. | Dec 2018 | B2 |
10148693 | Singh et al. | Dec 2018 | B2 |
10165000 | Aziz et al. | Dec 2018 | B1 |
10169585 | Pilipenko et al. | Jan 2019 | B1 |
10176321 | Abbasi et al. | Jan 2019 | B2 |
10181029 | Ismael et al. | Jan 2019 | B1 |
10191861 | Steinberg et al. | Jan 2019 | B1 |
10192052 | Singh et al. | Jan 2019 | B1 |
10198574 | Thioux et al. | Feb 2019 | B1 |
10200384 | Mushtaq et al. | Feb 2019 | B1 |
10210329 | Malik et al. | Feb 2019 | B1 |
10216927 | Steinberg | Feb 2019 | B1 |
10218740 | Mesdaq et al. | Feb 2019 | B1 |
10237287 | Amidon | Mar 2019 | B1 |
10242185 | Goradia | Mar 2019 | B1 |
10419931 | Sohail | Sep 2019 | B1 |
10601848 | Jeyaraman | Mar 2020 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030021728 | Sharpe et al. | Jan 2003 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040006473 | Mills et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050097339 | Wiley | May 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050157662 | Bingham et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060018466 | Adelstein | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075490 | Boney | Apr 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070019286 | Kikuchi | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080018122 | Zierler et al. | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080184367 | McMillan et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | Goldszmidt et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090126019 | Memon | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090198651 | Shiffer et al. | Aug 2009 | A1 |
20090198670 | Shiffer et al. | Aug 2009 | A1 |
20090198689 | Frazier et al. | Aug 2009 | A1 |
20090199274 | Frazier et al. | Aug 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100030996 | Butler, II | Feb 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Kuwamura | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | St Hlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110099635 | Silberman et al. | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173213 | Frazier et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120096553 | Srivastava et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120151033 | Baliga | Jun 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120331553 | Aziz et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130247186 | LeMasters | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20130318038 | Shiffer et al. | Nov 2013 | A1 |
20130318073 | Shiffer et al. | Nov 2013 | A1 |
20130325791 | Shiffer et al. | Dec 2013 | A1 |
20130325792 | Shiffer et al. | Dec 2013 | A1 |
20130325871 | Shiffer et al. | Dec 2013 | A1 |
20130325872 | Shiffer et al. | Dec 2013 | A1 |
20140032875 | Butler | Jan 2014 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140082730 | Vashist | Mar 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181131 | Ross | Jun 2014 | A1 |
20140189687 | Jung et al. | Jul 2014 | A1 |
20140189866 | Shiffer et al. | Jul 2014 | A1 |
20140189882 | Jung et al. | Jul 2014 | A1 |
20140230060 | Higbee | Aug 2014 | A1 |
20140230061 | Higbee | Aug 2014 | A1 |
20140237600 | Silberman et al. | Aug 2014 | A1 |
20140280245 | Wilson | Sep 2014 | A1 |
20140283037 | Sikorski et al. | Sep 2014 | A1 |
20140283063 | Thompson et al. | Sep 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140344926 | Cunningham et al. | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20140373143 | Chesla | Dec 2014 | A1 |
20140380473 | Bu et al. | Dec 2014 | A1 |
20140380474 | Paithane et al. | Dec 2014 | A1 |
20150007312 | Pidathala et al. | Jan 2015 | A1 |
20150096022 | Vincent et al. | Apr 2015 | A1 |
20150096023 | Mesdaq et al. | Apr 2015 | A1 |
20150096024 | Haq et al. | Apr 2015 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
20150180886 | Staniford et al. | Jun 2015 | A1 |
20150180890 | Ronen | Jun 2015 | A1 |
20150186645 | Aziz et al. | Jul 2015 | A1 |
20150199513 | Ismael et al. | Jul 2015 | A1 |
20150199531 | Ismael et al. | Jul 2015 | A1 |
20150199532 | Ismael et al. | Jul 2015 | A1 |
20150220735 | Paithane et al. | Aug 2015 | A1 |
20150365427 | Ben-Shalom | Dec 2015 | A1 |
20150372980 | Eyada | Dec 2015 | A1 |
20160004869 | Ismael et al. | Jan 2016 | A1 |
20160006756 | Ismael et al. | Jan 2016 | A1 |
20160020969 | Vasseur | Jan 2016 | A1 |
20160044000 | Cunningham | Feb 2016 | A1 |
20160094569 | Mondiguing | Mar 2016 | A1 |
20160127393 | Aziz et al. | May 2016 | A1 |
20160191547 | Zafar et al. | Jun 2016 | A1 |
20160191550 | Ismael et al. | Jun 2016 | A1 |
20160261612 | Mesdaq et al. | Sep 2016 | A1 |
20160285914 | Singh et al. | Sep 2016 | A1 |
20160301703 | Aziz | Oct 2016 | A1 |
20160335110 | Paithane et al. | Nov 2016 | A1 |
20160359740 | Parandehgheibi | Dec 2016 | A1 |
20170034205 | Canedo | Feb 2017 | A1 |
20170083703 | Abbasi et al. | Mar 2017 | A1 |
20170142145 | Bu er | May 2017 | A1 |
20170171231 | Reybok, Jr. | Jun 2017 | A1 |
20170187730 | Singla | Jun 2017 | A1 |
20170223043 | Munoz | Aug 2017 | A1 |
20180013770 | Ismael | Jan 2018 | A1 |
20180013788 | Vissamsetty | Jan 2018 | A1 |
20180048660 | Paithane et al. | Feb 2018 | A1 |
20180121316 | Ismael et al. | May 2018 | A1 |
20180241761 | Bania et al. | Aug 2018 | A1 |
20180248894 | Greeter | Aug 2018 | A1 |
20180288077 | Siddiqui et al. | Oct 2018 | A1 |
20180295149 | Gazit | Oct 2018 | A1 |
20180375884 | Kopp | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
3107026 | Dec 2016 | EP |
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
0206928 | Jan 2002 | WO |
0223805 | Mar 2002 | WO |
2007-117636 | Oct 2007 | WO |
2008041950 | Apr 2008 | WO |
2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
2015047802 | Apr 2015 | WO |
2015200360 | Dec 2015 | WO |
Entry |
---|
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14. |
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4. |
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013). |
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8. |
U.S. Appl. No. 15/638,262, filed Jun. 29, 2017 Non-Final Office Action dated May 31, 2019. |
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012). |
PCT/US2018/040470 filed Jun. 29, 2018 International Search Report and Written Opinion dated Sep. 14, 2018. |
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-. |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992). |
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011. |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004). |
Cyrus, R. “Detecting Malicious SMB Activity Using Bro” The SANS Institute, Dec. 13, 2016. |
Deutsch, P. , “Zlib compressed data format specification version 13” RFC 1950, (1996). |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, “Dunlap”), (Dec. 9, 2002). |
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005). |
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007). |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012. |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016]. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase © CMU, Carnegie Mellon University, 2007. |
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009). |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003). |
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kemel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003). |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014]. |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001). |
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002). |
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014). |
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015. |
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015. |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
Number | Date | Country | |
---|---|---|---|
Parent | 15638262 | Jun 2017 | US |
Child | 16024685 | US |