In submerged combustion melting (SCM), combustion gases are injected beneath a surface of a molten matrix and rise upward through the melt. The matrix may include glass and/or inorganic non-metallic feedstocks such as rock (basalt) and mineral wool (stone wool). Regardless of the material utilized, it is heated at a high efficiency via the intimate contact with the combustion gases and melts into a matrix. Using submerged combustion burners produces violent turbulence of the molten matrix and results in a high degree of mechanical energy in the submerged combustion melter. In this violent environment, the burners are subjected to significant thermal and mechanical stresses that may result in increased likelihood of early failure.
In one aspect, the technology relates to a method including disposing at least a portion of a submerged combustion burner into a pressure vessel, wherein the portion of the submerged combustion burner has a first microstructure defined by a first number of voids; filling the vessel containing the portion of the submerged combustion burner with an inert gas; pressurizing the vessel containing the portion of the submerged combustion burner; and heating the vessel containing the portion of the submerged combustion burner, wherein the pressurizing and heating operations are performed for a time and at a temperature and a pressure sufficient to produce a second microstructure in the burner, wherein the second microstructure is defined by a second number of voids less than the first number of voids. In an embodiment, the portion includes at least one of a burner body, a burner tip, and a burner base. In another embodiment, the temperature is in a range from about 2200 degrees F. to about 3000 degrees F. In yet another embodiment, the temperature is in a range from about 2450 degrees F. to about 2750 degrees F. In still another embodiment, the temperature is about 2600 degrees F.
In another embodiment of the above aspect, the time is in a range from about 100 minutes to about 1000 minutes. In an embodiment, the time is in a range from about 200 minutes to about 600 minutes. In another embodiment, the time is about 365 minutes. In yet another embodiment, the pressure is in a range of between about 20,000 psi and about 50,000 psi. In still another embodiment, the pressure is in a range of between about 25,000 psi and about 40,000 psi.
In yet another embodiment of the above aspect, the pressure is about 30,000 psi. In an embodiment, the method further includes weld-repairing a defect in the portion of the submerged burner before disposing the portion of the submerged burner in the pressure vessel. In another embodiment, the method further includes: removing the portion of the submerged burner from the pressure vessel; non-destructively testing the portion of the submerged burner for a defect; weld-repairing the defect; and returning the portion of the submerged combustion burner to the pressure vessel.
In another aspect, the technology relates to a method including: disposing a toroidal tip of a submerged combustion burner in a vise, wherein the toroidal tip has an average first surface roughness across an area of the toroidal tip; and polishing the toroidal tip of the submerged combustion burner to an average second surface roughness across the area of the toroidal tip, wherein the average second surface roughness is less than the average first surface roughness. In an embodiment, the area of the toroidal tip includes a plurality of initial surface features having heights of about 10 microns to about 100 microns prior to polishing. In another embodiment, the area of the toroidal tip includes a plurality of polished features having heights not greater than 1 micron after polishing. In yet another embodiment, the area of the toroidal tip includes a plurality of polished features having heights between about 1 micron and about 0.1 micron after polishing. In still another embodiment the average second surface roughness is about 5% of the first surface roughness.
In another embodiment of the above aspect, the average second surface roughness is about 1% of the first surface roughness. In an embodiment, the average second surface roughness is about 0.1% of the first surface roughness. In another embodiment, the polishing operation is performed substantially circumferentially. In yet another embodiment, the polishing operation is performed randomly.
In another aspect, the technology relates to a system having: a melt vessel configured to receive a material and melt the material into a matrix, the melt vessel including: a base; a feed end wall defining a feed port for receiving the material; an exit end wall defining an exit port allowing egress of the matrix; and a roof, wherein the base, the feed end wall, the exit end wall, and the roof form a substantially closed volume; a transition channel in fluid communication with the exit port for receiving the matrix from the exit port; a plurality of burners disposed so as to penetrate the base, wherein at least one of the plurality of burners includes: a toroidal burner tip defining an outlet for delivering the combustion gases into the substantially closed volume; a portion exposed to the matrix, wherein the portion of the burner exposed to the matrix includes a plurality of polished features having heights not greater than 1 micron. In an embodiment, the portion exposed to the matrix includes the toroidal tip. In another embodiment, the portion exposed to the matrix includes a burner body. In yet another embodiment, the plurality of polished features has heights of less than about 0.5 micron.
In another aspect, the technology relates to a system having: a melt vessel configured to receive a material and melt the material into a matrix, the melt vessel including: a base; a feed end wall defining a feed port for receiving the material; an exit end wall defining an exit port allowing egress of the matrix; and a roof, wherein the base, the feed end wall, the exit end wall, and the roof form a substantially closed volume; a transition channel in fluid communication with the exit port for receiving the matrix from the exit port; a plurality of burners disposed so as to penetrate the base, wherein at least one of the plurality of burners includes a microstructure having a void fraction of less than about 1%.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The same number represents the same element or same type of element in all drawings.
In the following description, numerous details are set forth to provide an understanding of various melter apparatus and process examples in accordance with the present disclosure. However, it will be understood by those skilled in the art that the melter apparatus and processes of using same may be practiced without these details and that numerous variations or modifications from the described examples may be possible which are nevertheless considered within the appended claims. All published patent applications and patents referenced herein are hereby incorporated by reference herein in their entireties.
The technologies described herein relate generally to burners used in a submerged combustion melter (SCM). In general, all burners require use of robust structure and materials so as to withstand mechanical and thermal stresses and fatigue while in the SCM environment. As such, material selection, manufacturing details, and post-manufacturing processing are all critical to help ensure a long service life of an SCM burner. The burners described herein, along with desirable materials, post-manufacturing processes, and so on, are uniquely suited to the SCM environment. SCM burners need not display all material, processing or functional properties described herein; however, it has been discovered that SCM burners having one or more of these characteristics can display significant advantages over burners not so constructed. Burners displaying many such characteristics display even greater advantages. Given the nature of the SCM process, very robust burners are desirable to avoid melter system downtime.
Burners described herein may be air-fuel burners that combust one or more fuels with only air, or oxy-fuel burners that combust one or more fuels with either oxygen alone, or employ oxygen-enriched air, or some other combination of air and oxygen, including combustion burners where the primary oxidant is air, and secondary and tertiary oxidants are oxygen. Burners may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Air in an air-fuel mixture may include ambient air as well as gases having the same molar concentration of oxygen as air. Oxygen-enriched air having an oxygen concentration greater than 121 mole percent may be used. Oxygen may include pure oxygen, such as industrial grade oxygen, food grade oxygen, and cryogenic oxygen. Oxygen-enriched air may have 50 mole percent or more oxygen, and in certain examples may be 90 mole percent or more oxygen. Oxidants such as air, oxygen-enriched air, and pure oxygen may be supplied from a pipeline, cylinders, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit.
The fuel burned by the burners may be a combustible composition (either in gaseous, liquid, or solid form, or any flowable combination of these) having a major portion of, for example, methane, natural gas, liquefied natural gas, propane, atomized oil, powders or the like. Contemplated fuels may include minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid fuels.
The fluid-cooled portion 2 of the burner 1 includes a ceramic or other material insert 26 fitted to the distal end of first internal conduit 12. Insert 26 has a shape similar to but smaller than burner tip 4, allowing coolant fluid to pass between burner tip 4 and insert 26, thus cooling burner tip 4. Various types of coolants are described below. Burner tip 4 includes an inner wall 28, an outer wall 30, and a crown 32 connecting inner wall 28 and outer wall 30. In examples, welds at locations 34 and 36, and optionally at 38, 40 and 42, connect burner tip 4 to external conduit 10 and second internal conduit 14, using conventional weld materials to weld together similar base metal parts, such as carbon steel, stainless steel, or titanium.
Selection of burner tip material and type of connections between the burner tip walls and conduits forming the burner body may significantly increase the operating life of submerged combustion burners used to melt materials in an SCM. More particularly, at least one of the corrosion and/or fatigue resistance of the outer wall of the burner tip is greater than material comprising the external conduit under conditions experienced during submerged combustion melting of materials. Additionally, the surfaces of the burner (including the burner tip or burner body) may be further processed after manufacture so as to increase performance and reduce materials imperfections so as to improve resistance of these components to fatigue.
Burner tips may be manufactured of noble metals or other exotic corrosion and/or fatigue-resistant materials, such as platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir), and gold (Au); alloys of two or more noble metals; and alloys of one or more noble metals with a base metal. In certain examples the burner tip may be a platinum/rhodium alloy attached to the base metals comprising the burner body using a variety of techniques, such as brazing, flanged fittings, interference fittings, friction welding, threaded fittings, and the like, as further described herein with regard to specific examples. Threaded connections may eliminate the need for third party forgings and expensive welding or brazing processes—considerably improving system delivery time and overall cost. It will be understood, however, that the use of third party forgings, welding, and brazing are not ruled out for burners described herein, and may actually be preferable in certain situations. Such connections are described in the examples below.
When in alloyed form, alloys of two or more noble metals may have any range of noble metals. For example, alloys of two noble metals may have a range of about 0.01 to about 99.99 percent of a first noble metal and 99.99 to 0.01 percent of a second noble metal. Any and all ranges in between 0 and 99.99 percent first noble metal and 99.99 and 0 percent second noble metal are considered within the present disclosure, including 0 to about 99 percent of first noble metal; 0 to about 98 percent; 0 to about 97 percent; 0 to about 96; 0 to about 95; 0 to about 90; 0 to about 80; 0 to about 75; 0 to about 70; 0 to about 65; 0 to about 60; 0 to about 55; 0 to about 50; 0 to about 45, 0 to about 40; 0 to about 35; 0 to about 30; 0 to about 25; 0 to about 20; 0 to about 19; 0 to about 18; 0 to about 17; 0 to about 16; 0 to about 15; 0 to about 14; 0 to about 13; 0 to about 12; 0 to about 11; 0 to about 10; 0 to about 9; 0 to about 8; 0 to about 7; 0 to about 6; 0 to about 5; 0 to about 4; 0 to about 3; 0 to about 2; 0 to about 1; and 0 to about 0.5 percent of a first noble metal; with the balance comprising a second noble metal, or consisting essentially of a second noble metal (for example with one or more base metals present at no more than about 10 percent, or no more than about 9 percent base metal, or no more than about 8, or about 7, or about 6, or about 5, or about 4, or about 3, or about 2, or no more than about 1 percent base metal).
Certain noble metal alloy examples include three or more noble metals, the percentages of each individual noble metal may range from equal amounts of all noble metals in the composition (about 33.33 percent of each), to compositions comprising, or consisting essentially of, 0.01 percent of a first noble metal, 0.01 percent of a second noble metal, and 99.98 percent of a third noble metal. Any and all ranges in between about 33.33 percent of each, and 0.01 percent of a first noble metal, 0.01 percent of a second noble metal, and 99.98 percent of a third noble metal, are considered within the present disclosure.
The choice of a particular material is dictated among other parameters by the chemistry, pressure, and temperature of fuel and oxidant used and type of glass matrix to be produced. The skilled artisan, having knowledge of the particular application, pressures, temperatures, and available materials, will be able design the most cost effective, safe, and operable burners for each particular application without undue experimentation.
Various metals and metal alloys may display both corrosion resistance and fatigue resistant resistance. These two terms are used herein refer to two different failure mechanisms (corrosion and fatigue) that may occur simultaneously, and it is theorized that these failure mechanisms may actually influence each other in profound ways. As such, the present application utilizes a term that may be used to describe these dual influences, denoted “cortigue” or “cortigue resistance.” These terms refer to a burner tip material that will have a satisfactory service life of at least 12 months under conditions existing in a continuously operating SCM adjacent to the burner tip. As used herein the SCM may comprise a floor, a roof, and a sidewall structure connecting the floor and roof defining an internal space, at least a portion of the internal space comprising a melting zone, and one or more combustion burners in either the floor, the roof, the sidewall structure, or any two or more of these, producing combustion gases and configured to emit the combustion gases from a position under a level of, and positioned to transfer heat to and produce, a turbulent molten mass of glass containing bubbles in the melting zone. An example of an SCM system is depicted below in
Certain examples may comprise a burner tip insert shaped substantially the same as but smaller than the burner tip and positioned in an internal space defined by the burner tip, the insert configured so that a cooling fluid may pass between internal surfaces of the burner tip and an external surface of the insert. In these examples a first or distal end of the first internal conduit would be attached to the insert. In certain examples, the inner and outer walls of the burner tip body may extend beyond the first end of the first internal conduit, at least partially defining a mixing region for oxidant and fuel.
Conduits of burner bodies and associated components (such as spacers and supports between conduits, but not burner tips) used in SC burners, SCMs and processes of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include carbon steels, stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like. High-strength materials like C-110 and C-125 metallurgies that are qualified under standards set by NACE International of Houston, Texas, may be employed for burner body components. Use of high strength steel and other high strength materials may significantly reduce the conduit wall thickness required, reducing weight of the burners.
The melter geometry and operating temperature, burner and burner tip geometry, and type of glass to be produced, may dictate the choice of a particular material, among other parameters.
In certain SCMs, one or more burners in the SCM and/or flow channel(s) downstream thereof may be adjustable with respect to direction of flow of the combustion products. Adjustment may be via automatic, semi-automatic, or manual control. Certain system examples may comprise a burner mount that mounts the burner in the wall structure, roof, or floor of the SCM and/or flow channel comprising a refractory, or refractory-lined ball joint. Other burner mounts may comprise rails mounted in slots in the wall or roof. In yet other examples the burners may be mounted outside of the melter or channel, on supports that allow adjustment of the combustion products flow direction. Useable supports include those comprising ball joints, cradles, rails, and the like.
Certain SCMs and process examples of this disclosure may be controlled by one or more controllers. For example, burner combustion (flame) temperature may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, temperature of the effluent, pressure of the primary oxidant entering the burner, humidity of the oxidant, burner geometry, combustion ratio, and combinations thereof. Certain SCMs and processes of this disclosure may also measure and/or monitor feed rate of batch or other feed materials, such as glass batch, cullet, mat or wound roving and treatment compositions, mass of feed, and use these measurements for control purposes. Exemplary systems and methods of the disclosure may comprise a combustion controller which receives one or more input parameters selected from velocity of the fuel, velocity of oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the oxidant as it enters the burner, pressure of the oxidant entering the burner, humidity of the oxidant, burner geometry, oxidation ratio, temperature of the burner combustion products, temperature of melt, composition of bubbles and/or foam, and combinations thereof, and may employ a control algorithm to control combustion temperature, treatment composition flow rate or composition, based on one or more of these input parameters.
In the burners described in the below examples, the burner tip may be joined to burner body using flanges. When joined in this way, some design considerations include the thickness of the flange, the width of the flange, and the shape of the area surrounding the junction as this location is typically cooled with a coolant fluid and pressure drop needs to be minimized. In addition, when using flanges, gasket material is selected to ensure sealing and the ability to expose the flange to an oxygen or oxygen-enriched environment. In addition, or in certain alternative examples, plastically deformable features may be positioned on one or more of the flange faces to enable joint sealing.
In other examples, brazing compounds and methods may be used to attach burner tip to burner body. Brazing allows the joining of dissimilar metals and also allows for repairs to be made by removing the braze material. For these examples to be successful, the mating surfaces must be parallel or substantially so, and of sufficient overlap to ensure that the brazing material may properly flow between the portions of the burner tip and burner body being joined. This may be achieved in certain examples using a flange at right angles to both the burner tip walls 28, 30 (depicted in
Braze compounds, sometimes referred to as braze alloys, to be useful in certain examples, must have liquidus and solidus temperatures above the highest temperature of the burner tip. The highest temperature of the burner tip will be a temperature equal to the melt temperature existing in the SCM reduced by the flow of coolant through the burner tip, as well as by the flow of combustion gases through the burner tip. The highest temperature of the burner tip during normal operating conditions depends on the type of matrix being melted, which makes the selection of braze alloy not a simple matter. For Na—Ca—Si soda-lime window glass (Glass 1), typical melt temperature may range from about 1275° C. to about 1330° C.; for Al—Ca—Si E glass having low sodium and zero boron (Glass 2), the melt temperature may range from about 1395° C. to about 1450° C.; for B—Al—Si glass, zero sodium, zero potassium, high Si (Glass 3), the melt temperature may be about 1625° C.; and for B—Al—Ca—Si E glass used for reinforcement fiber (Glass 4), the melt temperature maybe about 1385° C. This information was taken from Rue, D., “Energy Efficient Glass Melting—The Next Generation Melter”, p. 63, GTI Project Number 20621, Mar., 2008 (U.S. Dept. of Energy). Based on these temperatures, and assuming a drop in burner tip temperature of 300° C. due to coolant and gas flow through the burner tip, Table 1 lists the possible braze alloys that may be used.
In yet other examples, burner tip walls and conduit 14, 10 may be threaded together, in certain examples accompanied by a sealant surface of flange upon which sealants, gaskets or O-rings may be present. Threaded joints may be straight or tapered such as NPT. In certain threaded examples the sealing surfaces of burner tip walls 28, 30 may be malleable enough compared to conduits 14, 10 to deform and form their own seals, without sealants, gaskets, or O-rings.
In still other examples, burner tip walls 28, 30 may be interference or press fit to their respective conduit 14, 10 of burner body 6. In these examples, the walls and/or conduits are machined to sufficiently close tolerances to enable deformation of one or both surfaces as the two parts are forcefully joined together.
In yet other examples, burner tip walls 28, 30 may be friction welded together. In these examples, either the burner tip walls or burner body conduits, or both, may be spun and forced into contact until sufficient temperature is generated by friction to melt a portion of either or both materials, welding walls 28, 30 to conduits 14, 10, respectively. These examples may include one or more additional metals serving as an intermediate between walls 28, 30 and conduits 14, 10 to facilitate friction welding.
Specific non-limiting burner, burner tip, SCM and process examples in accordance with the present disclosure will now be presented in conjunction with
Referring now again to the figures,
The dimensions of thickness “T” and width “W” of the flange connection formed by flange portions 50, 52 are illustrated schematically in
Careful selection of gasket material is a feature of embodiment 200 illustrated in
Those of skill in the art will appreciate that examples within the present disclosure may include a combination of the joining methods described herein, for example, in embodiment 300 illustrated schematically in
Those of skill in the art will also appreciate that outside of the burners described herein the warmed heat transfer fluid would be cooled so that it may be reused. As may also be appreciated, burner examples described herein define a mixing region 150 (
The thickness of crown 32 and inner and outer walls 28, 30 in the various examples illustrated herein is not critical, and need not be the same for every region of the crown and walls. Suitable thicknesses may range from about 0.1 cm to about 1 cm, or larger. It is theorized there may be a balance between corrosion and fatigue resistance, and thickness, with the thickness requirement generally being increased if the “cortigue” resistance of the crown and/or wall material is reduced. Thicker crowns and walls, or thicker regions of crowns and walls, will generally be stronger and exhibit more fatigue resistance, but may be more difficult to install, for example if deformable interference fittings are to be employed.
Regardless of the types of structure used to join the burner tip to the burner body, several examples of which are described above, it has been discovered that the burners or portions thereof may be subjected to one or more post-manufacturing processes that may reduce fatigue points on those structures or otherwise improve the microstructure thereof. These post-manufacturing processes may be performed before or after the portions of the burner are joined. In that case, the processes may be performed on either or both of the burner tip or the burner body, either before or after these two elements are joined at flanges, welds, or other structures.
It has been discovered, however, that polishing of the burner after manufacture may mitigate the onset of fatigue initiation. The polishing decreases the microscopic surface variation, and thus delays the onset of fatigue. The portions of the burner that may benefit from polishing to remove surface discontinuities include any areas of the burner that are exposed to the volatile thermal conditions in the SCM. As such, polishing of the toroidal burner tip may significantly improve performance. However, polishing of the burner body, especially the areas thereof disposed proximate the burner tip or the connection points to the burner tip, may also improve performance. In examples, a preferred surface finish is less than about 1.0 micron or less than about 0.5 micron. More specifically, the surface finish may be between about 1.0 to about 0.1 micron. The polishing may have a circumferential or multiple random orientations of the microscopic as-finished surface texture. However, any amount of finishing which reduces surface roughness from the as-machined or as-scratched condition is beneficial, whether circumferential or randomly oriented.
The polishing processes reduce the surface roughness of the burner (or a portion thereof) from a first, higher surface roughness, to a second, lower surface roughness. It may be advantageous to measure the first surface roughness across an entire area of the burner, or discrete portions thereof (either randomly or specifically). This enables a determination of an average first surface roughness. As the polishing process proceeds, the roughness of the same surface may be measured (again, across the entire area of the burner, or portions thereof). Re-measuring of the surface roughness may determine an average second surface roughness. If the average second surface roughness is still not desirable, polishing of the burner may continue until the desired surface roughness is achieved. The amount of polish may be measured based on surface roughness measurements, surface features measurements, other measurements, or combinations thereof. One or more polishing operations (separated by measuring operations to determine surface finish) may reduce the average surface roughness such that a post-polishing surface roughness is about 5% of the pre-polishing surface roughness. In other examples, polishing operations may reduce the average surface roughness such that a post-polishing surface roughness is about 1% of the pre-polishing surface roughness. A post-polishing surface roughness about 0.1% of the pre-polishing surface roughness may also be desirable.
By subjecting the burner part to post-processing, part life is extended by manipulating the size, aspect ratio, range, and/or orientation of the grains, as well as by eliminating voids, chemical micro-segregation, and other defects within the microstructure of the processed part. This helps the part withstand the volatile thermal environment and fatigue failures which may onset therein. In an un-processed part, defects and grains which are columnar (especially when columnar grains are aligned perpendicular to stress) enable rapid crack initiation and propagation while experiencing thermal and/or mechanical loads during service. Therefore, service life and mechanical properties such as ductility and strength are improved (and therefore are more accurately tailored) to the specific condition of the part during service. Another advantage is that post-processing of the part does not significantly change its geometry, therefore little or no additional machining is required to meet dimensional specifications.
In welded areas, morphological differences between the weld metal and the base metal provides higher probability for failure at the fusion line or heat affected zone, therefore post-processing any parts of the burner that have been welded minimizes or eliminates these differences, which greatly reduces the chances for failure, and improves the integrity of that part, therefore extending service life. The post-processing technologies described herein may be applied to metallic materials such as superalloy, precious, and other non-precious metal systems. The technology may be further applied to most any forming technologies including cast, wrought, forged, pressed, rolled, direct metal laser sintered, or other methods which generate less-than-desired morphology or non-uniformity within the burner. This also applies to both the raw part and within the burner around any repaired, welded, jointed, or otherwise discontinuous morphology as a result of the means used to manufacture the burner. In the context of SCM burners, the technology is particularly desirable since those burners are typically formed from cast precious metal parts. Cast precious metal display superior ductility and other properties that provide relatively high thermal shock resistance. Such precious metals also display risk of inferior attributes due to the localized non-uniformities (such as casting gates) required to form a cast burner.
Other advantages of post-processing are that the burner may be cast, weld-repaired, welded, or otherwise formed in ways that result in undesirable non-uniform or unintended voids or defects in the microstructure. Such burners, and especially the areas of the burner that have been welded, may be post-processed to eliminate such defects and still provide advantageous microstructure for improved part performance. Types of post-processing include heat treatments that approach a melting temperature of the metal, or at least at a combination of sufficient temperatures and times to promote nucleation, recrystallization, and grain growth-in. By utilizing these treatments, the microstructure is managed to a preferred condition. In an example, the post processing is hot isostatic pressing (HIP) that provides both the desired microstructure and also causes any defects or voids in the microstructure to be closed while grains recrystallize. This, in essence, mends any defects, including those caused by welding. Any such mended defects are one less potential failure site of the component during its life in the volatile thermal and mechanical loading environment of an SCM system.
Table 2 depicts a range of HIP parameters, as well as parameters that produced particularly desirable results (identified as Example 1). In Example 1, a burner formed by a precious metal having a combination of about 80% Pt and about 20% Rh was utilized and subjected to HIP processing. Burners manufactured from combinations of Pt and Rh are particularly desirable because such combinations maintain a single phase regardless of temperature. This single phase performance may apply to any percentage combination of Pt and Rh (e.g., 0%-100% Pt through 100%-0% Rh). For example, burners manufactured from about 70% Pt and about 30% Rh, as well as burners manufactured from about 90% Pt and about 10% Rh, are expected to perform similarly. Other precious metals having different percentages of Pt and Rh are contemplated for burners.
It has also been discovered that multiple post-processing cycles (e.g., HIP cycles) may be performed on a burner to achieve more desirable results. Table 3, below, depicts example pressures, temperature, and times for HIP processing of test parts that have been subjected to both laser welding and gar tungsten arc welding (GTAW), for multiple HIP cycles. Laser welding and GTAW produce different defects to the microstructure adjacent the weld. For example, laser welding causes a significant number of voids directly adjacent a very fine weld area, whereas GTAW creates a significant number of elongated grains over a fairly large area, with a large number of voids disposed just outside the area of grains. Removing these defects through HIP processing helps increase the life of the part. Prior to each HIP cycle, nondestructive defect detection techniques (such as dye penetrant inspection and radiography) may be performed to identify any defects for potential weld repair. This multi-step process brings additional mending to defects in the microstructure. Care should be taken so as not to cause overly large grains (and direct paths through grain boundaries) for cracks to propagate.
In the above Table 3, Samples 1 and 2 were as-cast test pieces having two different thicknesses that were not subjected to any HIP processing. Samples 3-5 are test parts having thicknesses as indicated and subjected to HIP processing with under the parameters indicated. All of Samples 3-5 were welded with both laser and GTAW welds. After one cycle of HIP processing, testing was performed to observe the remaining defects in the part. Proximate the laser weld, a significant number of the voids had been removed from the part and some voids had combined into single, rounder voids. This indicated that further processing would likely completely remove these rounder voids from the material. Proximate the GTAW welds, elongated grains had become more equiaxed and regular in shape, and very few voids were present. After subjecting the samples to a second cycle of HIP processing (Samples 7-10), nearly all voids were removed from the samples proximate the laser welds, while the grains proximate the GTAW weld were further equiaxed and the voids eliminated.
In testing performed on a burner part prior to HIP processing, it has been determined that the size and number of voids are significant. Testing has revealed that, prior to processing, voids can be as much as 500 microns in diameter. Void fraction in the first microstructure (again, prior to processing) can be as high as 20% or higher in welds. After HIP processing, void fraction can be reduced to significantly less than 1% (effectively 0%). Any remaining voids, however infrequent, may be much less than 5 microns in diameter. Regarding microstructure, the first microstructure can be dictated at least in part by the thickness and shape of the part in the region of interest, and the manufacturing methods to form the part. In the example above in
Once the appropriate amount of time has elapsed, the vessel is depressurized and cooled. Thereafter, in operation 510, the burner part is removed from the vessel. As described above, the part may be non-destructively tested so as to identify a burner defect, operation 512. In operation 514, defects may be weld-repaired. In operation 516, if desired, the part of the burner may be returned to the vessel and operations 502-508 repeated.
The melt vessel 601 may be fluid cooled by using a gaseous, liquid, or combination thereof, heat transfer media. In certain examples, the wall may have a refractory liner at least between the panels and the molten glass. Certain systems may cool various components by directing a heat transfer fluid through those components. In certain examples, the refractory cooled-panels of the walls, the fluid-cooled skimmer, the fluid-cooled dam, the walls of the fluid-cooled transition channel, and the burners may be cooled by a heat transfer fluid selected from the group consisting of gaseous, liquid, or combinations of gaseous and liquid compositions that function or are capable of being modified to function as a heat transfer fluid. Different cooling fluids may be used in the various components (e.g., wall portions of the melt vessel 601, the burners 612, etc.), or separate portions of the same cooling composition may be employed in all components. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for air treated to remove moisture), inert inorganic gases, such as nitrogen, argon, and helium, inert organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from inert liquids, which may be organic, inorganic, or some combination thereof, for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include water, steam (if cooler than the oxygen manifold temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions including both gas and liquid phases, such as the higher chlorofluorocarbons.
The melt vessel 601 further includes an exhaust stack 608, and openings 610 for submerged combustion burners 612, which create during operation a highly turbulent melt matrix indicated at 614. Examples of SCM burners 612 are described above. Highly turbulent melt matrix 614 may have an uneven top surface 615 due to the nature of submerged combustion. An average level 607 is illustrated with a dashed line. In certain examples, burners 612 are positioned to emit combustion products into molten matrix in the melting zone 614 in a fashion so that the gases penetrate the melt generally perpendicularly to floor 602. In other examples, one or more burners 612 may emit combustion products into the melt at an angle to floor 602.
In an SCM, combustion gases emanate from burners 612 under the level of a molten matrix. The burners 612 may be floor-mounted, wall-mounted, or in melter examples comprising more than one submerged combustion burner, any combination thereof (for example, two floor mounted burners and one wall mounted burner). These combustion gases may be substantially gaseous mixtures of combusted fuel, any excess oxidant, and combustion products, such as oxides of carbon (such as carbon monoxide, carbon dioxide), oxides of nitrogen, oxides of sulfur, and water. Combustion products may include liquids and solids, for example soot and unburned liquid fuels.
At least some of the burners may be mounted below the melt vessel, and in certain examples the burners may be positioned in one or more parallel rows substantially perpendicular to a longitudinal axis of the melt vessel. In certain examples, the number of burners in each row may be proportional to width of the vessel. In certain examples the depth of the vessel may decrease as width of the vessel decreases. In certain other examples, an intermediate location may comprise a constant width zone positioned between an expanding zone and a narrowing zone of the vessel, in accordance with U.S. Patent Application Publication No. 2011/0308280, the disclosure of which is hereby incorporated by reference herein in its entirety.
Returning to
The initial raw material may include any material suitable for forming a molten matrix, such as glass and/or inorganic non-metallic feedstocks such as rock (basalt) and mineral wool (stone wool). With regard to glass matrices, specifically, limestone, glass, sand, soda ash, feldspar and mixtures thereof may be utilized. In one example, a glass composition for producing glass fibers is “E-glass,” which typically includes 52-56% SiO2, 12-16% Al2O3, 0-0.8% Fe2O3, 16-25% CaO, 0-6% MgO, 0-10% B2O3, 0-2% Na2O+K2O, 0-1.5% TiO2 and 0-1% F2. Other glass compositions may be used, such as those described in U.S. Published Patent Application No. 2008/0276652, the disclosure of which is hereby incorporated by reference herein in its entirety. The initial raw material may be provided in any form such as, for example, relatively small particles.
As noted herein, submerged combustion burners may produce violent turbulence of the molten matrix and may result in a high degree of mechanical energy (e.g., vibration V in
Although specific aspects were described herein, the scope of the technology is not limited to those specific aspects. One skilled in the art will recognize other aspects or improvements that are within the scope of the present technology. Therefore, the specific structure, acts, or media are disclosed only as illustrative aspects. The scope of the technology is defined by the following claims and any equivalents therein.
This application is a divisional of pending U.S. application Ser. No. 14/824,981, filed Aug. 12, 2015.
Number | Name | Date | Kind |
---|---|---|---|
1706857 | Mathe | Mar 1929 | A |
2174533 | See et al. | Oct 1939 | A |
2118479 | McCaskey | Jan 1940 | A |
2269459 | Kleist | Jan 1942 | A |
2321480 | Gaskell | Jun 1943 | A |
2432942 | See et al. | Dec 1947 | A |
2455907 | Slayter | Jan 1948 | A |
2679749 | Poole | Jun 1954 | A |
2718096 | Henry et al. | Sep 1955 | A |
2773545 | Petersen | Dec 1956 | A |
2781756 | Kobe | Feb 1957 | A |
2878644 | Fenn | Mar 1959 | A |
2890166 | Heinze | Jun 1959 | A |
2902029 | Hill | Sep 1959 | A |
2981250 | Stewart | Apr 1961 | A |
3020165 | Davis | Feb 1962 | A |
3056283 | Tiede | Oct 1962 | A |
3073683 | Switzer et al. | Jan 1963 | A |
3084392 | Labino | Apr 1963 | A |
3088812 | Bitterlich et al. | May 1963 | A |
3104947 | Switzer et al. | Sep 1963 | A |
3160578 | Saxton et al. | Dec 1964 | A |
3165452 | Williams | Jan 1965 | A |
3170781 | Keefer | Feb 1965 | A |
3174820 | See et al. | Mar 1965 | A |
3215189 | Bauer | Nov 1965 | A |
3224855 | Plumat | Dec 1965 | A |
3237929 | Plumat et al. | Mar 1966 | A |
3241548 | See et al. | Mar 1966 | A |
3248205 | Dolf et al. | Apr 1966 | A |
3260587 | Dolf et al. | Jul 1966 | A |
3268313 | Burgman et al. | Aug 1966 | A |
3285834 | Guerrieri et al. | Nov 1966 | A |
3294512 | Penberthy | Dec 1966 | A |
3325298 | Brown | Jun 1967 | A |
3339616 | Gettig | Sep 1967 | A |
3347660 | Smith et al. | Oct 1967 | A |
3385686 | Plumat et al. | May 1968 | A |
3402025 | Garrett et al. | Sep 1968 | A |
3407805 | Bougard | Oct 1968 | A |
3407862 | Mustian, Jr. | Oct 1968 | A |
3421873 | Burgman et al. | Jan 1969 | A |
3432399 | Schutt | Mar 1969 | A |
3445214 | Oremesher | May 1969 | A |
3498779 | Hathaway | Mar 1970 | A |
3510393 | Burgman et al. | May 1970 | A |
3525674 | Barnebey | Aug 1970 | A |
3533770 | Adler et al. | Oct 1970 | A |
3563683 | Hess | Feb 1971 | A |
3592151 | Webber | Jul 1971 | A |
3592623 | Shepherd | Jul 1971 | A |
3606825 | Johnson | Sep 1971 | A |
3607209 | Lazaridis | Sep 1971 | A |
3617234 | Hawkins et al. | Nov 1971 | A |
3627504 | Johnson et al. | Dec 1971 | A |
3692017 | Glachant et al. | Sep 1972 | A |
3717139 | Guillet et al. | Feb 1973 | A |
3738792 | Feng | Jun 1973 | A |
3746527 | Knavish et al. | Jul 1973 | A |
3747588 | Malmin | Jul 1973 | A |
3754879 | Phaneuf | Aug 1973 | A |
3756800 | Phaneuf | Sep 1973 | A |
3763915 | Perry et al. | Oct 1973 | A |
3764287 | Brocious | Oct 1973 | A |
3771988 | Starr | Nov 1973 | A |
3818893 | Kataoka et al. | Jun 1974 | A |
3835909 | Douglas et al. | Sep 1974 | A |
3840002 | Douglas et al. | Oct 1974 | A |
3856496 | Nesbitt et al. | Dec 1974 | A |
3885945 | Rees et al. | May 1975 | A |
3907585 | Francel et al. | Sep 1975 | A |
3913560 | Lazarre et al. | Oct 1975 | A |
3951635 | Rough | Apr 1976 | A |
3976464 | Wardlaw | Aug 1976 | A |
4001001 | Knavish et al. | Jan 1977 | A |
4004903 | Daman et al. | Jan 1977 | A |
4083711 | Jensen | Apr 1978 | A |
4097028 | Langhammer | Jun 1978 | A |
4110098 | Mattmuller | Aug 1978 | A |
4153438 | Stream | May 1979 | A |
4185982 | Schwenninger | Jan 1980 | A |
4203761 | Rose | May 1980 | A |
4205966 | Horikawa | Jun 1980 | A |
4226564 | Takahashi et al. | Oct 1980 | A |
4238226 | Sanzenbacher et al. | Dec 1980 | A |
4249927 | Fakuzaki et al. | Feb 1981 | A |
4270740 | Sanzenbacher et al. | Jun 1981 | A |
4282023 | Hammel et al. | Aug 1981 | A |
4303435 | Sleighter | Dec 1981 | A |
4323718 | Buhring et al. | Apr 1982 | A |
4349376 | Dunn et al. | Sep 1982 | A |
4406683 | Demarest | Sep 1983 | A |
4413882 | Bailey et al. | Nov 1983 | A |
4488537 | Laurent | Dec 1984 | A |
4539034 | Hanneken | Sep 1985 | A |
4542106 | Sproull | Sep 1985 | A |
4545800 | Won et al. | Oct 1985 | A |
4612162 | Morgan et al. | Sep 1986 | A |
4622007 | Gitman | Nov 1986 | A |
4626199 | Bounini | Dec 1986 | A |
4632687 | Kunkle et al. | Dec 1986 | A |
4634461 | Demarest, Jr. et al. | Jan 1987 | A |
4657586 | Masterson et al. | Apr 1987 | A |
4671765 | Tsai | Jun 1987 | A |
4693740 | Noiret et al. | Sep 1987 | A |
4735642 | Jensen et al. | Apr 1988 | A |
4738938 | Kunkle et al. | Apr 1988 | A |
4758259 | Jensen | Jul 1988 | A |
4798616 | Knavish et al. | Jan 1989 | A |
4814387 | Donat | Mar 1989 | A |
4816056 | Tsai et al. | Mar 1989 | A |
4877436 | Sheinkop | Oct 1989 | A |
4877449 | Khinkis | Oct 1989 | A |
4878829 | Anderson | Nov 1989 | A |
4882736 | Pieper | Nov 1989 | A |
4919700 | Pecoraro et al. | Apr 1990 | A |
4927886 | Backderf et al. | May 1990 | A |
4953376 | Merlone | Sep 1990 | A |
5032230 | Shepherd | Jul 1991 | A |
5052874 | Johanson | Oct 1991 | A |
5062789 | Gitman | Nov 1991 | A |
5095761 | Nortz | Mar 1992 | A |
5097802 | Clawson | Mar 1992 | A |
5168109 | Backderf et al. | Dec 1992 | A |
5169424 | Grinnen et al. | Dec 1992 | A |
5199866 | Joshi et al. | Apr 1993 | A |
5204082 | Schendel | Apr 1993 | A |
5298213 | Shyu | Mar 1994 | A |
5299929 | Yap | Apr 1994 | A |
5360171 | Yap | Nov 1994 | A |
5374595 | Dumbaugh et al. | Dec 1994 | A |
5405082 | Brown et al. | Apr 1995 | A |
5449286 | Snyder et al. | Sep 1995 | A |
5458320 | Winchester et al. | Oct 1995 | A |
5483548 | Coble | Jan 1996 | A |
5490775 | Joshi et al. | Feb 1996 | A |
5522721 | Drogue et al. | Jun 1996 | A |
5545031 | Joshi et al. | Aug 1996 | A |
5575637 | Slavejkov et al. | Nov 1996 | A |
5595703 | Swaelens et al. | Jan 1997 | A |
5606965 | Panz et al. | Mar 1997 | A |
5613994 | Muniz et al. | Mar 1997 | A |
5615668 | Panz et al. | Apr 1997 | A |
5636623 | Panz et al. | Jun 1997 | A |
5672827 | Jursich | Sep 1997 | A |
5713668 | Lunghofer et al. | Feb 1998 | A |
5718741 | Hull et al. | Feb 1998 | A |
5736476 | Warzke et al. | Apr 1998 | A |
5743723 | Iatrides et al. | Apr 1998 | A |
5765964 | Calcote et al. | Jun 1998 | A |
5814121 | Travis | Sep 1998 | A |
5829962 | Drasek et al. | Nov 1998 | A |
5833447 | Bodelin et al. | Nov 1998 | A |
5849058 | Takeshita et al. | Dec 1998 | A |
5863195 | Feldermann | Jan 1999 | A |
5944507 | Feldermann | Aug 1999 | A |
5944864 | Hull et al. | Aug 1999 | A |
5954498 | Joshi et al. | Sep 1999 | A |
5975886 | Phillippe | Nov 1999 | A |
5979191 | Jian | Nov 1999 | A |
5984667 | Phillippe et al. | Nov 1999 | A |
5993203 | Koppang | Nov 1999 | A |
6029910 | Joshi et al. | Feb 2000 | A |
6036480 | Hughes et al. | Mar 2000 | A |
6039787 | Edlinger | Mar 2000 | A |
6045353 | VonDrasek et al. | Apr 2000 | A |
6068468 | Phillipe et al. | May 2000 | A |
6071116 | Phillipe et al. | Jun 2000 | A |
6074197 | Phillippe | Jun 2000 | A |
6077072 | Mann et al. | Jun 2000 | A |
6085551 | Pieper et al. | Jul 2000 | A |
6109062 | Richards | Aug 2000 | A |
6113389 | Joshi et al. | Sep 2000 | A |
6116896 | Joshi et al. | Sep 2000 | A |
6120889 | Turner et al. | Sep 2000 | A |
6123542 | Joshi et al. | Sep 2000 | A |
6126438 | Joshi et al. | Oct 2000 | A |
6154481 | Sorg et al. | Nov 2000 | A |
6156285 | Adams et al. | Dec 2000 | A |
6171100 | Joshi et al. | Jan 2001 | B1 |
6183848 | Turner et al. | Feb 2001 | B1 |
6210151 | Joshi et al. | Apr 2001 | B1 |
6210703 | Novich | Apr 2001 | B1 |
6237369 | LeBlanc et al. | May 2001 | B1 |
6241514 | Joshi et al. | Jun 2001 | B1 |
6244197 | Coble | Jun 2001 | B1 |
6244857 | VonDrasek et al. | Jun 2001 | B1 |
6247315 | Mann et al. | Jun 2001 | B1 |
6250136 | Igreja | Jun 2001 | B1 |
6250916 | Phillipe et al. | Jun 2001 | B1 |
6274164 | Novich | Aug 2001 | B1 |
6276924 | Joshi et al. | Aug 2001 | B1 |
6276928 | Joshi et al. | Aug 2001 | B1 |
6293277 | Panz et al. | Sep 2001 | B1 |
6314760 | Chenoweth | Nov 2001 | B1 |
6314896 | Marin et al. | Nov 2001 | B1 |
6338337 | Panz et al. | Jan 2002 | B1 |
6344747 | Lunghofer et al. | Feb 2002 | B1 |
6357264 | Richards | Mar 2002 | B1 |
6386271 | Kawamoto et al. | May 2002 | B1 |
6418755 | Chenoweth | Jul 2002 | B2 |
6422041 | Simpson et al. | Jul 2002 | B1 |
6454562 | Joshi et al. | Sep 2002 | B1 |
6460376 | Jeanvoine et al. | Oct 2002 | B1 |
6536651 | Ezumi et al. | Mar 2003 | B2 |
6558606 | Kulkarni et al. | May 2003 | B1 |
6660106 | Babel et al. | Dec 2003 | B1 |
6694791 | Johnson et al. | Feb 2004 | B1 |
6701617 | Li et al. | Mar 2004 | B2 |
6705118 | Simpson et al. | Mar 2004 | B2 |
6708527 | Ibarlucea et al. | Mar 2004 | B1 |
6711942 | Getman et al. | Mar 2004 | B2 |
6715319 | Barrow et al. | Apr 2004 | B2 |
6722161 | LeBlanc | Apr 2004 | B2 |
6736129 | Sjith | May 2004 | B1 |
6739152 | Jeanvoine et al. | May 2004 | B2 |
6796147 | Borysowicz et al. | Sep 2004 | B2 |
6797351 | Kulkarni et al. | Sep 2004 | B2 |
6854290 | Hayes et al. | Feb 2005 | B2 |
6857999 | Jeanvoine | Feb 2005 | B2 |
6883349 | Jeanvoine | Apr 2005 | B1 |
6918256 | Gutmark et al. | Jul 2005 | B2 |
7027467 | Baev et al. | Apr 2006 | B2 |
7116888 | Aitken et al. | Oct 2006 | B1 |
7134300 | Hayes et al. | Nov 2006 | B2 |
7168395 | Engdahl | Jan 2007 | B2 |
7175423 | Pisano et al. | Feb 2007 | B1 |
7231788 | Karetta et al. | Jun 2007 | B2 |
7273583 | Rue et al. | Sep 2007 | B2 |
7383698 | Ichinose et al. | Jun 2008 | B2 |
7392668 | Adams et al. | Jul 2008 | B2 |
7428827 | Maugendre et al. | Sep 2008 | B2 |
7441686 | Odajima et al. | Oct 2008 | B2 |
7448231 | Jeanvoine et al. | Nov 2008 | B2 |
7454925 | DeAngelis et al. | Nov 2008 | B2 |
7509819 | Baker et al. | Mar 2009 | B2 |
7565819 | Jeanvoine et al. | Jul 2009 | B2 |
7578988 | Jacques et al. | Aug 2009 | B2 |
7581948 | Borders et al. | Sep 2009 | B2 |
7622677 | Barberree et al. | Nov 2009 | B2 |
7624595 | Jeanvoine et al. | Dec 2009 | B2 |
7748592 | Koga et al. | Jul 2010 | B2 |
7767606 | McGinnis et al. | Aug 2010 | B2 |
7778290 | Sacks et al. | Aug 2010 | B2 |
7781562 | Crawford et al. | Aug 2010 | B2 |
7802452 | Borders et al. | Sep 2010 | B2 |
7832365 | Hannum et al. | Nov 2010 | B2 |
7845314 | Smith | Dec 2010 | B2 |
7855267 | Crawford et al. | Dec 2010 | B2 |
8033254 | Hannum et al. | Oct 2011 | B2 |
8279899 | Kitabayashi | Oct 2012 | B2 |
8285411 | Hull et al. | Oct 2012 | B2 |
8707739 | Huber et al. | Apr 2014 | B2 |
9096453 | Charbonneau | Aug 2015 | B2 |
20020086077 | Noller et al. | Jul 2002 | A1 |
20020134112 | Barrow et al. | Sep 2002 | A1 |
20020152770 | Becher et al. | Oct 2002 | A1 |
20020162358 | Jeanvoine et al. | Nov 2002 | A1 |
20020166343 | LeBlanc | Nov 2002 | A1 |
20030015000 | Hayes et al. | Jan 2003 | A1 |
20030029197 | Jeanvoine et al. | Feb 2003 | A1 |
20030037571 | Kobayashi et al. | Feb 2003 | A1 |
20030075843 | Wunsche | Apr 2003 | A1 |
20040131988 | Baker et al. | Jul 2004 | A1 |
20040168474 | Jeanvoine et al. | Sep 2004 | A1 |
20040224833 | Jeanvoine et al. | Nov 2004 | A1 |
20050026099 | Masi et al. | Feb 2005 | A1 |
20050039491 | Maugendre et al. | Feb 2005 | A1 |
20050083989 | Leister et al. | Apr 2005 | A1 |
20050103323 | Engdal | May 2005 | A1 |
20050236747 | Rue et al. | Oct 2005 | A1 |
20060000239 | Jeanvoine et al. | Jan 2006 | A1 |
20060174655 | Kobayashi et al. | Aug 2006 | A1 |
20060233512 | Aitken et al. | Oct 2006 | A1 |
20060257097 | Aitken et al. | Nov 2006 | A1 |
20060287482 | Crawford et al. | Dec 2006 | A1 |
20060293494 | Crawford et al. | Dec 2006 | A1 |
20060293495 | Crawford et al. | Dec 2006 | A1 |
20070106054 | Crawford et al. | May 2007 | A1 |
20070122332 | Jacques et al. | May 2007 | A1 |
20070130994 | Boratav et al. | Jun 2007 | A1 |
20070212546 | Jeanvoine et al. | Sep 2007 | A1 |
20070220922 | Bauer et al. | Sep 2007 | A1 |
20070246869 | Rymarchyk et al. | Oct 2007 | A1 |
20080035078 | Li | Feb 2008 | A1 |
20080227615 | McGinnis et al. | Sep 2008 | A1 |
20080256981 | Jacques et al. | Oct 2008 | A1 |
20080276652 | Bauer et al. | Nov 2008 | A1 |
20080293857 | Crawford et al. | Nov 2008 | A1 |
20090042709 | Jeanvoine et al. | Feb 2009 | A1 |
20090183850 | Morrison et al. | Jul 2009 | A1 |
20090220899 | Spangelo et al. | Sep 2009 | A1 |
20100064732 | Jeanvoine et al. | Mar 2010 | A1 |
20100087574 | Crawford et al. | Apr 2010 | A1 |
20100089066 | Mina | Apr 2010 | A1 |
20100089383 | Cowles | Apr 2010 | A1 |
20100120979 | Crawford et al. | May 2010 | A1 |
20100143601 | Hawtof et al. | Jun 2010 | A1 |
20100227971 | Crawford et al. | Sep 2010 | A1 |
20100236323 | D'Angelico et al. | Sep 2010 | A1 |
20100300153 | Zhang et al. | Dec 2010 | A1 |
20100304314 | Rouchy et al. | Dec 2010 | A1 |
20100307196 | Richardson | Dec 2010 | A1 |
20100326137 | Rouchy et al. | Dec 2010 | A1 |
20110054091 | Crawford et al. | Mar 2011 | A1 |
20110061642 | Rouchy et al. | Mar 2011 | A1 |
20110088432 | Purnode et al. | Apr 2011 | A1 |
20110107670 | Galley et al. | May 2011 | A1 |
20110236846 | Rue et al. | Sep 2011 | A1 |
20110308280 | Huber | Dec 2011 | A1 |
20120077135 | Charbonneau | Mar 2012 | A1 |
20120132725 | Dinu | May 2012 | A1 |
20120122490 | Cole et al. | Sep 2012 | A1 |
20130086944 | Shock et al. | Apr 2013 | A1 |
20130086949 | Charbonneau | Apr 2013 | A1 |
20130086950 | Huber et al. | Apr 2013 | A1 |
20130086951 | Charbonneau et al. | Apr 2013 | A1 |
20130086952 | Charbonneau et al. | Apr 2013 | A1 |
20130137051 | Beyer et al. | May 2013 | A1 |
20130283861 | Mobley et al. | Oct 2013 | A1 |
20140007622 | Shock et al. | Jan 2014 | A1 |
20140090419 | Charbonneau et al. | Apr 2014 | A1 |
20140163717 | Das et al. | Jun 2014 | A1 |
20150143850 | Charbonneau et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
0 181 248 | Oct 1989 | EP |
1 337 789 | Dec 2004 | EP |
1 990 321 | Nov 2008 | EP |
1 986 966 | Apr 2010 | EP |
1 667 934 | Feb 2011 | EP |
191301772 | Jan 1914 | GB |
191407633 | Mar 1914 | GB |
164073 | May 1921 | GB |
1998055411 | Dec 1998 | WO |
2008103291 | Aug 2008 | WO |
2009091558 | Jul 2009 | WO |
2010011701 | Jan 2010 | WO |
2010045196 | Apr 2010 | WO |
2010147188 | Dec 2010 | WO |
2014193388 | Apr 2014 | WO |
2014189506 | Nov 2014 | WO |
WO-2014189499 | Nov 2014 | WO |
Entry |
---|
Canadian Center for Occupational Healthy and Safety (CCOHS), “Hand Tools—Vises”, https://www.ccohs.ca/oshanswers/safety_haz/hand_tools/vises.html, per Wayback Machine Jul. 5, 2014, 2 pages. (Year: 2014). |
“Glass Technologies—The Legacy of a Successful Public-Private Partnership”, 2007, U.S. Department of Energy, pp. 1-32. |
“Glass Melting Technology—A Technical and Economic Assessment,” 2004, U.S. Department of Energy, pp. 1-292. |
Rue, “Energy-Efficient Glass Melting—The Next Generation Melter”, Gas Technology Institute, Project No. 20621 Final Report (2008). |
“Glass Industry of the Future”, United States Department of Energy, report 02-GA50113-03, pp. 1-17, Sep. 30, 2008. |
Furman, BJ, “Vibration Measurement”, San Jose State University, Department of Mechanical and Aerospace Engineering, pp. 1-14, Nov. 22, 2005. |
Higley, BA, Glass Melter System Technologies for Vitrification of High-Sodium Content Low-Level, Radioactive, Liquid Wastes—Phase I: SBS Demonstration With Simulated Low-Level Waste—Final Test Report, Westinghouse Hanford Companypp. 1-296, Sep. 5, 1995. |
Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet Apr. 2009, Department of Energy Environmental Management Consolidated Business Center by THOR Treatment Technologies, LLC. |
Obalin, V.M. et al, “Submerged Combustion Furnace for Glass Melts,” Ceramic Engineering and Science Proceedings, Jan. 1, 1996, pp. 84-92, vol. 17—No. 2, American Ceramic Society Inc., US. |
Number | Date | Country | |
---|---|---|---|
20170327400 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14824981 | Aug 2015 | US |
Child | 15666762 | US |