The present invention relates to devices, methods and a computer program for post-mix type beverage dispensing.
Systems for dispensing carbonated or non-carbonated beverages of a post-mix type, i.e. in which two or more components, normally still or carbonated water and syrup are mixed so as to obtain the final beverage directly from the outlet of the dispensing tap, are well known devices.
The solutions adopted to date include regulation systems such as a simple adjustment screw, as well as what are called flow-control systems, typically based on mechanically adjustable solutions. One of the biggest problems of these devices is that of accurately dosing the syrup irrespective, for example, of the temperature of the syrup or the pressure at which water is available from the mains water supply. These variables, in fact, influence the final ratio between water and syrup and can alter it if use is made of a system like the known ones.
In the prior art, regulating the ratio between the two components is difficult because, for example, once the flow rate of one component is fixed, the flow rate of the other must be adjusted, an operation that is normally performed by means of a refractometer for measuring the sugar content of the beverage. If one moreover wishes to vary the outflow rate of the beverage, the mixer will need to be recalibrated each time. Similarly, different batches of syrup require recalibration, even if the volumetric ratio between water and syrup remains the same.
The object of the present invention is to remedy the problems tied to the known techniques of dispensing beverages of the post-mix type.
According to a first aspect of the invention, there is provided a post-mix type device for dispensing beverages at a user and mixing at least a first component and a second component. The device comprises a measuring means, an adjustment means, a control means and a mixing means.
The flow measuring means is configured to produce measurement information relating to the flow of the first component.
The flow rate adjustment means is configured to vary the flow rate of the second component.
The control means is configured to receive the measurement information and to control the flow rate adjustment means on the basis of the measurement information and a predetermined parameter.
The mixing means is disposed downstream of the flow rate adjustment means and is configured to mix the first and second components.
According to a second aspect of the invention, there is provided a method for dispensing beverages on the user's premises and post-mix type mixing of at least a first component and a second component, the method comprising the steps of:
According to a third aspect of the invention, there is provided a computer program comprising instructions suitable for executing, when the program is run on a computer, the steps of the method, for example as summarised above with reference to the first aspect.
According to a fourth aspect of the invention, there is provided a post-mix type device for dispensing beverages at a user and mixing at least a first component (10) and a second component (20), the device comprising a flow measuring means, a flow rate adjustment means, a pushing means, a control means and a mixing means. In particular, the flow measuring means is configured to produce measurement information relating to the flow of the first component. The flow rate adjustment means is configured to vary the flow rate of the first component. The pushing means is configured to generate a known flow of the second component, according to this fourth aspect. The control means is configured to receive the measurement information and to control the flow rate adjustment means on the basis of the measurement information and a predetermined parameter. The mixing means is disposed downstream of the flow rate adjustment means and configured to mix the first and second components.
A first embodiment of the present invention will now be described with reference to
Post-mix type mixing means that both the mixing of the components (for example, but not necessarily, still or carbonated water and syrup) necessary for obtaining the beverage and the dispensing of the beverage obtained take place on the same site. This site is typically the premises of the user, that is, of the subject for whom the beverage is dispensed. Therefore, in systems of the post-mix type, the beverage is not delivered to the dispensing site in its final form, for example after have been obtained in sophisticated industrial production plants and then transported to the site; the beverage is instead obtained on site by combining two or more of its ingredients at the time of serving. The expression “at the time of dispensing” is not strictly to be understand as meaning “simultaneously with dispensing”; in fact, a certain interval of time might elapse between the combining of the components and the actual dispensing into a glass, for example the time necessary for the beverage to travel through sections of tubing, or technical times necessary for the operation of the post-mix mixing machine. For this purpose, the insertion of possible constructive parts between on-site mixing and dispensing (for example, a small tank that delays the moment of dispensing relative to that of mixing) falls within the scope of post-mix type systems.
Examples of the site or of the delivery of a beverage on a user's premises with a post-mix system include a counter for distribution to the public, a bar, a night club, a restaurant, the self-service counter in a hotel breakfast room, the bar of a discotheque, a private home, a kitchen also of a recreational boat or commercial vessel, and automatic beverage vending machines, as well as any system designed to dispense beverages to the public.
The components of a beverage are to be understood as the basic ingredients which are mixed to obtain the final beverage, irrespective of how each of these basic components/ingredients was previously obtained. In this sense a component, which may have a simple or sophisticated composition, is designed or prepared so as to provide the desired beverage upon the completion of mixing. These components are generally, but not necessarily, in liquid form. Examples of components are carbonated water (to be carbonated on site or already available in carbonated form), still water and syrup. Typically, the syrup is specifically prepared so as to obtain, with the addition of water in the right proportions, beverages such as orangeade, cola, fruit-based juices and any other alcoholic or non-alcoholic beverage, also of a well-known brand in the beverage industry, etc. Although embodiments with two beverage components are described below for the sake of simplicity, the present invention should not be construed as limited to two components only, and the inventive concept illustrated below can be easily extended to three or more components.
“Syrup” can be understood to mean a single component, or multiple components, for example two or more separate syrups or ingredients that are supplied as a component to be mixed with another component using the post-mix type system in question.
In
The post-mix type device of the present invention comprises a flow measuring means 100 configured to produce measurement information relating to the flow of the first component.
A flow measuring means is to be understood as a means enabling the flow of a component to be known or measured directly or indirectly. Flow may be understood as the mass of a component conveyed per unit of time, or the volume of a component conveyed per unit of time. For example, the flow measuring means measures the volumetric flow (hereinafter: flow) of one component of the beverage through a tube that transports it. An example of a flow measuring means can be a sensor, a flow meter, etc. The flow measurement can either be averaged over a given period of time or instantaneous. The flow measuring system is capable of outputting an electric signal (analogue or digital) 32 which corresponds (for example is proportional) to the measured flow of the component. The measurement information is represented, in one example, by the analogue or digital signal read by the measuring means, or a processing of this signal. The flow measuring means can be of the turbine type or another type. If a turbine-type flow measuring means is used, it can optionally be equipped with a Hall effect sensor.
The post-mix type device of the present embodiment further comprises a flow rate adjustment means 250 configured to vary the flow rate of the second component. A flow rate adjustment means is to be understood as a means capable of reducing the flow rate of a liquid flowing through a tube. Flow rate may be understood as the mass of a component conveyed per unit of time, or the volume of a component conveyed per unit of time (also including an average volume conveyed in a certain interval of time). The flow rate adjustment means 250 acts on the basis of an electric signal 30 (analogue or digital) which contains and conveys the information necessary for reducing, as necessary, the flow of liquid of the second component 20 that passes through it.
Examples of a flow rate adjustment means are a valve, which may be electrically or electronically actuated, an electronic compensator, etc. The compensator can be motorised, of the compensator cone type with an electrical actuator. The electrical actuator can comprise an electrically controlled stepper motor. In the example, the electrical signal is such as to control the compensator or directly the stepper motor in order to actuate the desired adjustment. Another example of an adjustment means is represented by a solenoid valve, which can be for example closed on command by the control means when a given volume of the component has passed through in a certain interval of time (for example in a certain predetermined period of time or one corresponding to that of dispensing a beverage or a portion thereof).
The control means 300 is configured to receive the measurement information 32 and to control the flow rate adjustment means 250 on the basis of the measurement information and a predetermined parameter. In
The predetermined parameter is a value or set of values that make it possible to influence the ratio between the quantities or flows of the two components to be mixed. For example, the parameter can be the desired ratio between the flows of the two components or between the volumetric flows of the two components, or the volumetric ratio (instantaneous, averaged over a certain time or total with respect to a single dispensing operation) between the components in the final beverage at the end of dispensing. Moreover, the predetermined parameter can be obtained on the basis of characteristics relating to at least one of the two components; for example, besides depending on the desired ratio, it can be a function of parameters such as the temperature of one or both components, the type of syrup used, etc. The preselected ratio can be a volumetric one, but also any other ratio that can define the final characteristics of the beverage and which it is desirable to control. The parameter can also be a constant, or else a value that depends in turn on different variables (also measured), such as, for example, temperature, mains water pressure, environmental variables or other variables that can affect the final ratio between syrup and water. The parameter can be corrected if necessary on the basis of information provided by the user or on the basis of environmental variables detected by the system.
The parameter is predetermined, i.e. it is already established when the adjustment is or is about to be made. Furthermore, it can be modified, updated or adjusted manually or automatically, locally or from a remote location.
The mixing means 400 is disposed downstream (relative to the direction in which the components flow) of the adjustment means and is configured to mix the first 12 and second 22 components. The mixing means can thus comprise any device that is suitable for mixing the components. In one example, the mixing means 400 can coincide with a beverage dispensing tap in which the two conduits 12 and 22 converge in an outlet conduit of the tap (not illustrated), or else it may be separated in two different devices, from each of which the respective component flows towards a container for the beverage. The mixing means can dispense the duly mixed beverage towards the outside, that is to say, outside the conduits of the device. In fact, the mixing means can optionally also comprise a part serving as an outlet for the beverage, or convey the mixture obtained towards another means serving to dispense the mixture. The beverage can then be collected in a glass, pitcher or bottle or another receptacle so as to be served to the user, or stored in another container belonging to the device so as to be consumed later.
With reference to
It should be observed that the first and second components are interchangeable, in the sense that the measuring means can be applied on the second component (or branch or conduit of the device) and the adjustment means on the first component (or branch or conduit of the device). For the purposes of this embodiment, it is sufficient that the adjustment and measuring means are each placed in two distinct conduits, that is, in the position of two different components. Thanks to this configuration, in fact, based on the knowledge of the flow present in one component/conduit, the control means will be able to control the adjustment means in the other conduit so as to obtain a certain flow rate in that component. The certain flow rate will also be determined on the basis of the predetermined parameter so that, for example, the adjusted flow is in a desired or pre-established proportion relative to the flow measured in the other branch. In this manner, it is possible to ensure, by controlling the flow rate in one branch, that the flows to be mixed are always according to pre-established controllable proportions and that therefore the dispensed beverage always has the desired qualities. The parameter can be predetermined in view of the ratio between the flows to be mixed, or the ratio between the volumes to be mixed, etc. In one illustrative example, it is supposed that the optimal beverage is obtained from a 1:3 volumetric ratio between two components and that the measuring means measures a flow of 0.91 of a first component. According to this example, the control means will adjust the flow rate of the other component to a value of 2.71/m so as to maintain the 1:3 ratio. The adjustment means can take into account possible compensation factors, and thus apply for example a control of 2.81/m (instead of 2.71/m); the difference of 0.11/m, determinable for example by means of measurements and/or calculations, is such as to ensure in any case the 1:3 ratio in view of the necessary compensations. The parameter can also be made dependent on other values such as ambient temperature, the temperature of one or both components, the sugar content of one component (measured, entered remotely or by an operator, preconfigured but modifiable as needed), etc.
This embodiment of the invention enables the components of the beverage to be dosed with precision by means of a simple control system, thanks to the measurement of the flow of one component and the adjustment of the flow rate of the other component on the basis of the measured flow. Therefore, it is for example possible, once a ratio between water and syrup has been defined, to maintain this ratio constant over time during the dispensing of a beverage, notwithstanding variations in the pushing pressure or density or characteristics of the syrup and also to be able to vary the beverage flow rate. As illustrated further below, one example of the embodiment can be obtained using a turbine flow meter as an example of the measuring means and a cone-type compensator with an electrically controlled actuator as an example of the adjustment means. In such a case, the compensator is controlled by the control means so as to open, close or remain in an unchanged position in order to obtain a given ratio between the components to be mixed. This control proves to be accurate, smooth and without any significant turbulence in the mixing. Another illustrative implementation can be obtained taking a controlled solenoid valve as an example of the adjustment means, or replacing the aforementioned cone-type compensator with a solenoid valve. In such a case, the solenoid valve will be controlled so as to close/open in order to maintain the two components to be mixed in a desired ratio. For example, the solenoid valve can be closed after a certain interval of time in which a quantity (for example a constant flow) of the first component has passed through and when that quantity is such as to satisfy a desired ratio with the quantity of the other component passing through in the same time interval (the quantity of the other component can be determined on the basis of the measurement made by the flow meter on the second component). The solenoid valve can be actuated several times during the control for the purpose of dispensing a beverage or a portion thereof.
Other embodiments will be described below; unless otherwise specified, all the considerations previously set forth will apply. Unchanged components maintain the same reference indications.
With reference to
The method of
With reference to
The flow measuring means 200 can be located either downstream or upstream of the flow rate adjustment means 250. The flow measurement, as it regards a flow of liquids (incompressible, at least within certain temperature and pressure intervals), does not generally depend on the position of the measuring device along the line, irrespective of whether or not it comprises a means for measuring the flow rate. However, in particular cases, for example in the presence of a gas (such as carbon dioxide) in either the liquid phase or gaseous phase in a liquid, it could prove convenient to prefer a particular position of the flow measuring means relative to the flow rate adjustment means. This configuration can be obtained by exchanging the position of the blocks 200 and 250 in
With reference to
As noted above, the relative positions of the flow measuring means and flow rate adjustment means can be swapped. In other words, the positions of the blocks 200 and 250 can be swapped over, as can the positions of the blocks 100 and 150 independently of the exchange of the positions of the blocks 200 and 250. Thanks to such a device, it is thus possible to control the quality of the final beverage in a simple but very accurate manner. Furthermore, the adjustment can be obtained rapidly and thus also for small amounts of beverage to be dispensed.
With reference to
With reference to
With reference to
As mentioned, a solenoid valve represents another example of an adjustment means that is equally applicable to the invention and the embodiments thereof. For example, in
According to another embodiment, there is provided a computer program comprising instructions suitable for executing, when the program is run on a computer, the steps of the method illustrated in
The computer program can execute further instructions, such, for example, instructions to carry out a flushing step on the beverage outlet tap which consists in dispensing only water, or to dispense a single component or a particular combination of components. Other instructions executed by the program can enable calibration, check and/or setting procedures, just as special instructions for mixing special versions of a beverage can be provided. Moreover, the computer program can generate warnings and alarms regarding the lack of syrup, the mains water supply pressure, pressure in the syrup transfer line or other alarms. The computer program can be run on a computer, dedicated hardware, a device comprising one or more processors, a distributed calculation system, etc.
With reference to
The pushing means 260 is a means capable of producing the forward movement of a liquid along a tube or conduit. The pushing means can be, for example, a pump or another device capable of creating pressure on the liquid column it is applied on in such a way as to push the liquid in one direction, or, alternatively, the forward movement of the liquid can be induced by negative pressure downstream.
It should be noted that in the present example the flow rate adjustment means 150 is located downstream of the flow measuring means 100. As already mentioned previously, in fact, the order in which these means are installed along a same line is neither essential nor generally important for the purposes of the operation of the present invention.
One example of how the flow of one component can be considered to be known with sufficient precision is that in which a pump 260 of the peristaltic type is used to push the component. This type of pump has the characteristic of pushing a constant or nearly constant quantity (volume) of liquid per unit of time, so that this flow can be considered known with excellent or at any rate acceptable approximation. Other types of pumps can however be used to push a component while being able to consider the flow to be known and/or largely independent of other parameters. In this case as well, it is possible to obtain a beverage with easily controllable characteristics.
The present invention also relates to the mixture obtained through one of the methods illustrated above, or through the operation of one of the devices illustrated above, or by running a computer program operating according to the invention.
A mixture of at least a first component and a second component produced according to one of the embodiments described is characterized in that it is possible to control the ratio between the components with precision. The precision is given by the above-described system, which makes the proportions of the components making up the mixture largely independent of the conditions outside the system (temperature, mains water supply pressure, viscosity of the syrup, etc.), thanks to the control means, which is capable of controlling one or more flow rate adjustment means, correcting any disproportions.
The various embodiments have been described with reference to the mixing of two components, but the invention is not limited to this case. In fact, other components can be mixed together with the first two to form a beverage. The other components can be mixed without any control being applied to them; or else the flow rate of one or more of the other components can be adjusted on the basis of the measured flow of one of the first two components (see
Furthermore, a post-mix type system for obtaining a number of beverages can be obtained. For example, a post-mix type device can be used to obtain N beverages by creating inside it N sub-devices (with N=1, 2, etc.) as per
The mixing means, like the adjustment means, can be shared or separate for each of the beverages. When shared, an operation of flushing the mixing and/or dispensing means can be carried out. Similarly,
Naturally, the above description of embodiments and examples applying the principles recognized by the inventors is given solely by way of illustration of such principles and must therefore not be construed as limiting the scope of the invention claimed here.
Number | Date | Country | Kind |
---|---|---|---|
MI2014A000973 | May 2014 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/053969 | 5/27/2015 | WO | 00 |