This application generally relates to acoustic echo cancellation performed after the mixing of audio signals from a plurality of acoustic sources, such as microphones used in a conferencing system. In particular, this application relates to systems and methods for cancelling and suppressing acoustic echo from the output of a mixer while efficiently utilizing computation resources.
Conferencing environments, such as boardrooms, conferencing settings, and the like, can involve the use of microphones for capturing sound from audio sources and loudspeakers for presenting audio from a remote location (also known as a far end). For example, persons in a conference room may be conducting a conference call with persons at a remote location. Typically, speech and sound from the conference room may be captured by microphones and transmitted to the remote location, while speech and sound from the remote location may be received and played on loudspeakers in the conference room. Multiple microphones may be used in order to optimally capture the speech and sound in the conference room.
However, the microphones may pick up the speech and sound from the remote location that is played on the loudspeakers. In this situation, the audio transmitted to the remote location may therefore include an echo, i.e., the speech and sound from the conference room as well as the speech and sound from the remote location. If there is no correction, the audio transmitted to the remote location may therefore be low quality or unacceptable because of this echo. In particular, it would not be desirable for persons at the remote location to hear their own speech and sound.
Existing echo cancellation systems may utilize an acoustic echo canceller for each of the multiple microphones, and a mixer can subsequently mix and process each echo-cancelled microphone signal. However, these types of systems may be computationally intensive and complex. For example, separate and dedicated processing may be needed to perform acoustic echo cancellation on each microphone signal. Furthermore, a typical acoustic echo canceller placed after a mixer would work poorly due to the need to constantly readapt to the mixed signal generated by the mixer should the mixer be dynamic, i.e., the gains on one or more of the mixer channels changes over time.
Accordingly, there is an opportunity for acoustic echo cancellation systems and methods that address these concerns. More particularly, there is an opportunity for acoustic echo cancellation systems and methods that cancel and suppress acoustic echo and work with a mixer that has mixed the audio of multiple acoustic sources, while being computationally efficient and resource-friendly.
The invention is intended to solve the above-noted problems by providing acoustic echo cancellation systems and methods that are designed to, among other things: (1) generate an echo-cancelled mixed audio signal based on a mixed audio signal from a mixer, information gathered from the audio signal from each of the plurality of acoustic sources, and a remote audio signal; (2) generate the echo-cancelled mixed audio signal by selecting various tap coefficients of a background filter performing a normalized least-mean squares algorithm, a hidden filter, and a mix filter, based on comparing a background error power and a hidden error power; and (3) use a non-linear processor to generate an echo-suppressed mixed audio signal from the echo-cancelled mixed audio signal when the background filter and hidden filter have not yet converged.
In an embodiment, a system includes a memory, a plurality of acoustic sources, a mixer in communication with the plurality of acoustic sources and the memory, and an acoustic echo canceller in communication with the mixer, the memory, and a remote audio signal. The plurality of acoustic sources may each be configured to generate an audio signal. The mixer may be configured to mix the audio signal from each of the plurality of acoustic sources to produce a mixed audio signal. The acoustic echo canceller may be configured to generate an echo-cancelled mixed audio signal based on the mixed audio signal, information gathered from each of the plurality of acoustic sources, and the remote audio signal.
In another embodiment, a method includes receiving an audio signal from each of a plurality of acoustic sources; receiving a remote audio signal; mixing the audio signal from each of the plurality of acoustic sources using a mixer to produce a mixed audio signal; and generating an echo-cancelled mixed audio signal based on the mixed audio signal, information gathered from the audio signal from each of the plurality of acoustic sources, and the remote audio signal, using an acoustic echo canceller.
These and other embodiments, and various permutations and aspects, will become apparent and be more fully understood from the following detailed description and accompanying drawings, which set forth illustrative embodiments that are indicative of the various ways in which the principles of the invention may be employed.
The description that follows describes, illustrates and exemplifies one or more particular embodiments of the invention in accordance with its principles. This description is not provided to limit the invention to the embodiments described herein, but rather to explain and teach the principles of the invention in such a way to enable one of ordinary skill in the art to understand these principles and, with that understanding, be able to apply them to practice not only the embodiments described herein, but also other embodiments that may come to mind in accordance with these principles. The scope of the invention is intended to cover all such embodiments that may fall within the scope of the appended claims, either literally or under the doctrine of equivalents.
It should be noted that in the description and drawings, like or substantially similar elements may be labeled with the same reference numerals. However, sometimes these elements may be labeled with differing numbers, such as, for example, in cases where such labeling facilitates a more clear description. Additionally, the drawings set forth herein are not necessarily drawn to scale, and in some instances proportions may have been exaggerated to more clearly depict certain features. Such labeling and drawing practices do not necessarily implicate an underlying substantive purpose. As stated above, the specification is intended to be taken as a whole and interpreted in accordance with the principles of the invention as taught herein and understood to one of ordinary skill in the art.
The acoustic echo cancellation systems and methods described herein can generate an echo-cancelled mixed audio signal based on a mixed audio signal from a mixer, information gathered from the audio signal from each of the plurality of acoustic sources, and a remote audio signal, while being computationally efficient and resource-friendly. The systems and methods may eliminate the need for separate acoustic echo cancellers for each acoustic source, e.g., microphone, while maintaining the cancellation benefits of separate acoustic echo cancellers. Moreover, the decreased computational load may allow the use of less expensive hardware (e.g., processor and/or DSP), and/or enable other features to be included in the communication system 100. User satisfaction may be increased through use of the communication system 100 and acoustic echo canceller 112.
Environments such as conference rooms may utilize the communication system 100 to facilitate communication with persons at the remote location, for example. The types of microphones 102 and their placement in a particular environment may depend on the locations of audio sources, physical space requirements, aesthetics, room layout, and/or other considerations. For example, in some environments, the microphones may be placed on a table or lectern near the audio sources. In other environments, the microphones may be mounted overhead to capture the sound from the entire room, for example. The communication system 100 may work in conjunction with any type and any number of microphones 102. Various components included in the communication system 100 may be implemented using software executable by one or more servers or computers, such as a computing device with a processor and memory, and/or by hardware (e.g., discrete logic circuits, application specific integrated circuits (ASIC), programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
Referring to
The audio signals from each of the microphones 102 may be received by the mixer 106, such as at step 318 of the process 300 shown in
In parallel, the audio signals from each of the microphones 102 may be converted to the frequency domain by fast Fourier transform modules 114, such as at step 320. One of these converted audio signals may be selected and conveyed at step 322 by a signal selection mechanism, such as a switch 108, for example. The signal selection mechanism may gather information about each acoustic source (or subset of acoustic sources), e.g., audio signals from the microphones 102 or beamformed audio signals, in order to optimize the adaptation for a mix of all of the acoustic sources. While a switch 108 is illustrated in
Each of the audio signals from the microphones 102 can be selected by the switch 108 and processed in turn, such that a background filter 202 and a hidden filter 204 (in the acoustic echo canceller 112) work on one of the audio signals at a time. The switch 108 may enable adaptation on each of the audio signals from the microphones 102 within a particular duration so that the communication system 100 may properly perform echo cancellation regardless of the type of mixer 106, the current state of the mixer 106, or if the mixer 106 is undergoing a change in state. At step 324, the background filter 202 and the hidden filter 204 in the acoustic echo canceller 112 may run on the selected audio signal. Step 324 is described below in more detail with respect to
e[n]=d[n]−{circumflex over (h)}†[n]x[n]
where d[n] is the audio signal, x[n] is a vector of samples from a remote audio signal, and † denotes a conjugate transpose operation. The background error power may be measured based on the background error e[n], such as by using a time average of the magnitude of the squared background error.
The hidden filter 204 may be a finite impulse response filter that is run at step 406, on a remote audio signal and a previous unweighted estimate of the echo-path impulse response made by the background filter 202. The unweighted previous estimate corresponds to an unweighted portion of the selected audio signal within a mix filter 208 (described below). The hidden filter 204 may measure a hidden error of the selected audio signal, such as at step 408, by subtracting the remote audio signal from the selected audio signal. A hidden error power may be measured based on the hidden error, such as by using a time average of the magnitude of the squared hidden error. The hidden filter 204 may have tap coefficients h that are used to scale a finite series of delay taps.
The background error power measured at step 404 and the hidden error power measured at step 408 may be compared at step 410 by an error comparison module 206. The error comparison module 206 may determine at step 410 whether the background error power is greater than the hidden error power. If it is determined that the background error power is greater than the hidden error power at step 410, then the process 324 may continue to step 412. At step 412, the tap coefficients of the background filter 202 may be selected and stored in a memory 110. At step 414, the stored tap coefficients from step 412 may be copied from the memory 110 and used to replace the tap coefficients of the hidden filter 204. The stored tap coefficients from step 412 may also be copied at step 414 from the memory 110 and used to update the tap coefficients of the mix filter 208, as described in more detail below.
Following step 414, the process 324 may continue to step 416. In addition, if it is determined at step 410 that the background error power is not greater than the hidden error power, then the process 324 may continue to step 416. At step 416, it may be determined whether a channel scaling factor a of the mixer 106 has changed. The channel scaling factor of the mixer 106 may change automatically or manually (e.g., by a user adjustment). If the channel scaling factor of the mixer 106 has changed at step 416, then the process 324 may continue to step 418. At step 418, the tap weights of the mix filter 208 may be updated corresponding to the changed channel scaling factor, such as by adding a difference in weight multiplied by a channel impulse response estimate, as described in more detail below.
Following step 418, the process 324 may continue to step 420. In addition, if it is determined that the channel scaling of the mixer 106 has not changed at step 416, then the process 324 may continue to step 420. At step 420, the tap coefficients of the background filter 202 may be updated, according to the equation:
where α is a step-size parameter, * denotes a complex conjugation operation, and ∥⋅∥ denotes a l2 norm. The process 324 may then return to the process 300 and in particular, to step 308, as described below.
Returning to the process 300 of
The acoustic echo canceller 112 may run a mix filter 208 at step 308. The mix filter 208 may be a weighted sum ĥmix[n] of the finite impulse responses of all the audio signals of the microphones 102, such that:
where am is the channel scaling (weight or gain) of a particular microphone 102. The mix filter 208 processes the remote audio signal received from the far end and generates a filtered remote audio signal that is an estimate of the echo signal generated at the output of the mixer. In particular, the mix filter models the coupling between the echo paths detected by the microphones 102 and the mixer 106.
As described previously, the tap coefficients of the mix filter 208 may be updated by the tap coefficients of the background filter at step 414 of the process 324, if the background error power is greater than the hidden error power at step 410. When this occurs, the weighted sum ĥmix [n+1] for the next sample n+1 may be given by:
where m′ is the selected audio signal of a particular microphone 102.
As also described previously, the tap weights of the mix filter 208 may be updated at step 418 of the process 324, if the channel scaling factor of the mixer 106 has changed at step 416. When this occurs, the update may be performed by adding the difference in weight multiplied by the channel impulse response estimate ĥm′. In particular, the weighted sum ĥmix [n+1] for the next sample n+1 may be given by:
After the mix filter 208 generates the filtered remote audio signal at step 308, the process 300 may continue to step 310. At step 310, the echo-cancelled mixed audio signal may be generated by the acoustic echo canceller 112. In particular, the filtered remote audio signal generated by the mix filter 208 may be subtracted from the mixed audio signal from the mixer 106, as denoted by the summing point 214 shown in
At step 502, the output coherence of the filtered remote audio signal from the mix filter 208 may be measured by mix estimators 210. The output coherence is a measure of the relationship between the frequency content of the filtered remote audio signal and the audio signals from the microphones 102. The mix estimators 210 may measure the coherence from the output of the mixer 106 prior to echo cancellation at the summing point 214 and after echo cancellation at the summing point 214. If the coherence is high, then the signals may be deemed to be related in the frequency domain. The residual echo power of the echo-cancelled mixed audio signal output from the summing point 214 may be estimated at step 504 by the mix estimators 210. The non-linear processor 212 may process the echo-cancelled mixed audio signal at step 508 to generate an echo-suppressed mixed audio signal if (1) the output coherence is greater than a predetermined threshold (e.g., signifying that there is only an echo signal present in the microphones 102); or (2) the residual echo power is greater than half of the power of the mixed audio signal from the mixer 106. Following step 508, the process 312 may continue to step 314 of the process 300. However, if neither of these conditions is satisfied, then the process 312 may continue from step 506 to step 314 of the process 300.
Returning to
Any process descriptions or blocks in figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the embodiments of the invention in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.
This disclosure is intended to explain how to fashion and use various embodiments in accordance with the technology rather than to limit the true, intended, and fair scope and spirit thereof. The foregoing description is not intended to be exhaustive or to be limited to the precise forms disclosed. Modifications or variations are possible in light of the above teachings. The embodiment(s) were chosen and described to provide the best illustration of the principle of the described technology and its practical application, and to enable one of ordinary skill in the art to utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the embodiments as determined by the appended claims, as may be amended during the pendency of this application for patent, and all equivalents thereof, when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
3755625 | Maston | Aug 1973 | A |
3906431 | Clearwaters | Sep 1975 | A |
4070547 | Dellar | Jan 1978 | A |
4072821 | Bauer | Feb 1978 | A |
4096353 | Bauer | Jun 1978 | A |
4131760 | Christensen | Dec 1978 | A |
4184048 | Alcaide | Jan 1980 | A |
4198705 | Massa | Apr 1980 | A |
4237339 | Bunting | Dec 1980 | A |
4254417 | Speiser | Mar 1981 | A |
4305141 | Massa | Dec 1981 | A |
4308425 | Momose | Dec 1981 | A |
4311874 | Wallace, Jr. | Jan 1982 | A |
4330691 | Gordon | May 1982 | A |
4334740 | Wray | Jun 1982 | A |
4365449 | Liautaud | Dec 1982 | A |
4414433 | Horie | Nov 1983 | A |
4436966 | Botros | Mar 1984 | A |
4449238 | Lee | May 1984 | A |
4466117 | Goerike | Aug 1984 | A |
4485484 | Flanagan | Nov 1984 | A |
4489442 | Anderson | Dec 1984 | A |
4521908 | Miyaji | Jun 1985 | A |
4593404 | Bolin | Jun 1986 | A |
4653102 | Hansen | Mar 1987 | A |
4658425 | Julstrom | Apr 1987 | A |
4669108 | Deinzer | May 1987 | A |
4696043 | Iwahara | Sep 1987 | A |
4712231 | Julstrom | Dec 1987 | A |
4741038 | Elko | Apr 1988 | A |
4752961 | Kahn | Jun 1988 | A |
4815132 | Minami | Mar 1989 | A |
4860366 | Fukushi | Aug 1989 | A |
4881135 | Heilweil | Nov 1989 | A |
4903247 | Van Gerwen | Feb 1990 | A |
4923032 | Nuernberger | May 1990 | A |
4928312 | Hill | May 1990 | A |
5121426 | Baumhauer | Jun 1992 | A |
5214709 | Ribic | May 1993 | A |
5297210 | Julstrom | Mar 1994 | A |
5323459 | Hirano | Jun 1994 | A |
5335011 | Addeo | Aug 1994 | A |
5371789 | Hirano | Dec 1994 | A |
5384843 | Masuda | Jan 1995 | A |
5396554 | Hirano et al. | Mar 1995 | A |
5473701 | Cezanne | Dec 1995 | A |
5513265 | Hirano | Apr 1996 | A |
5525765 | Freiheit | Jun 1996 | A |
5550924 | Helf | Aug 1996 | A |
5574793 | Hirschhorn | Nov 1996 | A |
5602962 | Kellermann | Feb 1997 | A |
5633936 | Oh | May 1997 | A |
5661813 | Shimauchi et al. | Aug 1997 | A |
5673327 | Julstrom | Sep 1997 | A |
5687229 | Sih | Nov 1997 | A |
5706344 | Finn | Jan 1998 | A |
5761318 | Shimauchi et al. | Jun 1998 | A |
5787183 | Chu | Jul 1998 | A |
5796819 | Romesburg | Aug 1998 | A |
5848146 | Slattery | Dec 1998 | A |
5870482 | Loeppert | Feb 1999 | A |
5888412 | Sooriakumar | Mar 1999 | A |
6041127 | Elko | Mar 2000 | A |
6049607 | Marash | Apr 2000 | A |
6069961 | Nakazawa | May 2000 | A |
6125179 | Wu | Sep 2000 | A |
6137887 | Anderson | Oct 2000 | A |
6205224 | Underbrink | Mar 2001 | B1 |
6215881 | Azima | Apr 2001 | B1 |
6329908 | Frecska | Dec 2001 | B1 |
6332029 | Azima | Dec 2001 | B1 |
6442272 | Osovets | Aug 2002 | B1 |
6449593 | Valve | Sep 2002 | B1 |
6488367 | Debesis | Dec 2002 | B1 |
6505057 | Finn | Jan 2003 | B1 |
6556682 | Gilloire et al. | Apr 2003 | B1 |
6704422 | Jensen | Mar 2004 | B1 |
6731334 | Maeng | May 2004 | B1 |
6741720 | Myatt | May 2004 | B1 |
6768795 | Feltstroem | Jul 2004 | B2 |
6885750 | Egelmeers | Apr 2005 | B2 |
6895093 | Ali | May 2005 | B1 |
6931123 | Hughes | Aug 2005 | B1 |
6944312 | Mason | Sep 2005 | B2 |
6968064 | Ning | Nov 2005 | B1 |
6990193 | Beaucoup et al. | Jan 2006 | B2 |
6993126 | Kyrylenko | Jan 2006 | B1 |
7003099 | Zhang et al. | Feb 2006 | B1 |
7031269 | Lee | Apr 2006 | B2 |
7035415 | Belt | Apr 2006 | B2 |
7054451 | Janse | May 2006 | B2 |
7092516 | Furuta | Aug 2006 | B2 |
7092882 | Arrowood | Aug 2006 | B2 |
7098865 | Christensen | Aug 2006 | B2 |
7120269 | Lowell | Oct 2006 | B2 |
7269263 | Dedieu | Sep 2007 | B2 |
7359504 | Reuss | Apr 2008 | B1 |
7503616 | Linhard | Mar 2009 | B2 |
7536769 | Pedersen | May 2009 | B2 |
7660428 | Rodman | Feb 2010 | B2 |
7701110 | Fukuda | Apr 2010 | B2 |
7724891 | Beaucoup | May 2010 | B2 |
7747001 | Kellermann | Jun 2010 | B2 |
7756278 | Moorer | Jul 2010 | B2 |
7831035 | Stokes | Nov 2010 | B2 |
7831036 | Beaucoup | Nov 2010 | B2 |
7925006 | Hirai et al. | Apr 2011 | B2 |
7925007 | Stokes, III et al. | Apr 2011 | B2 |
7970123 | Beaucoup | Jun 2011 | B2 |
7970151 | Oxford | Jun 2011 | B2 |
7991167 | Oxford | Aug 2011 | B2 |
7995768 | Miki | Aug 2011 | B2 |
8005238 | Tashev | Aug 2011 | B2 |
8019091 | Burnett | Sep 2011 | B2 |
8085947 | Haulick et al. | Dec 2011 | B2 |
8098842 | Florencio | Jan 2012 | B2 |
8098844 | Elko | Jan 2012 | B2 |
8103030 | Barthel | Jan 2012 | B2 |
8130969 | Buck et al. | Mar 2012 | B2 |
8130977 | Chu | Mar 2012 | B2 |
8135143 | Ishibashi | Mar 2012 | B2 |
8175291 | Chan | May 2012 | B2 |
8184801 | Hamalainen | May 2012 | B1 |
8189765 | Nishikawa et al. | May 2012 | B2 |
8189810 | Wolff | May 2012 | B2 |
8199927 | Raftery | Jun 2012 | B1 |
8204198 | Adeney | Jun 2012 | B2 |
8213596 | Beaucoup | Jul 2012 | B2 |
8213634 | Daniel | Jul 2012 | B1 |
8219387 | Cutler | Jul 2012 | B2 |
8229134 | Duraiswami | Jul 2012 | B2 |
8233352 | Beaucoup | Jul 2012 | B2 |
8249273 | Inoda | Aug 2012 | B2 |
8275120 | Stokes, III | Sep 2012 | B2 |
8284949 | Farhang et al. | Oct 2012 | B2 |
8286749 | Stewart | Oct 2012 | B2 |
8290142 | Lambert | Oct 2012 | B1 |
8297402 | Stewart | Oct 2012 | B2 |
8331582 | Steele | Dec 2012 | B2 |
8385557 | Tashev et al. | Feb 2013 | B2 |
8395653 | Feng | Mar 2013 | B2 |
8403107 | Stewart | Mar 2013 | B2 |
8433061 | Cutler | Apr 2013 | B2 |
8437490 | Marton | May 2013 | B2 |
8443930 | Stewart, Jr. | May 2013 | B2 |
8447590 | Ishibashi | May 2013 | B2 |
8479871 | Stewart | Jul 2013 | B2 |
8483398 | Fozunbal et al. | Jul 2013 | B2 |
8498423 | Thaden | Jul 2013 | B2 |
8503653 | Ahuja | Aug 2013 | B2 |
8515089 | Nicholson | Aug 2013 | B2 |
8553904 | Said | Oct 2013 | B2 |
8583481 | Viveiros | Nov 2013 | B2 |
8600443 | Kawaguchi | Dec 2013 | B2 |
8605890 | Zhang et al. | Dec 2013 | B2 |
8631897 | Stewart | Jan 2014 | B2 |
8638951 | Zurek | Jan 2014 | B2 |
D699712 | Bourne | Feb 2014 | S |
8644477 | Gilbert | Feb 2014 | B2 |
8654990 | Faller | Feb 2014 | B2 |
8660274 | Wolff | Feb 2014 | B2 |
8660275 | Buck | Feb 2014 | B2 |
8672087 | Stewart | Mar 2014 | B2 |
8676728 | Velusamy | Mar 2014 | B1 |
8744069 | Cutler | Jun 2014 | B2 |
8811601 | Mohammad | Aug 2014 | B2 |
8818002 | Tashev | Aug 2014 | B2 |
8842851 | Beaucoup | Sep 2014 | B2 |
8855326 | Derkx | Oct 2014 | B2 |
8855327 | Tanaka | Oct 2014 | B2 |
8873789 | Bigeh | Oct 2014 | B2 |
8886343 | Ishibashi | Nov 2014 | B2 |
8893849 | Hudson | Nov 2014 | B2 |
8903106 | Meyer | Dec 2014 | B2 |
8942382 | Elko | Jan 2015 | B2 |
9002028 | Haulick | Apr 2015 | B2 |
9094496 | Teutsch | Jul 2015 | B2 |
9113247 | Chatlani | Aug 2015 | B2 |
9126827 | Hsieh | Sep 2015 | B2 |
9129223 | Velusamy | Sep 2015 | B1 |
9172345 | Kok | Oct 2015 | B2 |
9215327 | Bathurst et al. | Dec 2015 | B2 |
9215543 | Sun et al. | Dec 2015 | B2 |
9226088 | Pandey | Dec 2015 | B2 |
9237391 | Benesty | Jan 2016 | B2 |
9247367 | Nobile | Jan 2016 | B2 |
9253567 | Morcelli | Feb 2016 | B2 |
9264553 | Pandey | Feb 2016 | B2 |
9294839 | Lambert | Mar 2016 | B2 |
9301049 | Elko | Mar 2016 | B2 |
9319532 | Bao et al. | Apr 2016 | B2 |
9319799 | Salmon | Apr 2016 | B2 |
9326060 | Nicholson | Apr 2016 | B2 |
9338549 | Haulick | May 2016 | B2 |
9357080 | Beaucoup et al. | May 2016 | B2 |
9403670 | Schelling | Aug 2016 | B2 |
9462378 | Kuech | Oct 2016 | B2 |
9479627 | Rung | Oct 2016 | B1 |
9479885 | Ivanov | Oct 2016 | B1 |
9489948 | Chu | Nov 2016 | B1 |
9510090 | Lissek | Nov 2016 | B2 |
9516412 | Shigenaga | Dec 2016 | B2 |
9560451 | Eichfeld | Jan 2017 | B2 |
9565493 | Abraham | Feb 2017 | B2 |
9578413 | Sawa | Feb 2017 | B2 |
9591404 | Chhetri | Mar 2017 | B1 |
D784299 | Cho | Apr 2017 | S |
9615173 | Sako | Apr 2017 | B2 |
9635186 | Pandey | Apr 2017 | B2 |
D787481 | Tysso | May 2017 | S |
9641688 | Pandey | May 2017 | B2 |
9641929 | Li | May 2017 | B2 |
9641935 | Ivanov | May 2017 | B1 |
9761243 | Taenzer | Sep 2017 | B2 |
9813806 | Graham | Nov 2017 | B2 |
9826211 | Sawa | Nov 2017 | B2 |
9854101 | Pandey | Dec 2017 | B2 |
9866952 | Pandey | Jan 2018 | B2 |
9894434 | Rollow, IV | Feb 2018 | B2 |
20020015500 | Belt | Feb 2002 | A1 |
20020041679 | Beaucoup | Apr 2002 | A1 |
20020131580 | Smith | Sep 2002 | A1 |
20020149070 | Sheplak | Oct 2002 | A1 |
20030053639 | Beaucoup | Mar 2003 | A1 |
20030059061 | Tsuji | Mar 2003 | A1 |
20030063762 | Tajima | Apr 2003 | A1 |
20030107478 | Hendricks | Jun 2003 | A1 |
20030118200 | Beaucoup | Jun 2003 | A1 |
20030138119 | Pocino | Jul 2003 | A1 |
20030161485 | Smith | Aug 2003 | A1 |
20030185404 | Milsap | Oct 2003 | A1 |
20040013038 | Kajala | Jan 2004 | A1 |
20040013252 | Craner | Jan 2004 | A1 |
20040105557 | Matsuo | Jun 2004 | A1 |
20040125942 | Beaucoup | Jul 2004 | A1 |
20040240664 | Freed | Dec 2004 | A1 |
20050094580 | Kumar | May 2005 | A1 |
20050094795 | Rambo | May 2005 | A1 |
20050149320 | Kajala | Jul 2005 | A1 |
20050175189 | Lee | Aug 2005 | A1 |
20050213747 | Popovich | Sep 2005 | A1 |
20050271221 | Cerwin | Dec 2005 | A1 |
20050286698 | Bathurst | Dec 2005 | A1 |
20060088173 | Rodman | Apr 2006 | A1 |
20060104458 | Kenoyer | May 2006 | A1 |
20060151256 | Lee | Jul 2006 | A1 |
20060165242 | Miki | Jul 2006 | A1 |
20060192976 | Hall | Aug 2006 | A1 |
20060233353 | Beaucoup | Oct 2006 | A1 |
20060239471 | Mao | Oct 2006 | A1 |
20060262942 | Oxford | Nov 2006 | A1 |
20060269080 | Oxford | Nov 2006 | A1 |
20070053524 | Haulick | Mar 2007 | A1 |
20070093714 | Beaucoup | Apr 2007 | A1 |
20070116255 | Derkx | May 2007 | A1 |
20070120029 | Keung | May 2007 | A1 |
20070165871 | Roovers | Jul 2007 | A1 |
20070230712 | Belt | Oct 2007 | A1 |
20080056517 | Algazi | Mar 2008 | A1 |
20080101622 | Sugiyama | May 2008 | A1 |
20080130907 | Sudo | Jun 2008 | A1 |
20080144848 | Buck | Jun 2008 | A1 |
20080232607 | Tashev | Sep 2008 | A1 |
20080247567 | Kjolerbakken | Oct 2008 | A1 |
20080253553 | Li | Oct 2008 | A1 |
20080259731 | Happonen | Oct 2008 | A1 |
20080260175 | Elko | Oct 2008 | A1 |
20080285772 | Haulick | Nov 2008 | A1 |
20090003586 | Lai | Jan 2009 | A1 |
20090030536 | Gur | Jan 2009 | A1 |
20090052684 | Ishibashi | Feb 2009 | A1 |
20090087000 | Ko | Apr 2009 | A1 |
20090129609 | Oh | May 2009 | A1 |
20090147967 | Ishibashi | Jun 2009 | A1 |
20090150149 | Cutter et al. | Jun 2009 | A1 |
20090169027 | Ura et al. | Jul 2009 | A1 |
20090274318 | Ishibashi | Nov 2009 | A1 |
20090310794 | Ishibashi | Dec 2009 | A1 |
20100074433 | Zhang | Mar 2010 | A1 |
20100111324 | Yeldener | May 2010 | A1 |
20100119097 | Ohtsuka | May 2010 | A1 |
20100128892 | Chen | May 2010 | A1 |
20100131749 | Kim | May 2010 | A1 |
20100150364 | Buck | Jun 2010 | A1 |
20100189275 | Christoph | Jul 2010 | A1 |
20100202628 | Meyer | Aug 2010 | A1 |
20100215184 | Buck | Aug 2010 | A1 |
20100217590 | Nemer | Aug 2010 | A1 |
20100314513 | Evans | Dec 2010 | A1 |
20110007921 | Stewart | Jan 2011 | A1 |
20110038229 | Beaucoup | Feb 2011 | A1 |
20110096915 | Nemer | Apr 2011 | A1 |
20110164761 | McCowan | Jul 2011 | A1 |
20110194719 | Frater | Aug 2011 | A1 |
20110211706 | Tanaka | Sep 2011 | A1 |
20110311064 | Teutsch | Dec 2011 | A1 |
20110311085 | Stewart | Dec 2011 | A1 |
20110317862 | Hosoe | Dec 2011 | A1 |
20120002835 | Stewart | Jan 2012 | A1 |
20120027227 | Kok | Feb 2012 | A1 |
20120076316 | Zhu | Mar 2012 | A1 |
20120080260 | Stewart | Apr 2012 | A1 |
20120093344 | Sun | Apr 2012 | A1 |
20120128160 | Kim | May 2012 | A1 |
20120128175 | Visser | May 2012 | A1 |
20120155688 | Wilson | Jun 2012 | A1 |
20120169826 | Jeong | Jul 2012 | A1 |
20120177219 | Mullen | Jul 2012 | A1 |
20120182429 | Forutanpour | Jul 2012 | A1 |
20120224709 | Keddem | Sep 2012 | A1 |
20120243698 | Elko | Sep 2012 | A1 |
20120262536 | Chen | Oct 2012 | A1 |
20120288079 | Burnett | Nov 2012 | A1 |
20120294472 | Hudson | Nov 2012 | A1 |
20120327115 | Chhetri | Dec 2012 | A1 |
20130004013 | Stewart | Jan 2013 | A1 |
20130015014 | Stewart | Jan 2013 | A1 |
20130016847 | Steiner | Jan 2013 | A1 |
20130029684 | Kawaguchi | Jan 2013 | A1 |
20130034241 | Pandey | Feb 2013 | A1 |
20130039504 | Pandey | Feb 2013 | A1 |
20130083911 | Bathurst | Apr 2013 | A1 |
20130094689 | Tanaka | Apr 2013 | A1 |
20130101141 | McElveen | Apr 2013 | A1 |
20130136274 | Aehgren | May 2013 | A1 |
20130206501 | Yu | Aug 2013 | A1 |
20130251181 | Stewart | Sep 2013 | A1 |
20130264144 | Hudson | Oct 2013 | A1 |
20130271559 | Feng | Oct 2013 | A1 |
20130297302 | Pan | Nov 2013 | A1 |
20130336516 | Stewart | Dec 2013 | A1 |
20130343549 | Vemireddy | Dec 2013 | A1 |
20140016794 | Lu et al. | Jan 2014 | A1 |
20140072151 | Ochs | Mar 2014 | A1 |
20140098964 | Rosca | Apr 2014 | A1 |
20140264654 | Salmon | Sep 2014 | A1 |
20140265774 | Stewart | Sep 2014 | A1 |
20140270271 | Dehe | Sep 2014 | A1 |
20140286518 | Stewart | Sep 2014 | A1 |
20140301586 | Stewart | Oct 2014 | A1 |
20140307882 | LeBlanc | Oct 2014 | A1 |
20140341392 | Lambert | Nov 2014 | A1 |
20140357177 | Stewart | Dec 2014 | A1 |
20150030172 | Gaensler et al. | Jan 2015 | A1 |
20150055796 | Nugent | Feb 2015 | A1 |
20150055797 | Nguyen | Feb 2015 | A1 |
20150070188 | Aramburu | Mar 2015 | A1 |
20150078581 | Etter | Mar 2015 | A1 |
20150078582 | Graham | Mar 2015 | A1 |
20150117672 | Christoph | Apr 2015 | A1 |
20150118960 | Petit | Apr 2015 | A1 |
20150126255 | Yang et al. | May 2015 | A1 |
20150281832 | Kishimoto | Oct 2015 | A1 |
20150350621 | Sawa | Dec 2015 | A1 |
20160029120 | Nesta et al. | Jan 2016 | A1 |
20160031700 | Sparks | Feb 2016 | A1 |
20160080867 | Nugent | Mar 2016 | A1 |
20160111109 | Tsujikawa | Apr 2016 | A1 |
20160142548 | Pandey | May 2016 | A1 |
20160142815 | Norris | May 2016 | A1 |
20160148057 | Oh | May 2016 | A1 |
20160150316 | Kubota | May 2016 | A1 |
20160295279 | Srinivasan | Oct 2016 | A1 |
20160300584 | Pandey | Oct 2016 | A1 |
20160302002 | Lambert | Oct 2016 | A1 |
20160302006 | Pandey | Oct 2016 | A1 |
20160323668 | Abraham | Nov 2016 | A1 |
20160330545 | McElveen | Nov 2016 | A1 |
20160337523 | Pandey | Nov 2016 | A1 |
20160353200 | Bigeh | Dec 2016 | A1 |
20170105066 | McLaughlin | Apr 2017 | A1 |
20170134849 | Pandey | May 2017 | A1 |
20170134850 | Graham | May 2017 | A1 |
20170164101 | Rollow, IV | Jun 2017 | A1 |
20170264999 | Fukuda | Sep 2017 | A1 |
20170374454 | Bernardini | Dec 2017 | A1 |
20180160224 | Graham | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2505496 | Oct 2006 | CA |
2838856 | Dec 2012 | CA |
2846323 | Sep 2014 | CA |
102646418 | Aug 2012 | CN |
102821336 | Dec 2012 | CN |
102833664 | Dec 2012 | CN |
102860039 | Jan 2013 | CN |
104080289 | Oct 2014 | CN |
104581463 | Apr 2015 | CN |
2941485 | Apr 1981 | DE |
0594098 | Apr 1994 | EP |
0869697 | Oct 1998 | EP |
1184676 | Mar 2002 | EP |
0944228 | Jun 2003 | EP |
1439526 | Jul 2004 | EP |
1651001 | Apr 2006 | EP |
1727344 | Nov 2006 | EP |
1906707 | Apr 2008 | EP |
1962547 | Aug 2008 | EP |
2197219 | Jun 2010 | EP |
2360940 | Aug 2011 | EP |
2721837 | Apr 2014 | EP |
2778310 | Sep 2014 | EP |
3131311 | Feb 2017 | EP |
H01260967 | Oct 1989 | JP |
H07336790 | Dec 1995 | JP |
3175622 | Jun 2001 | JP |
2003087890 | Mar 2003 | JP |
2004349806 | Dec 2004 | JP |
2004537232 | Dec 2004 | JP |
2005323084 | Nov 2005 | JP |
2006094389 | Apr 2006 | JP |
2006101499 | Apr 2006 | JP |
4120646 | Aug 2006 | JP |
4258472 | Aug 2006 | JP |
4196956 | Sep 2006 | JP |
2006340151 | Dec 2006 | JP |
4760160 | Jan 2007 | JP |
4752403 | Mar 2007 | JP |
4867579 | Jun 2007 | JP |
2007208503 | Aug 2007 | JP |
2007228069 | Sep 2007 | JP |
2007228070 | Sep 2007 | JP |
2007274131 | Oct 2007 | JP |
2007274463 | Oct 2007 | JP |
2008005347 | Jan 2008 | JP |
2008042754 | Feb 2008 | JP |
5028944 | May 2008 | JP |
2008154056 | Jul 2008 | JP |
2008259022 | Oct 2008 | JP |
2008312002 | Dec 2008 | JP |
2009206671 | Sep 2009 | JP |
2010028653 | Feb 2010 | JP |
2010114554 | May 2010 | JP |
2010268129 | Nov 2010 | JP |
2011015018 | Jan 2011 | JP |
100960781 | Jan 2004 | KR |
2006049260 | May 2006 | WO |
WO2006071119 | Jul 2006 | WO |
2006121896 | Nov 2006 | WO |
2010001508 | Jan 2010 | WO |
2010144148 | Dec 2010 | WO |
WO2010140084 | Dec 2010 | WO |
2011104501 | Sep 2011 | WO |
2012160459 | Nov 2012 | WO |
2012174159 | Dec 2012 | WO |
2016176429 | Nov 2016 | WO |
Entry |
---|
Benesty, et al., “Adaptive Algorithms for Mimo Acoustic Echo Cancellation,” AI2 Allen Institute for Artifical Intelligence, 2003. |
CTG Audio, Expand Your IP Teleconferencing to Full Room Audio, Obtained from website http://www.ctgaudio.com/expand-your-ip-teleconferencing-to-full-room-audio-while-conquering-echo-cancellation-issues.html, 2014. |
Desiraju, et al., “Efficient Multi-Channel Acoustic Echo Cancellation Using Constrained Sparse Filter Updates in the Subband Domain,” Acoustic Speech Enhancement Research, Sep. 2014. |
Gil-Cacho, et al., “Multi-Microphone Acoustic Echo Cancellation Using Multi-Channel Warped Linear Prediction of Common Acoustical Poles,” 18th European Signal Processing Conference, Aug. 23-27, 2010. |
LecNet2 Sound System Design Guide, Lectrosonics, Jun. 2, 2006. |
Multichannel Acoustic Echo Cancellation, Obtained from website http://www.buchner-net.com/mcaec.html, Jun. 2011. |
Nguyen-Ky, et al., “An Improved Error Estimation Algorithm for Stereophonic Acoustic Echo Cancellation Systems,” 1st International Conference on Signal Processing and Communication Systems, Dec. 17-19, 2007. |
Rane Acoustic Echo Cancellation Guide, AEC Guide Version 2, Nov. 2013. |
Rao, et al., “Fast LMS/Newton Algorithms for Stereophonic Acoustic Echo Cancelation,” IEEE Transactions on Signal Processing, vol. 57, No. 8, Aug. 2009. |
Reuven, et al., “Multichannel Acoustic Echo Cancellation and Noise Reduction in Reverberant Environments Using the Transfer-Function GSC,” IEEE 1-4244-0728, 2007. |
Signal Processor MRX7-D Product Specifications, Yamaha Corporation, 2016. |
Soundweb London Application Guides, BSS Audio, 2010. |
SymNet Network Audio Solutions Brochure, Symetrix, Inc., 2008. |
Tandon, et al., “An Efficient, Low-Complexity, Normalized LMS Algorithm for Echo Cancellation,” IEEE 0-7803-8322, Feb. 2004. |
Wung, “A System Approach to Multi-Channel Acoustic Echo Cancellation and Residual Echo Suppression for Robust Hands-Free Teleconferencing,” Georgia Institute of Technology, May 2015. |
XAP Audio Conferencing Brochure, ClearOne Communications, Inc., 2002. |
Yamaha Conference Echo Canceller PJP-EC200 Brochure, Yamaha Corporation, Oct. 2009. |
Zhang, et al., “Multichannel Acoustic Echo Cancelation in Multiparty Spatial Audio Conferencing with Constrained Kalman Filtering,” 11th International Workshop on Acoustic Echo and Noise Control, Sep. 14, 2008. |
Affes et al., A Signal Subspace Tracking Algorithm for Microphone Array Processing of Speech, IEEE Trans. on Speech and Audio Processing, vol. 5, No. 5, Sep. 1997, pp. 425-437. |
Affes et al., A Source Subspace Tracking Array of Microphones for Double Talk Situations, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, May 1996, pp. 909-912. |
Affes et al., An Algorithm for Multisource Beamforming and Multitarget Tracking, IEEE Trans. on Signal Processing, vol. 44, No. 6, Jun. 1996, pp. 1512-1522. |
Affes et al., Robust Adaptive Beamforming via LMS-Like Target Tracking, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1994, pp. IV-269-IV-272. |
Benesty et al., Frequency-Domain Adaptive Filtering Revisited, Generalization to the Multi-Channel Case, and Application to Acoustic Echo Cancellation, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing Proceedings, Jun. 2000, pp. 789-792. |
Bruel & Kjaer, by J.J. Christensen and J. Hald, Technical Review: Beamforming, No. 1, 2004, 54 pgs. |
Buchner et al., Generalized Multichannel Frequency-Domain Adaptive Filtering: Efficient Realization and Application to Hands-Free Speech Communication, Signal Processing 85, 2005, pp. 549-570. |
Buchner et al., Multichannel Frequency-Domain Adaptive Filtering with Application to Multichannel Acoustic Echo Cancellation, Adaptive Signal Processing, 2003, pp. 95-128. |
Chan et al., Uniform Concentric Circular Arrays with Frequency-Invariant Characteristics—Theory, Design, Adaptive Beamforming and DOA Estimation, IEEE Transactions on Signal Processing, vol. 55, No. 1, Jan. 2007, pp. 165-177. |
Chu, Desktop Mic Array for Teleconferencing, 1995 International Conference on Acoustics, Speech, and Signal Processing, May 1995, pp. 2999-3002. |
Dahl et al., Acoustic Echo Cancelling with Microphone Arrays, Research Report 3/95, Univ. of Karlskrona/Ronneby, Apr. 1995, 64 pgs. |
Fan et al., Localization Estimation of Sound Source by Microphones Array, Procedia Engineering 7, 2010, pp. 312-317. |
Flanagan et al., Autodirective Microphone Systems, Acustica, vol. 73, 1991, pp. 58-71. |
Flanagan et al., Computer-Steered Microphone Arrays for Sound Transduction in Large Rooms, J. Acoust. Soc. Am. 78 (5), Nov. 1985, pp. 1508-1518. |
Gazor et al., Robust Adaptive Beamforming via Target Tracking, IEEE Transactions on Signal Processing, vol. 44, No. 5, Jun. 1996, pp. 1589-1593. |
Gazor et al., Wideband Multi-Source Beamforming with Adaptive Array Location Calibration and Direction Finding, 1995 International Conference on Acoustics, Speech, and Signal Processing, May 1995, pp. 1904-1907. |
Gentner Communications Corp., AP400 Audio Perfect 400 Audioconferencing System Installation & Operation Manual, Nov. 1998, 80 pgs. |
Herbordt, Combination of Robust Adaptive Beamforming with Acoustic Echo Cancellation for Acoustic Human/Machine Interfaces, Friedrich-Alexander University, 2003, 293 pgs. |
Julstrom et al., Direction-Sensitive Gating: A New Approach to Automatic Mixing, J. Audio Eng. Soc., vol. 32, No. 7/8, Jul./Aug. 1984, pp. 490-506. |
Kahrs, Ed., The Past, Present, and Future of Audio Signal Processing, IEEE Signal Processing Magazine, Sep. 1997, pp. 30-57. |
Kallinger et al., Multi-Microphone Residual Echo Estimation, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 2003, 4 pgs. |
Kobayashi et al., A Microphone Array System with Echo Canceller, Electronics and Communications in Japan, Part 3, vol. 89, No. 10, Feb. 2, 2006, pp. 23-32. |
Luo et al., Wideband Beamforming with Broad Nulls of Nested Array, Third Int'l Conf. on Info. Science and Tech., Mar. 23-25, 2013, pp. 1645-1648. |
McGowan, Microphone Arrays: A Tutorial, Apr. 2001, 36 pgs. |
Mohammed, A New Robust Adaptive Beamformer for Enhancing Speech Corrupted with Colored Noise, AICCSA, Apr. 2008, pp. 508-515. |
Mohammed, Real-time Implementation of an efficient RLS Algorithm based on IIR Filter for Acoustic Echo Cancellation, AICCSA, Apr. 2008, pp. 489-494. |
Oh et al., Hands-Free Voice Communication in an Automobile With a Microphone Array, 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 1992, pp. I-281-I-284. |
Pettersen, Broadcast Applications for Voice-Activated Microphones, db, Jul./Aug. 1985, 6 pgs. |
Plascore, PCGA-XR1 3003 Aluminum Honeycomb Data Sheet, 2008, 2 pgs. |
Polycom Inc., Vortex EF2211/EF2210 Reference Manual, 2003, 66 pgs. |
Polycom, Inc., Polycom SoundStructure C16, C12, C8, and SR12 Design Guide, Nov. 2013, 743 pgs. |
Ristimaki, Distributed Microphone Array System for Two-Way Audio Communication, Helsinki Univ. of Technology, Master's Thesis, Jun. 15, 2009, 73 pgs. |
Rombouts et al., An Integrated Approach to Acoustic Noise and Echo Cancellation, Signal Processing 85, 2005, pp. 849-871. |
Shure AMS Update, vol. 1, No. 1, 1983, 2 pgs. |
Shure AMS Update, vol. 1, No. 2, 1983, 2 pgs. |
Shure AMS Update, vol. 4, No. 4, 1997, 8 pgs. |
Tetelbaum et al., Design and Implementation of a Conference Phone Based on Microphone Array Technology, Proc. Global Signal Processing Conference and Expo (GSPx), Sep. 2004, 6 pgs. |
Tiete et al., SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization, Sensors, Jan. 23, 2014, pp. 1918-1949. |
Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002, 54 pgs., pp. i-xxv, 90-95, 201-230. |
Weinstein et al., LOUD: A 1020-Node Microphone Array and Acoustic Beamformer, 14th International Congress on Sound & Vibration, Jul. 2007, 8 pgs. |
Yamaha Corp., PJP-100H IP Audio Conference System Owner's Manual, Sep. 2006, 59 pgs. |
Zhang et al., Selective Frequency Invariant Uniform Circular Broadband Beamformer, EURASIP Journal on Advances in Signal Processing, vol. 2010, pp. 1-11. |
Tandon et al., An Efficient, Low-Complexity, Normalized LMS Algorithm for Echo Cancellation, 2nd Annual IEEE Northeast Workshop on Circuits and Systems, Jun. 2004, pp. 161-164. |
Van Compemolle, Switching Adaptive Filters for Enhancing Noisy and Reverberant Speech from Microphone Array Recordings, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Apr. 1990, pp. 833-836. |
Van Veen et al., Beamforming: a Versatile Approach to Spatial Filtering, IEEE ASSP Magazine, vol. 5, issue 2, Apr. 1988, pp. 4-24. |
Wang et al., Combining Superdirective Beamforming and Frequency-Domain Blind Source Separation for Highly Reverberant Signals, EURASIP Journal on Audio, Speech, and Music Processing, vol. 2010, pp. 1-13. |
Wung, A System Approach to Multi-Channel Acoustic Echo Cancellation and Residual Echo Suppression for Robust Hands-Free Teleconferencing, Georgia Institute of Technology, May 2015, 167 pgs. |
Yamaha Corp., MRX7-D Signal Processor Product Specifications, 2016, 12 pgs. |
Yamaha Corp., PJP-EC200 Conference Echo Canceller, Oct. 2009, 2 pgs. |
Yan et al., Convex Optimization Based Time-Domain Broadband Beamforming with Sidelobe Control, Journal of the Acoustical Society of America, vol. 121, No. 1, Jan. 2007, pp. 46-49. |
Yensen et al., Synthetic Stereo Acoustic Echo Cancellation Structure with Microphone Array Beamforming for VOIP Conferences, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Jun. 2000, pp. 817-820. |
Zhang et al., Multichannel Acoustic Echo Cancellation in Multiparty Spatial Audio Conferencing with Constrained Kalman Filtering, 11th International Workshop on Acoustic Echo and Noise Control, Sep. 2008, 4 pgs. |
Zheng et al., Experimental Evaluation of a Nested Microphone Array with Adaptive Noise Cancellers, IEEE Transactions on Instrumentation and Measurement, vol. 53, No. 3, Jun. 2004, p. 777-786. |
International Search Report and Written Opinion for PCT/US2018/013155 dated Jun. 8, 2018. |
Herbordt et al., GSAEC—Acoustic Echo Cancellation embedded into the Generalized Sidelobe Canceller, 10th European Signal Processing Conference, Sep. 2000, 5 pgs. |
Herbordt et al., Multichannel Bin-Wise Robust Frequency-Domain Adaptive Filtering and Its Application to Adaptive Beamforming, IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, No. 4, May 2007, pp. 1340-1351. |
Herbordt, et al., Joint Optimization of LCMV Beamforming and Acoustic Echo Cancellation for Automatic Speech Recognition, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, pp. III-77-III-80. |
Huang et al., Immersive Audio Schemes: The Evolution of Multiparty Teleconferencing, IEEE Signal Processing Magazine, Jan. 2011, pp. 20-32. |
International Search Report and Written Opinion for PCT/US2016/029751 dated Nov. 28, 2016, 21 pp. |
InvenSense Inc., Microphone Array Beamforming, Dec. 31, 2013, 12 pgs. |
Ishii et al., Investigation on Sound Localization using Multiple Microphone Arrays, Reflection and Spatial Information, Japanese Society for Artificial Intelligence, JSAI Technical Report, SIG-Challenge-B202-11, 2012, pp. 64-69. |
Ito et al., Aerodynamic/Aeroacoustic Testing in Anechoic Closed Test Sections of Low-speed Wind Tunnels, 16th AIAA/CEAS Aeroacoustics Conference, 2010, 11 pgs. |
Johansson et al., Robust Acoustic Direction of Arrival Estimation using Root-SRP-PHAT, a Realtime Implementation, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, 4 pgs. |
Johansson, et al., Speaker Localisation using the Far-Field SRP-PHAT in Conference Telephony, 2002 International Symposium on Intelligent Signal Processing and Communication Systems, 5 pgs. |
Kammeyer, et al., New Aspects of Combining Echo Cancellers with Beamformers, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, pp. III-137-III-140. |
Kellermann, A Self-Steering Digital Microphone Array, 1991 International Conference on Acoustics, Speech, and Signal Processing, Apr. 1991, pp. 3581-3584. |
Kellermann, Acoustic Echo Cancellation for Beamforming Microphone Arrays, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 281-306. |
Kellermann, Integrating Acoustic Echo Cancellation with Adaptive Beamforming Microphone Arrays, Forum Acusticum, Berlin, Mar. 1999, pp. 1-4. |
Kellermann, Strategies for Combining Acoustic Echo Cancellation and Adaptive Beamforming Microphone Arrays, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 1997, 4 pgs. |
Knapp, et al., The Generalized Correlation Method for Estimation of Time Delay, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-24, No. 4, Aug. 1976, pp. 320-327. |
Kobayashi et al., A Hands-Free Unit with Noise Reduction by Using Adaptive Beamformer, IEEE Transactions on Consumer Electronics, vol. 54, No. 1, Feb. 2008, pp. 116-122. |
Lebret et al., Antenna Array Pattern Synthesis via Convex Cptimization, IEEE Trans. on Signal Processing, vol. 45, No. 3, Mar. 1997, pp. 526-532. |
Lectrosonics, LecNet2 Sound System Design Guide, Jun. 2006, 28 pgs. |
Lee et al., Multichannel Teleconferencing System with Multispatial Region Acoustic Echo Cancellation, International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sep. 2003, pp. 51-54. |
Lindstrom et al., An Improvement of the Two-Path Algorithm Transfer Logic for Acoustic Echo Cancellation, IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, No. 4, May 2007, pp. 1320-1326. |
Liu et al., Adaptive Beamforming with Sidelobe Control: A Second-Order Cone Programming Approach, IEEE Signal Proc. Letters, vol. 10, No. 11, Nov. 2003, pp. 331-334. |
Lobo et al., Applications of Second-Order Cone Programming, Linear Algebra and its Applications 284, 1998, pp. 193-228. |
Marquardt et al., A Natural Acoustic Front-End for Interactive TV in the EU-Project DICIT, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Aug. 2009, pp. 894-899. |
Martin, Small Microphone Arrays with Postfilters for Noise and Acoustic Echo Reduction, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 255-279. |
Maruo et al., On the Optimal Solutions of Beamformer Assisted Acoustic Echo Cancellers, IEEE Statistical Signal Processing Workshop, 2011, pp. 641-644. |
Mohammed, A New Adaptive Beamformer for Optimal Acoustic Echo and Noise Cancellation with Less Computational Load, Canadian Conference on Electrical and Computer Engineering, May 2008, pp. 000123-000128. |
Myllyla et al., Adaptive Beamforming Methods for Dynamically Steered Microphone Array Systems, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Mar-Apr. 2008, pp. 305-308. |
Nguyen-Ky et al., An Improved Error Estimation Algorithm for Sterephonic Acoustic Echo Cancellation Systems, 1st International Conference on Signal Processing and Communication Systems, Dec. 2007, 5 pgs. |
Omologo, Multi-Microphone Signal Processing for Distant-Speech Interaction, Human Activity and Vision Summer School (HAVSS), INRIA Sophia Antipolis, Oct. 3, 2012, 79 pgs. |
Pados et al., An Iterative Algorithm for the Computation of the MVDR Filter, IEEE Trans. on Signal Processing, vol. 49, No. 2, Feb. 2001, pp. 290-300. |
Polycom, Inc., Setting Up the Polycom HDX Ceiling Microphone Array Series, https://support.polycom.com/content/dam/polycom-support/products/Telepresence-and-Video/HDX%20Series/setup-maintenance/en/ndx_ceiling_microphone_array_setting_up.pdf, 2010, 16 pgs. |
Polycom, Inc., Vortex EF2241 Reference Manual, 2002, 68 pgs. |
Powers, Proving Adaptive Directional Technology Works: A Review of Studies, The Hearing Review, http://www.hearingreview.com/2004/04/proving-adaptive-directional-technology-works-a-review-of-studies/, Apr. 2004, 8 pgs. |
Sabinkin et al., Estimation of Wavefront Arrival Delay Using the Cross-Power Spectrum Phase Technique, 132nd Meeting of the Acoustical Society of America, Dec. 1996, pp. 1-10. |
Rane Corp., Halogen Acoustic Echo Cancellation Guide, AEC Guide Version 2, Nov. 2013, 16 pgs. |
Sao et al., Fast LMS/Newton Algorithms for Sterophonic Acoustic Echo Cancellation, IEEE Transactions on Signal Processing, vol. 57, No. 8, Aug. 2009, pp. 2919-2930. |
Seuven et al., Joint Acoustic Echo Cancellation and Transfer Function GSC in the Frequency Domain, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 2004, pp. 412-415. |
Reuven et al., Joint Noise Reduction and Acoustic Echo Cancellation Using the Transfer-Function Generalized Sidelobe Canceller, Speech Communication, vol. 49, 2007, pp. 623-635. |
Reuven et al., Multichannel Acoustic Echo Cancellation and Noise Reduction in Reverberant Environments Using the Transfer-Function GSC, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP 07, Apr. 2007, pp. I-81-I-84. |
Sasaki et al., A Predefined Command Recognition System Using a Ceiling Microphone Array in Noisy Housing Environments, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 2178-2184. |
Sennheiser, New microphone solutions for ceiling and desk installation, https://en-us.sennheiser.com/news-new-microphone-solutions-for-ceiling-and-desk-installation, Feb. 2011, 2 pgs. |
Shure Inc., MX395 Low Profile Boundary Microphones, 2007, 2 pgs. |
Silverman et al., Performance of Real-Time Source-Location Estimators for a Large-Aperture Microphone Array, IEEE Transactions on Speech and Audio Processing, vol. 13, No. 4, Jul. 2005, pp. 593-606. |
Sinha, Ch. 9: Noise and Echo Cancellation, in Speech Processing in Embedded Systems, Springer, 2010, pp. 127-142. |
Soda et al., Introducing Multiple Microphone Arrays for Enhancing Smart Home Voice Control, The Institute of Electronics, Information and Communication Engineers, Technical Report of IEICE, Jan. 2013, 6 pgs. |
Symetrix, Inc., SymNet Network Audio Solutions Brochure, 2008, 32 pgs. |
Advanced Network Devices, IPSCM Ceiling Tile IP Speaker, Feb. 2011, 2 pgs. |
Armstrong World Industries, Inc., I-Ceilings Sound Systems Speaker Panels, 2002, 4 pgs. |
Arnold, et al., “A directional acoustic array using silicon micromachined piezoresistive microphones,” Journal of Acoustical Society of America, 113 (1), pp. 289-298, Jan. 2003 (10 pp.). |
Atlas Sound, I128SYSM IP Compliant Loudspeaker System with Microphone Data Sheet, 2009, 2 pgs. |
Atlas Sound,1‘X2’ IP Speaker with Micophone for Suspended Ceiling Systems, https://www.atlasied.com/i128sysm, retrieved Oct. 25, 2017, 5 pgs. |
Audio Technica, ES945 Omnidirectional Condenser Boundary Microphones, https://eu.audio-technica.com/resources/ES945%20Specifications.pdf, 2007, 1 pg. |
Audix Microphones, Audix Introduces Innovative Ceiling Mics, http://audixusa.com/docs_12/latest_news/EFplFkAAkIOtSdolke.shtml, Jun. 2011, 6 pgs. |
Audix Microphones, M70 Flush Mount Ceiling Mic, May 2016, 2 pgs. |
Beh et al., Combining Acoustic Echo Cancellation and Adaptive Beamforming for Achieving Robust Speech Interface in Mobile Robot, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 1693-1698. |
Benesty et al., A New Class of Doubletalk Detectors Based on Cross-Correlation, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 2, Mar. 2000, pp. 168-172. |
Benesty et al., Adaptive Algorithms for Mimo Acoustic Echo Cancellation, https://publik.tuwien.ac.at/files/pub-et_9085.pdf, 2003, pp. 1-30. |
Beyer Dynamic, Classis BM 32-33-34 DE-EN-FR 2016, 1 pg. |
Boyd, et al., Convex Optimization, Mar. 15, 1999, 216 pgs. |
Brandstein et al., Eds., Microphone Arrays: Signal Processing Techniques and Applications, Digital Signal Processing, Springer-Verlag Berlin Heidelberg, 2001, 401 pgs. |
BSS Audio, Soundweb London Application Guides, 2010, 120 pgs. |
Buchner et al., An Acoustic Human-Machine Interface with Multi-Channel Sound Reproduction, IEEE Fourth Workshop on Multimedia Signal Processing, Oct. 2001, pp. 359-364. |
Buchner et al., Full-Duplex Communication Systems Using Loudspeaker Arrays and Microphone Arrays, IEEE International Conference on Multimedia and Expo, Aug. 2002, pp. 509-512. |
Buchner et al., An Efficient Combination of Multi-Channel Acoustic Echo Cancellation with a Beamforming Microphone Array, International Workshop on Hands-Free Speech Communication (HSC2001), Apr. 2001, pp. 55-58. |
Buchner, Multichannel Acoustic Echo Cancellation, http://www.buchner-net.com/mcaec.html, Jun. 2011. |
Buck, Aspects of First-Order Differential Microphone Arrays in the Presence of Sensor Imperfections, Transactions on Emerging Telecommunications Technologies, vol. 13, No. 2, Mar.-Apr. 2002, pp. 115-122. |
Buck, et al., Self-Calibrating Microphone Arrays for Speech Signal Acquisition: A Systematic Approach, Signal Processing, vol. 86, 2006, pp. 1230-1238. |
Burton et al., A New Structure for Combining Echo Cancellation and Beamforming in Changing Acoustical Environments, IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, pp. 1-77-1-80. |
Campbell, Adaptive Beamforming Using a Microphone Array for Hands-Free Telephony, Virginia Polytechnic Institute and State University, Feb. 1999, 154 pgs. |
Chen et al., Design of Robust Broadband Beamformers with Passband Shaping Characteristics using Tikhonov Regularization, IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, No. 4, May 2009, pp. 665-681. |
Chen, et al., A General Approach to the Design and Implementation of Linear Differential Microphone Arrays, Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2013, 7 pgs. |
Chou, “Frequency-Independent Beamformer with Low Response Error,” 1995 International Conference on Acoustics, Speech, and Signal Processing, pp. 2995-2998, May 9, 1995, 4 pp. |
ClearOne Communications, XAP Audio Conferencing White Paper, Aug. 2002, 78 pgs. |
ClearOne, Beamforming Microphone Array, Mar. 2012, 6 pgs. |
ClearOne, Ceiling Microphone Array Installation Manual, Jan. 9, 2012, 20 pgs. |
Cook, et al., An Alternative Approach to Interpolated Array Processing for Uniform Circular Arrays, Asia-Pacific Conference on Circuits and Systems, 2002, pp. 411-414. |
Cox et al., Robust Adaptive Beamforming, IEEE Trans. Acoust., Speech, and Signal Processing, vol. ASSP-35, No. 10, Oct. 1987, pp. 1365-1376. |
CTG Audio, Ceiling Microphone CTG CM-01, Jun. 5, 2008, 2 pgs. |
CTG Audio, CM-01 & CM-02 Ceiling Microphones, 2017, 4 pgs. |
CTG Audio, Expand Your IP Teleconferencing to Full Room Audio, http://www.ctgaudio.com/expand-your-ip-teleconferencing-to-full-room-audio-while-conquering-echo-cancellation-issues.html, Jul. 29, 2014, 3 pgs. |
CTG Audio, Installation Manual, Nov. 21, 2008, 25 pgs. |
CTG Audio, White on White—Introducing the CM-02 Ceiling Microphone, https://ctgaudio.com/white-on-white-introducing-the-cm-02-ceiling-microphone/, Feb. 20, 2014, 3 pgs. |
Desiraju et al., Efficient Multi-Channel Acoustic Echo Cancellation Using Constrained Sparse Filter Updates in the Subband Domain, ITG-Fachbericht 252: Speech Communication, Sep. 2014, 4 pgs. |
DiBiase et al., Robust Localization in Reverberent Rooms, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 157-180. |
Do et al., A Real-Time SRP-PHAT Source Location Implementation using Stochastic Region Contraction (SRC) on a Large-Aperture Microphone Array, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP '07, , Apr. 2007, pp. I-121-I-124. |
Frost, III, An Algorithm for Linearly Constrained Adaptive Array Processing, Proc. IEEE, vol. 60, No. 8, Aug. 1972, pp. 926-935. |
Gannot et al., Signal Enhancement using Beamforming and Nonstationarity with Applications to Speech, IEEE Trans. on Signal Processing, vol. 49, No. 8, Aug. 2001, pp. 1614-1626. |
Gansler et al., A Double-Talk Detector Based on Coherence, IEEE Transactions on Communications, vol. 44, No. 11, Nov. 1996, pp. 1421-1427. |
Gentner Communications Corp., XAP 800 Audio Conferencing System Installation & Operation Manual, Oct. 2001, 152 pgs. |
Gil-Cacho et al., Multi-Microphone Acoustic Echo Cancellation Using Multi-Channel Warped Linear Prediction of Common Acoustical Poles, 18th European Signal Processing Conference, Aug. 2010, pp. 2121-2125. |
Gritton et al., Echo Cancellation Algorithms, IEEE ASSP Magazine, vol. 1, issue 2, Apr. 1984, pp. 30-38. |
Hamalainen et al., Acoustic Echo Cancellation for Dynamically Steered Microphone Array Systems, 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2007, pp. 58-61. |
Herbordt et al., A Real-time Acoustic Human-Machine Front-End for Multimedia Applications Integrating Robust Adaptive Beamforming and Stereophonic Acoustic Echo Cancellation, 7th International Conference on Spoken Language Processing, Sep. 2002, 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20180205830 A1 | Jul 2018 | US |