The present invention relates generally to chairs and spacers that are used in construction activities for the support of steel reinforcement members, and, in particular, to stackable chairs that are reliably able to retain post-tension cables, reinforcement bars, rods, mesh, and the like.
Chairs or spacers are commonly used in the construction industry for the support and positioning of post-tension cables and/or reinforcement bars (“rebars”) a proper distance above a surface. The bars or cables are usually arranged in rows or grids within an area into which concrete is to be poured. They are held loosely in place while concrete is placed around them. In normal use, a receiving area formed on the chair will contact and support the cable or bar while the base of the chair rests on a deck or on a grade.
Post-tension cables differ from ordinary rebars in that they are high tensile strength steel cables that are pulled tightly after the concrete is poured. The reinforcing cable or tendon is stretched by hydraulic jacks and securely anchored into place just after the concrete is poured. When the concrete has set, it holds the steel in a tight grip, preventing slippage or sagging. Proper spacing and arrangement of post-tension cables, as well as rebars, according to known engineering and architectural specifications, impacts the structural strength and integrity of the concrete structure. Additionally, proper spacing of the bars away from the outer surfaces of the concrete structure helps prevent moisture from reaching and deteriorating the bars.
Various U.S. and foreign patents have issued on devices relating to chairs. Some prior art chairs have desirable features, such as stackability, or retention means for the reinforcement members. For example, U.S. Pat. No. 5,729,949, to Hartzheim discloses a readily stackable chair with a hollow-conical body that minimizes the amount of shipping and storage space required. This chair has support legs with apertures between them to allow concrete to flow into the hollow interior of the chair. A worker can carry many chairs at one time and place numerous chairs at a construction site without repeated trips to a storage area.
Some prior art chairs include retention means or clips for use in connecting reinforcing members together. U.S. Pat. No. 3,673,753 discloses a chair designed to have the reinforcing rod snap into a clamp and be securely maintained therein by hooks. The chair of U.S. Pat. No. 6,276,108 has a clip mounted on a post. The clip has a pair of orthogonal sockets for connecting reinforcement rods together at right angles to each other. Both of these patents disclose retention means which are designed for use with intersecting or crossing bars, and provide an attractive alternative to the wires which are widely used for tying reinforcing bars together. However, these prior art chairs are not able to be stacked, and therefore require an inordinate amount of space for shipping and storage.
While the prior art chairs described above fulfill their respective, particular objectives, a further need exists for a chair that is adapted to not only secure reliably the reinforcement members but also be stackable for more efficient shipping and storage. Also, a need exists for such a chair that has the strength and stability to withstand demanding and rigorous work loads.
Accordingly, one objective of the present invention is to provide a chair that fixedly retains reinforcement members such as post-tension cables and rebars, thereby eliminating wire tying of the reinforcement members. Another objective of the invention is to provide post-tension chairs that can be stacked within one another to provide a more efficient method for packaging, storage, and shipment. It is a further objective of the present invention to provide a chair with a wide base that allows the chair to stand securely. It is also an objective to provide a plastic chair made of durable, non-corrosive materials that is easy to manufacture and easy to use with post-tension cables.
Briefly stated, these objectives are accomplished by a tapered post-tension intersection chair having a hollow body with a receiving area that fixedly retains the post-tension cables and a wide base which is adapted to rest on a flat support surface. An upper opening is defined by the receiving area and a lower opening is defined by the base. The body generally is tapered, having multiple straight sides and a polygonal cross-section, with an inner surface that is complementary to the outer surface. The chair may also have an elliptical, oval or hybrid cross-section, such as a square with rounded corners.
In accordance with one aspect of the invention, the receiving area secures and retains the post-tension cables in intersecting relationships to each other. In accordance with another aspect of the invention, the lower opening is larger than the upper opening, and the inner and outer surfaces are substantially complementary to each other, to allow a plurality of chairs to be stacked together, one inside the other, for storage and shipment.
In one embodiment of the invention, the receiving area has a plurality of notches, posts, and detents which cooperate to snap-fit or retain the post-tension cables within the receiving area. The posts project upwardly between the notches and terminate with the detents, which face horizontally inwardly. The reinforcement bars are inserted through the upper opening and over the detents, fitting into passageways which are defined by adjacent posts. The bars are then seated in intersecting relationships in the notches, retained in the passageways by the detents and posts.
In another embodiment of the invention, the base has a plurality of separate support legs extending downwardly from the receiving area. Adjacent support legs define apertures or holes between them, which allow poured concrete to pass fluidly through the chair. In yet another embodiment, a foot member extends horizontally outwardly from each of the legs. The foot member is preferably a singular flattened, disc-like platform that interconnects the legs, forming a solid band of material around the lower opening. Alternatively, each of the legs can be attached to an extending foot member, such that there are as many foot members as there are legs.
In accordance with another aspect of the invention, the receiving area and the base are integrally formed together from a durable, non-corrosive polymeric material. The chairs are easy to manufacture in this fashion, and packaging and storage of the chairs can be done quickly and easily because the chairs are also stackable. These and other aspects of the present invention will be more fully appreciated with respect to the following drawings and detailed description.
Referring now to
The chair of
Referring now to
In the embodiment shown in
As illustrated in
As a non-limiting example, a first cable is snap-fit over detents 26 and into passageways 30. Resistance will be met by dentate catches 40, but posts 24 are flexible/movable such that the narrowing within passageways 30 can be overcome by spreading posts 24 apart. The cable is then free to advance past dentate catches 40 and come to rest within notches 28. A second cable is then placed in an orthogonal relationship to the first member. This second member is secured by detents 26 and rests above dentate catches 40. The tops of dentate catches 40 will cooperate with the first cable to form a slot similar to notches 28 for the second cable. Dentate catches 40, therefore, add stability to the chair 8a by both securing the first cable within notches 28 and seating the second cable more securely within passageways 30.
Referring now to
Chair 8c further includes a plurality of projections 52, 54 extending upwardly from foot member 34 in a direction generally toward receiving portion 14. The projections may extend across the entire width of foot member 34 as depicted by projection 54, or may extend only part way across the width of foot member 34 as illustrated by projection 52. The projections 52, 54 help to maintain a separation between chairs 8c when they are stacked together, so that individual chairs 8c can be readily separated when desired. Projections 52, 54 also permit chairs 8c to be stacked together after being formed and while the chairs 8c are still hot, whereby the separation prevents confronting inner and outer surfaces 16, 18 from sticking together. In the exemplary embodiment shown, the projections 52, 54 are located adjacent legs 32 at generally diagonally opposite positions of foot member 12. In these locations, projections 52, 54 help to strengthen foot member 34, however, it will be recognized that projections 52, 54 may alternatively be formed in other locations on foot member 34.
Chair 8 is preferably constructed from a resilient polymeric material and, more specifically, is constructed of a plastic or resin material. Further, the chair is most preferably made of polypropylene and is one-piece injection molded. One of ordinary skill in the art will recognize that other materials exhibiting similar characteristics of being lightweight, strong and resilient can be used, such as polyethylene, a combination of polypropylene and polyethylene, and other known materials.
The present invention has been disclosed in detail in connection with the preferred embodiments. While there are many minor modifications that can be made without departing from the scope of the present invention, the scope of the present invention is defined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
2407249 | Bingham et al. | Sep 1946 | A |
3673753 | Anderson | Jul 1972 | A |
4655023 | Yung | Apr 1987 | A |
5107654 | Leonardis | Apr 1992 | A |
5729949 | Hartzheim | Mar 1998 | A |
5791095 | Sorkin | Aug 1998 | A |
6276108 | Padrun | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
575043 | Jan 1946 | GB |
Number | Date | Country | |
---|---|---|---|
20040098942 A1 | May 2004 | US |