Posterior stabilized prosthesis system

Information

  • Patent Grant
  • 11911279
  • Patent Number
    11,911,279
  • Date Filed
    Monday, October 12, 2020
    3 years ago
  • Date Issued
    Tuesday, February 27, 2024
    2 months ago
Abstract
According to one example, a posterior-stabilized femoral prosthesis for a knee arthroplasty. The femoral prosthesis can include medial and lateral condyles, a femoral cam and a recess. The medial and lateral condyles can be shaped to articulate with a tibial articular surface of a tibial bearing component through a range of motion, in which full extension corresponds to zero degrees flexion of a knee joint and positive flexion corresponds to greater than zero degrees flexion of the knee joint. In a sagittal plane, the medial and lateral condyles can define medial and lateral multi-radius curves, respectively. The medial multi-radius curve can have a single common radius swept through a first angular extent to define a single arc length that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive.
Description
FIELD

The present subject matter relates to orthopedic procedures and, more particularly, to prostheses, systems and methods used in knee arthroplasties.


BACKGROUND

Orthopedic procedures and prostheses are commonly utilized to repair and/or replace damaged bone and tissue in the human body. For example, a knee arthroplasty can be used to restore natural knee function by repairing damaged or diseased articular surfaces of the femur and/or tibia. An incision is made into the knee joint to expose the bones comprising the joint. Cut guides are used to guide the removal of the articular surfaces that are to be replaced. Prostheses are used to replicate the articular surfaces. Knee prostheses can include a femoral prosthesis implanted on the distal end of the femur, which articulates with a tibial bearing component and a tibial component implanted on the proximal end of a tibia to replicate the function of a healthy natural knee. Various types of procedures are known including a total knee arthroplasty (TKA), where all of the articulating compartments of the joint are repaired with prosthetic components.


OVERVIEW

This disclosure pertains generally to prostheses and systems for knee arthroplasty. The present inventors have recognized, among other things, improvements to femoral prostheses (sometimes called femoral prostheses) and tibial bearing components (sometimes called tibial bearing prostheses, tibial bearings, bearings, poly or bearing components). In particular, the present inventors have focused on posterior-stabilized (PS) prostheses, which include a spine on the tibial bearing component and a cam on the femoral prosthesis that are configured to interact together when the femoral prosthesis is in flexion to provide further stability to the knee joint. PS prostheses are typically utilized in instances where one or more of the cruciate ligaments (e.g, ACL and PCL) of the knee joint have suffered degeneration and must be eliminated. PS prostheses have particular design considerations and kinematics, which differ from other types of knee prostheses such as ultra-congruent (UC) and cruciate-retaining (CR) prostheses, for example.


Considering criteria specific to PS prostheses, the present inventors have designed femoral prostheses and tibial bearing components that allow for greater joint stability, improved kinematics during flexion of the knee joint, and increased compatibility with other known prosthesis designs. Thus, with regard to the femoral prostheses disclosed the present inventors propose an example where the medial and lateral condyles are shaped to articulate with a tibial articular surface of a tibial bearing component through a range of motion. In a sagittal plane, the medial and lateral condyles can define medial and lateral multi-radius curves, respectively. The medial multi-radius curve can have a single common radius swept through a first angular extent to define a single arc length that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive. A posterior portion (shown and described subsequently) of the medial and lateral condyles can have a thickness of 9 mm. In one example, the medial multi-radius curve can have a second radius swept through a second angular extent to define a second arc length that extends from between substantially 90 degrees flexion to beyond 100 degrees flexion. The medial and lateral condyles can be symmetrically shaped such that lateral condyle can have a lateral multi-radius curve of a same shape as the medial multi-radius curve. Thus, the lateral multi-radius curve can have the single common radius swept through the first angular extent to define the single arc length that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive.


According to disclosed examples, in combination the femoral prosthesis and the tibial bearing component can be configured such that an area of contact between the medial condyle and the tibial articular surface includes a medial dwell point of the tibial articular surface when the femoral prosthesis is in full extension. The femoral prosthesis and the tibial bearing component can be configured such that the area of contact between the medial condyle and the tibial articular surface does not shift during the range of motion between zero degrees flexion and substantially 100 degrees flexion and includes the medial dwell point during the range of motion between zero degrees flexion and substantially 100 degrees flexion. A spine of the tibial bearing component and a cam of the femoral prosthesis can make initial contact when the range of motion reaches substantially 100 degrees flexion. A medial compartment of the tibial bearing component can be configured to have between about a 1.05:1 congruence ratio and about a 1.5:1 congruence ratio with the medial condyle through the first angular extent, the congruence ratio can comprise a ratio of the similarity between a sagittal radius of the medial compartment and the single common radius of the medial condyle.


Regarding the tibial bearing component, the medial compartment can be configured to have the medial dwell point a distance between about 52% and about 60% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component. The lateral compartment can be configured to have a lateral dwell point a distance between about 59% and about 62% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


Additionally, the present inventors have designed a family of tibial bearing components that can have at least eleven different stock sizes so as to achieve more compatible combinations when used with a family of tibia prostheses that can have at least nine different stock sizes and a family of femoral prostheses that can have at least twelve different stock sizes. Due to the number of components and the designed compatibility between various sizes in the respective families, thirty three combinations of the at least eleven different stock sizes of the family of tibial bearing components can be compatible for operable use with the at least twelve different stock sizes of the family of femoral prostheses.


To further illustrate the apparatuses and systems disclosed herein, the following non-limiting examples are provided:


Example 1 is a posterior-stabilized femoral prosthesis for a knee arthroplasty. The femoral prosthesis can include medial and lateral condyles, a femoral cam and a recess. The medial and lateral condyles can be shaped to articulate with a tibial articular surface of a tibial bearing component through a range of motion, in which full extension corresponds to zero degrees flexion of a knee joint and positive flexion corresponds to greater than zero degrees flexion of the knee joint. In a sagittal plane, the medial and lateral condyles can define medial and lateral multi-radius curves, respectively. The medial multi-radius curve can have a single common radius swept through a first angular extent to define a single arc length that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive. The femoral cam and the recess can be positioned between the medial and lateral condyles. The femoral cam can be positioned posterior of the recess.


In Example 2, the femoral prosthesis of Example 1, wherein an area of contact can be between the medial condyle and the tibial articular surface can include a medial dwell point of the tibial articular surface when the femoral prosthesis is in full extension.


In Example 3, the femoral prosthesis of Example 2, wherein the area of contact between the medial condyle and the tibial articular surface may not shift position during the range of motion between zero degrees flexion and substantially 100 degrees flexion, and wherein the area of contact can include the medial dwell point during the range of motion between zero degrees flexion and substantially 100 degrees flexion.


In Example 4, the femoral prosthesis of any one or any combination of Examples 1-3, wherein a posterior portion of the medial and lateral condyles can have a thickness of 9 mm.


In Example 5, the femoral prosthesis of any one or any combination of Examples 1-4, further comprising the tibial bearing component defining the tibial articular surface, the tibial articular surface can optionally include: a medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral prosthesis, respectively; and a spine extending proximally from the articular surface and configured to be received in the recess at 0 degrees flexion, the spine spaced posteriorly from an anterior edge of the tibial bearing periphery, the spine disposed between the medial and lateral compartments; wherein the spine and cam make initial contact when the range of motion reaches substantially 100 degrees flexion.


In Example 6, the femoral prosthesis of Example 5, wherein the medial compartment can be configured to have the medial dwell point a distance between about 52% and about 60% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 7, the femoral prosthesis of Example 5, wherein the lateral compartment can be configured to have a lateral dwell point a distance between about 59% and about 62% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 8, the femoral prosthesis of any one or any combination of Example 5-7, wherein the medial compartment can be configured to have between about a 1.05:1 congruence ratio and about a 1.5:1 congruence ratio with the medial condyle through the first angular extent, the congruence ratio comprising a ratio of the similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.


In Example 9, a system of posterior-stabilized knee prostheses for a knee arthroplasty, the system can optionally comprise: a tibial bearing component having a tibial articular surface with a medial compartment and a lateral compartment, wherein the tibial bearing component has a spine extending proximally from the tibial articular surface and positioned between the medial and lateral compartments, and wherein the medial compartment has a medial dwell point; a femoral prosthesis having a cam and medial and lateral condyles spaced to either side of the cam, wherein the medial condyle is configured for articulation with the medial compartment and lateral condyle is configured for articulation with the lateral compartment, and wherein femoral prosthesis is configured to articulate through a range of motion relative to the tibial bearing component, such range of motion includes a full extension that corresponds to zero degrees flexion of a knee joint and positive flexion that corresponds to greater than zero degrees flexion of the knee joint, and wherein an area of contact between the medial condyle and the medial compartment does not shift position during the range of motion between zero degrees flexion and substantially 100 degrees flexion and the area of contact includes the medial dwell point during the range of motion between zero degrees flexion and substantially 100 degrees flexion.


In Example 10, the system of Example 9, wherein in a sagittal plane the medial and lateral condyles can define medial and lateral multi-radius curves, respectively, and wherein the medial multi-radius curve can have a single common radius swept through a first angular extent to define a single arc length that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive.


In Example 11, the system of any one or any combination of Examples 9-10, wherein a posterior portion of the medial and lateral condyles can have a thickness of 9 mm.


In Example 12, the system of any one or any combination of Examples 9-11, wherein the spine and cam can both be configured to make initial contact when the range of motion reaches substantially 100 degrees flexion.


In Example 13, the system of any one or any combination of Examples 9-12, wherein the medial compartment can be configured to have the medial dwell point a distance between about 52% and about 60% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 14, the system of any one or any combination of Examples 9-12, wherein the lateral compartment can be configured to have a lateral dwell point a distance between about 59% and about 62% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 15, the system of any one or any combination of Examples 9-14, wherein the medial compartment can be configured to have between about a 1.05:1 congruence ratio and about a 1.5:1 congruence ratio with the medial condyle through the first angular extent, the congruence ratio comprising a ratio of the similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.


In Example 16, a system of posterior-stabilized knee prostheses for a knee arthroplasty, the system can optionally comprise: a tibial bearing component having a tibial articular surface with a medial compartment and a lateral compartment, wherein the tibial bearing component has a spine extending proximally from the tibial articular surface and positioned between the medial and lateral compartments, and wherein the medial compartment has a medial dwell point; a femoral prosthesis having a cam and medial and lateral condyles spaced to either side of the cam, wherein the medial condyle is configured for articulation with the medial compartment and lateral condyle is configured for articulation with the lateral compartment, and wherein femoral prosthesis is configured to articulate through a range of motion relative to the tibial bearing component, such range of motion includes a full extension that corresponds to zero degrees flexion of a knee joint and positive flexion that corresponds to greater than zero degrees flexion of the knee joint, wherein an area of contact between the medial condyle and the medial compartment includes the medial dwell point when the femoral prosthesis is in full extension, and wherein the spine and cam are both configured to make initial contact when the range of motion reaches substantially 100 degrees flexion.


In Example 17, the system of Example 16, wherein the area of contact between the medial condyle and the tibial articular surface may not shift during the range of motion between zero degrees flexion and substantially 100 degrees flexion and can include the medial dwell point during the range of motion between zero degrees flexion and substantially 100 degrees flexion.


In Example 18, the system of any one or any combination of Examples 16-17, wherein in a sagittal plane the medial and lateral condyles can define medial and lateral multi-radius curves, respectively, and wherein the medial multi-radius curve can have a single common radius swept through a first angular extent to define a single arc length that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive.


In Example 19, the system of any one or any combination of Examples 16-18, wherein the medial compartment can be configured to have the medial dwell point a distance between about 52% and about 60% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.


In Example 20, the system of any one or any combination of Examples 16-19, wherein a posterior portion of the medial and lateral condyles can have a thickness of 9 mm.


In Example 21, the apparatuses or systems of any one or any combination of Examples 1-20 can optionally be configured such that all elements or options recited are available to use or select from.


These and other examples and features of the present apparatuses and systems will be set forth in part in the following Detailed Description. This Overview is intended to provide non-limiting examples of the present subject matter—it is not intended to provide an exclusive or exhaustive explanation. The Detailed Description below is included to provide further information about the present apparatuses and systems.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals can describe similar components in different views. Like numerals having different letter suffixes can represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various examples discussed in the present document.



FIG. 1 is an exploded view of a femoral prosthesis and a tibial bearing component in accordance with an example of the present application.



FIG. 2 is a perspective view of the femoral prostheses assembled with the tibial bearing component with the knee joint in full extension in accordance with an example of the present application.



FIG. 2A is a plan view of posterior portions of the femoral prosthesis and the tibial bearing component of FIG. 2.



FIG. 2B is a plan view from a proximal position of the femoral prosthesis and the tibial bearing component of FIG. 2.



FIG. 3A is a cross-sectional view of the femoral prosthesis and the tibial bearing component of FIG. 2 taken in a sagittal plane along a medial multi-radius curve of the femoral prosthesis in accordance with an example of the present application.



FIG. 3B is a cross-sectional view of the femoral prosthesis and the tibial bearing component of FIG. 2 taken in the sagittal plane along a lateral multi-radius curve of the femoral prosthesis in accordance with an example of the present application.



FIG. 4 is a table comparing radii of curvatures for various portions of the medial multi-radius curve of the femoral prosthesis as presently disclosed with other commercially available femoral prostheses in accordance with an example of the present application.



FIG. 5 is a perspective view of the tibial bearing component according to one example of the present application.



FIG. 5A is a view in a sagittal plane extending through the medial compartment showing an outline of shape of the articular surface and other portions for various tibial bearing components including the tibial bearing component of FIGS. 2 and 5 in comparison with two commercially available tibial bearing components of similar size according to one example of the present application.



FIG. 5B is a view in a sagittal plane extending through the lateral compartment showing an outline of shape of the articular surface and other portions for various tibial bearing components including the tibial bearing component of FIGS. 2 and 5 in comparison with two commercially available tibial bearing components of similar size according to one example of the present application.



FIG. 5C is a view in a sagittal plane extending through the spine and intercondylar space showing an outline of shape of the spine and intercondylar space for various tibial bearing components including the tibial bearing component of FIGS. 2 and 5 in comparison with two commercially available tibial bearing components of similar size according to one example of the present application.



FIG. 6 shows a view in a sagittal plane extending through the cam showing an outline of shape of the cam for various tibial bearing components including the femoral prostheses of FIG. 2 in comparison with two commercially available femoral prostheses of similar size according to one example of the present application.



FIGS. 7A and 7B illustrate laxity envelopes and allowable anterior-posterior translation of the femoral prosthesis with the tibial bearing component of FIG. 2 as compared with the two commercially available femoral prosthesis and tibial bearing component systems in accordance with an example of the present application.



FIGS. 8A and 8B illustrate a width of the laxity envelopes of the femoral prosthesis with the tibial bearing component of FIG. 2 as compared with the two commercially available femoral prosthesis and tibial bearing component systems in accordance with an example of the present application.



FIG. 9 is a plan view of a proximal surface of the tibial bearing component as previously disclosed further illustrating features such as the spine, the medial compartment and the lateral compartment in accordance with an example of the present application.



FIG. 10 shows a sizing chart for a family of tibial bearing components relative to a family of femoral prostheses, tibial prostheses and tibial bearing components in accordance with an example of the present application.



FIG. 11 shows sagittal views illustrating contact areas as indicated by arrows between the medial femoral condyle of the femoral prosthesis and the medial compartment of the tibial bearing component shown at different degrees of flexion of the femoral prosthesis relative to the tibial bearing component in accordance with an example of the present application.





DETAILED DESCRIPTION

The present application relates femoral prostheses, tibial bearing components and systems including such prostheses and components.


In a TKA, both of the medial and lateral condyles of the femur can be resected. Similarly, the tibia can be resected to remove the medial articular surface and the lateral articular surface using a cutting apparatus. Other portions of the knee, e.g., the intercondylar eminence, can also be removed. Depending on the type of TKA, features such as the ligaments can be spared or can also be removed. As discussed above, in a PS TKA, the ligaments such as the posterior cruciate ligament PCL are removed. Prostheses can be implanted on the femur and the tibia and a bearing component can be placed between the femoral prosthesis and the tibial prosthesis to provide for the replaced articular surfaces.



FIG. 1 shows a system 10 that includes a femoral prosthesis 12 and a tibial bearing component 14. The femoral prosthesis 12 can include a lateral condyle 16, a medial condyle 18, bone interfacing surfaces 20, and a cam 22. The tibial bearing component 14 can include an articular surface 24, an intercondylar region 26, a periphery 28 and a distal surface 30. The articular surface 24 can include a lateral compartment 32 and a medial compartment 34. The intercondylar region 26 can include a spine 36.


The femoral prosthesis 12 can be implanted on a respected femur (not shown) via the bone interfacing surfaces 20. The tibial bearing component 14 can attach to a tibial prosthesis (not shown) that is implanted on a resected tibia (not shown). The femoral prosthesis 12 and the tibial bearing component 14 are configured to articulate together through a range of motion for the femoral prosthesis 12. This range of motion can include knee joint flexion and extension as will be illustrated and described subsequently.


The lateral condyle 16 is spaced from the medial condyle 18 in a medial-lateral direction by a sulcus space and in some portions of the femoral prosthesis 12 by a recess 38. The femoral prosthesis 12 can have an anterior end portion 40 and a posterior end portion 42. The cam 22 can be disposed at the posterior end portion 42 proximal of the recess 38. The cam 22 can extend between the lateral condyle 16 and the medial condyle 18.


The lateral condyle 16 can be arcuate in shape having a radius of curvature along an articular surface 44 as will be illustrated and discussed subsequently. The lateral condyle 16 can be configured to be received by the lateral compartment 32 for articulation therewith when the femoral prosthesis 12 is assembled atop the tibial bearing component 14 such as shown in FIG. 2. Similarly, the medial condyle 18 can be arcuate in shape along the articular surface 44 having a radius of curvature as will be illustrated and discussed subsequently. The medial condyle 18 can be configured to be received by the medial compartment 34 for articulation therewith when the femoral prosthesis 12 is assembled atop the tibial bearing component 14 such as shown in FIG. 2.


According to the example of FIG. 1, the lateral condyle 16 can be symmetrically shaped relative to the medial condyle 18. This results in the lateral condyle 16 and medial condyle 18 sharing the same radius of curvature resulting in each having a same shape for a multi-radius curve as shown and described subsequently.


For the tibial bearing component 14, the articular surface 24 comprises a proximal surface for the tibial bearing component 14 and can be configured to interface with the lateral and medial condyles 16 and 18. The articular surface 24 and the intercondylar region 26 can be opposed to and spaced from the distal surface 30 by the periphery 28. The periphery 28 and/or the distal surface 30 can include features 45 for attachment to the tibial prosthesis. The features 45 can be shaped to mate with corresponding features of a sidewall of a tibial tray (now shown) such as to create an interference fit, for example.


As discussed above, the articular surface 24 can include the lateral compartment 32 and the medial compartment 34. The lateral and medial compartments 32 and 34 can be dish shaped with a curvature in a proximal-distal and the medial-lateral directions. The lateral compartment 32 can be spaced in the medial-lateral direction from the medial compartment 34.


The intercondylar region 26 can be positioned between the lateral and medial compartments 32 and 34. The intercondylar region 26 can comprise a raised prominence relative to the lateral and medial compartments 32 and 34. The spine 36 can be part of the intercondylar region 26 positioned between the lateral and medial compartments 32 and 34. The spine 36 can also be spaced posteriorly from an anterior edge of the periphery 28. The spine 36 can comprise a projection extending generally proximally from the intercondylar region 26. The spine 36 can be canted anterior-to-posterior as will be subsequently shown. The spine 36 can configured to be received in the recess 38 at 0 degrees flexion as shown in FIGS. 2A and 2B.


Further details relating to aspects of the construct of the femoral prosthesis 12 and tibial bearing component 14 can found in U.S. Pat. Nos. 8,858,643, 9,072,607, 8,690,954, 8,764,838, 8,932,365 and United States Application Publication No. 2012/0323336, the disclosures of which are incorporated by reference in their entirety.


According to one example, the femoral component 12 can be designed to be compatible with other commercially available tibial bearing components such as those of the Zimmer Biomet Persona® knee system manufactured by Zimmer Biomet Holding, Inc. of Warsaw, Ind. Similarly, according to one example, the tibial bearing component 14 can be designed to be compatible with other commercially available femoral prostheses such as those of the Zimmer Biomet Persona® knee system.



FIGS. 2 to 2B show the femoral prosthesis 12 assembled atop the tibial bearing component 14. In FIGS. 2 to 2B, the knee joint is illustrated in full extension (corresponding to 0 degrees flexion).


As shown in the example of FIGS. 2-2B, the tibial bearing component 14 is compatible with and configured for operable use to articulate with the femoral prosthesis 12. In particular, the articular surface 24 of the tibial bearing component 14 can be configured to receive the articular surface 44 of the femoral prosthesis 12 thereon and can be configured to allow for articular movement of the femoral prosthesis 12 relative thereto through the range of motion in a manner that simulates the kinematics of a natural knee (e.g., allow for rollback of the femoral prosthesis 12 in flexion including anterior-posterior translation, engagement of the spine 36 with the cam 22 (features shown in FIGS. 2A and 2B), etc.)



FIG. 3A shows a sagittal cross-section of the tibial bearing component 14 and the femoral prosthesis 12 with the cross-section taken through the medial condyle 18. In FIG. 3A, the medial condyle 18 defines a medial multi-radius curve 46 that is part of the articular surface 44.


As shown in FIG. 3A, the medial condyle 18 can have a high flex portion 48, a posterior portion 50, an extension to mid-flexion portion 52, and a part of an anterior region 54. As shown in the example of FIG. 3, the posterior portion 50 and the extension to mid-flexion portion 52 can share a single common radius R1. Indeed, in the example of FIG. 3A, the posterior portion 50, the extension to mid-flexion portion 52, and the part of the anterior region 54 can share the single common radius R1.


In FIG. 3A, the posterior portion 50 extends to 90 degrees flexion, inclusive. The high flex portion 48 extends between substantially 90 degrees flexion to 170 degrees. The extension to mid-flexion portion 52 can extend from the posterior portion 50 to 0 degrees flexion (0 degrees flexion comprising full extension). The part of the anterior region 54 can extend from substantially 0 degrees flexion to −20 degrees flexion, inclusive, for example.


According to the example shown, the medial multi-radius curve 46 can have the single common radius R1 swept through a first angular extent to define a single arc length A that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive. The single arc length A includes the posterior portion 50, the extension to mid-flexion portion 52 and the part of the anterior region 54. Thus, the medial multi-radius curve 46 can have the single common radius R1 swept through a first portion of the first angular extent to define a first part the single arc length A that extends from between substantially 0 degrees flexion to substantially 90 degrees flexion. Additionally, the medial multi-radius curve 46 can have the single common radius R1 swept through a second portion of the first angular extent to define a second part the single arc length A that extends from between substantially −20 degrees flexion to substantially 0 degrees flexion.


In the example of FIG. 3A, the high flex portion 48 can have a second radius R2 that differs from that of the single common radius R1. In particular, the second radius R2 can be smaller than the single common radius R1. Such a configuration can avoid or reduce the likelihood of a kinematic conflict between the cam 22 (features shown in FIGS. 2A and 2B) and the spine 36. This can allow for a transition region in the high flex portion 48 of substantially 10 degrees of flexion (as measured from the end of the posterior portion 50 at substantially 90 degrees) as the spine 36 and the cam can be configured to make initial contact with the range of motion reaches substantially 100 degrees flexion with the tibial bearing component 14 positioned at a 5 degree anterior-to-posterior slope. If the tibial bearing component 14 was positioned at another angle (e.g., 3 degrees of slope anterior-to-posterior) as can occur in other examples, the cam and spine 36 would make initial contact at a different degree of flexion. For example, with the tibial bearing component 14 positioned at 3 degrees of slope anterior-to-posterior, the cam and spine 36 would make initial contact at an angle of flexion less than 100 degrees.



FIG. 3B shows a sagittal cross-section of the femoral prosthesis 12 with the cross-section taken through the lateral condyle 16. In FIG. 3B, the lateral condyle 16 defines a lateral multi-radius curve 56 that is part of the articular surface 44. As discussed previously the lateral condyle 16 can by symmetrically shaped with respect to the medial condyle 18. Thus, the lateral condyle 16 can have a same shape as the medial condyle 18.


As a result of the symmetry in geometry between the medial condyle 18 and the lateral condyle 16, the lateral multi-radius curve 56 can have a same shape as the medial multi-radius curve 46. The medial condyle 16 can have the high flex portion 48, the posterior portion 50, the extension to mid-flexion portion 52, and the part of the anterior region 54, as previously discussed. As shown in the example of FIG. 3B, the posterior portion 50 and the extension to mid-flexion portion 52 can share the single common radius R1. Indeed, in the example of FIG. 3B, the posterior portion 50, the extension to mid-flexion portion 52, and the part of the anterior region 54 can share the single common radius R1.


In FIG. 3B, the posterior portion 50 extends to 90 degrees flexion, inclusive. The high flex portion 48 extends between substantially 90 degrees flexion to greater degrees of flexion (e.g., 170 degrees). The extension to mid-flexion portion 52 can extend from the posterior portion 50 to 0 degrees flexion (0 degrees flexion comprising full extension). The part of the anterior region 54 can extend from substantially 0 degrees flexion to −20 degrees flexion, inclusive, for example.


According to the example shown, the lateral multi-radius curve 56 can have the single common radius R1 swept through a first angular extent to define a single arc length A that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive. The single arc length A includes the posterior portion 50, the extension to mid-flexion portion 52 and the part of the anterior region 54. Thus, the lateral multi-radius curve 56 can have the single common radius R1 swept through a first portion of the first angular extent to define a first part the single arc length A that extends from between substantially 0 degrees flexion to substantially 90 degrees flexion. Additionally, the lateral multi-radius curve 56 can have the single common radius R1 swept through a second portion of the first angular extent to define a second part the single arc length A that extends from between substantially −20 degrees flexion to substantially 0 degrees flexion.



FIG. 4 shows a table comparing the sagittal radii of the medial multi-radius curve 46 (FIG. 3A) of the present femoral prostheses 12 with the medial multi-radius curve 46 of various commercially available femoral prostheses of comparable size for the high flex portion 48, the posterior portion 50, the extension to mid-flexion portion 52, and the part of the anterior region 54, as previously discussed. In the table of FIG. 4, the commercially available femoral prostheses are labeled “Comp. A” to “Comp. F”, while the femoral prosthesis 12 is labeled as “Comp. 12”.


The table of FIG. 4 shows the single common radius R1 (illustrated in FIGS. 3A and 3B) is shared by the posterior portion 50, the extension to mid-flexion portion 52, and the part of the anterior region 54 for the medial multi-radius curve as previously described. As shown in the table, none of the commercially available femoral prostheses exhibit similar geometry of the medial multi-radius curve. Indeed, all the commercially available femoral prostheses include three separate and distinct radii for the high flex portion 48, the posterior portion 50, the extension to mid-flexion portion 52, and the part of the anterior region 54.



FIGS. 5 to 5C show aspects of the construction of the tibial bearing component 14 according to one example. FIG. 5 shows the tibial bearing component 14 as previously described including include the articular surface 24, the intercondylar region 26, the periphery 28 and the distal surface 30 as previously described in reference to FIG. 1. The articular surface 24 can include the lateral compartment 32 and the medial compartment 34. The intercondylar region 26 can include the spine 36.


Unlike the lateral and medial condyles 16 and 18, the lateral compartment 32 and the medial compartment 34 can have a different shape relative to one another as illustrated in the example of FIGS. 5A and 5B.



FIG. 5A shows a sagittal cross-section through the medial compartment 34 of the tibial bearing component 14. FIG. 5A shows a comparison of the articular surface 24 in the medial compartment 34 overlaid with the corresponding articular surfaces in the medial compartments of two commercially available tibial bearing components (indicated as component 60 and component 62). Component 60 can comprise a cruciate retaining tibial bearing component of the Persona@ knee system, for example.


As shown in FIG. 5A, the tibial bearing component 14 in the medial compartment 34 can have an anterior lip 64 at the transition between an anterior portion of the articular surface 24 and the periphery 28, and similarly, can have a posterior lip 66 at the transition between a posterior portion of the articular surface 24 and the periphery 28. As shown in FIG. 5A, a height of the anterior lip 64 and the posterior lip 66 exceeds those of components 60 and 62. This configuration gives the articular surface 24 a steeper inclination as compared to components 60 and 62 as the articular surface 24 has a similar geometry to those of components 60 and 62 in a mid-portion.



FIG. 5B shows a sagittal cross-section through the lateral compartment 32 of the tibial bearing component 14. FIG. 5B shows a comparison of the articular surface 24 in the lateral compartment 32 overlaid with the corresponding articular surfaces in the lateral compartments of component 60 and component 62. For the articular surface 24 in the lateral compartment 32, this configuration can be very similar to that of component 60, for example. The articular surface 24 in the lateral compartment 32 can have an anterior lip 68 that is slightly greater in height than that of components 60 and 62. However, a height of a posterior lip 70 height can be comparable to that of component 60.



FIG. 5C shows a sagittal cross-section through the intercondylar region 26 including the spine 36 of the tibial bearing component 14. FIG. 5C shows a comparison of the intercondylar region 26 overlaid with the corresponding intercondylar regions of component 60 and component 62. As shown in FIG. 5C, an anterior facing surface 72 of the spine 36 for the tibial bearing component 14 can be disposed rearward of the comparable surface of components 60 and 62.



FIG. 6 shows a sagittal cross-section through the cam 22 of the femoral prosthesis 22. FIG. 6 shows a comparison of the cam 22 overlaid with the corresponding cams of components 74 and 76 (femoral prostheses designed to be operably used with component 60 and component 62, respectively). As shown in FIG. 6, the cam 22 can have a reduced cross-sectional area and a surface 78 of the cam 22 for the femoral prosthesis 12 that is configured to make contact with the spine can be disposed rearward of the comparable surface of components 74 and 76.



FIGS. 7A-8B illustrate the femoral prosthesis 12 and the tibial bearing component 14 previously discussed and illustrated can provide for a more stable medial condyle in terms of laxity ranges. A sizing scheme is presented in FIG. 10 for sizing various of the tibial bearing components and femoral prostheses of the respective families in a manner such that they can be used in combination to better achieve the desired more stable medial condyle.


In FIGS. 7A and 7B, the femoral prosthesis 12 (indicated as Comp. 12) in particular the lateral condyle (FIG. 7A) and the medial condyle (FIG. 7B) are illustrated having different average anterior-posterior laxity from 0° to 120° flexion as shown in the graphs of FIGS. 7A and 7B, the laxity can comprise a degree of change in the anterior-posterior position (under various applied load scenarios) of the lateral condyle and the medial condyle plotted against degrees of flexion of the femoral prosthesis. The graph 100 of FIG. 7A and graph 102 of FIG. 7B, are plots of the lateral condyle and the medial condyle, respectively, for the posterior stabilized femoral component 12 (Comp. 12) articulating through the range of motion with the tibial bearing component previously illustrated and discussed. As exhibited by the graph 102 of FIG. 7B the medial condyle when used with the tibial bearing component's medial compartment can be relatively more stabilized (has a tighter laxity area 103 as indicated) when measured against commercially available PS knee system designs (as indicated by areas 104 and 106 of FIG. 7B), where area 104 indicates the envelope for a PS femoral prosthesis (previously illustrated and described as component 74) and tibial bearing component (previously illustrated and described as component 60) of the Persona® knee system and area 106 comprises the laxity of the components 62 and 76 used in combination.



FIGS. 8A and 8B show the average width of the laxity range for the various systems of FIGS. 7A and 7B. Again, in FIG. 8B, the average width of the laxity range indicated by line 108 for the medial condyle of the femoral prosthesis (Comp. 12) with the medial compartment of the tibial bearing component as previously shown and described is lower than that of the other commercially available systems previously described in reference to FIGS. 7A and 7B.



FIG. 9 is a plan view of a proximal portion of a tibial bearing component 114 according to an example of the present application. Tibial bearing component 114 can be substantially similar to tibial bearing component 14 previously described herein. However, FIG. 9 adds further detail regarding aspects of the construction of the tibial bearing component 114. As shown in FIG. 9, the tibial bearing component 114 can include an articular surface 124, an intercondylar region 126, a periphery 128, a lateral compartment 132, a medial compartment 134 and a spine 136.


As previously described, the articular surface 124 can be contacted by the femoral condyles (not shown) when operably assembled in the knee. The condyles of the femoral prosthesis can contact the medial and lateral compartments 134, 132. More particularly, the medial compartment 134 and the lateral compartment 132 can be configured (e.g. are dish shaped) for articulation with the medial condyle and the lateral condyle of the femoral prosthesis 12, respectively (as shown in FIG. 2 and further shown in FIG. 11). The periphery 128 can comprise sidewalls connecting with the distal surface (not shown) and the articular surface 124. The medial compartment 134 can differ in configuration from the lateral compartment 132 as will be explained in further detail subsequently. For example, the medial compartment 134 can have a different size and shape relative to the lateral compartment 132. For example, the anterior-posterior curvature of the lateral compartment 132 can differ from that of the medial compartment 134. A position of a medial dwell point for the medial compartment 134 can differ than a lateral dwell point for the lateral compartment 132.


As shown in the example of FIG. 9, the lateral compartment 132 can have a lateral articular track 150 having a lateral anterior-posterior extent LAP. The lateral articular track 150 can comprise a plurality of distal-most points along the proximal surface of the lateral compartment 132 that are contacted by the lateral femoral condyle during rollback of the femoral prosthesis. Similarly, the medial compartment 134 can have a medial articular track 152 having a medial anterior-posterior extent MAP that differs from the lateral anterior-posterior extent LAP. The medial articular track 152 can comprise a plurality of distal-most points along the proximal surface of the medial compartment 134 that are contacted by the medial femoral condyle during rollback of the femoral prosthesis.


As shown in FIG. 9, in one example the lateral compartment 132 can have an anterior portion 154 and a posterior portion 156. The anterior portion 154 can define the lateral articular track 150 as a nominally straight line when projected onto a transverse plane of the tibial bearing component 114. The posterior portion 156 can define the lateral articular track 150 as a curved line toward the medial compartment 134 when projected onto the transverse plane of the tibial bearing component 114.


In contrast, the medial articular track 152 can define a nominally straight line when projected onto the transverse plane of the tibial bearing component 114, and the medial articular track 152 defined by the medial compartment 134 can be comprised of a uniform single curve. The nominally straight line that can be defined by the medial articular track 152 can be substantially parallel to the nominally straight line defined by the anterior portion 154 of the lateral articular track 150 in some cases.


For convenience, the present discussion refers to points, tracks or lines of contact between tibial bearing component 114 and the femoral prosthesis along the articular tracks 150, 152. However, it is of course appreciated that each potential point or line of contact (i.e., any of the points along one of the articular tracks 150, 152) is not truly a point or line, but rather an area of contact. These areas of contact may be relatively larger or smaller depending on various factors, such as prosthesis materials, the amount of pressure applied at the interface between tibial bearing component 114 and femoral prosthesis, relative shapes of the tibial bearing component 114 relative to the femoral prosthesis, and the like. Moreover, it is appreciated that some of the factors affecting the size of the contact area may change dynamically during prosthesis use, such as the amount of applied pressure at the femoral/tibial interface during walking, climbing stairs or crouching, for example. For purposes of the present discussion, a contact point may be taken as the point at the geometric center of the area of contact. The geometric center, in turn, refers to the intersection of all straight lines that divide a given area into two parts of equal moment about each respective line. Stated another way, a geometric center may be said to be the average (i.e., arithmetic mean) of all points of the given area. Similarly, a line or track is the central line of contact passing through and bisecting an elongate area of contact.


Both the medial compartment 134 and the lateral compartment 132 can include dwell points comprising the medial dwell point 160 and the lateral dwell point 162, respectively. The medial and lateral dwell points 160 and 162 can comprise a distal-most point along the medial articular track 152 and the lateral articular track 150, respectively. As shown in TABLE 1 below, the medial compartment 134 can be configured to have the medial dwell point 160 a distance between about 52% and about 60% of a total anterior-posterior extent T of the tibial bearing component 114 as measured from an anterior most point A of the tibial bearing component 114 to a posterior most point P of the tibial bearing component 114.









TABLE 1







With Anterior Slope 0°











% of A/P Dwell point to



Name
overall Medial A/P















PS
1-2/AB
52%




3-6/AB
52%




1-2/CD
58%




3-9/CD
57%




3-11/EF
58%




7-12/GH
60%




9-12/J
60%

















TABLE 2







With Anterior Slope 0°











% of A/P Dwell point to



Name
overall Lateral A/P















PS
1-2/AB
60%




3-6/AB
59%




1-2/CD
62%




3-9/CD
61%




3-11/EF
62%




7-12/GH
60%




9-12/J
64%










As shown in TABLE 2, the lateral compartment 132 can be configured to have the lateral dwell point 162 a distance between about 59% and about 62% of the total anterior-posterior extent T of the tibial bearing component 114 as measured from the anterior most point A to the posterior most point P of the tibial bearing component 114.


As shown in FIG. 9 the intercondylar region 126 can comprise an eminence or ridge of the articular surface 124 that can be disposed between the medial and lateral compartments 134, 132. The intercondylar region 126 can extend generally anterior-posterior and can have the spine 136 as previously discussed. Thus, the intercondylar ridge defined by the intercondylar region 126 an be disposed between the medial and lateral dished medial and lateral compartments 134, 132 and occupies the available space therebetween.


The tibial bearing components and the femoral prostheses described herein can each be available as a family of tibial bearing components and a family of femoral prostheses, respectively. The family of tibial prostheses can be of a same design class (e.g., be shaped to be PS) and can have different stock sizes (e.g., from use with a small stature tibial component size A to a largest size J). Similarly, the family of femoral prostheses can be a same design class (e.g., be shaped to articulate with a posterior stabilized configured tibial bearing component) and can have different stock sizes (e.g., from a small stature size 1 to a largest size 12). Different sizes of tibial bearing components can be used depending on the size of the femoral prosthesis and the tibial prosthesis selected.



FIG. 10 shows a sizing chart for the family of tibial prostheses 200 relative to the family of femoral prostheses 202. More particularly, the sizing chart shows the family of femoral prostheses 202 can have at least twelve different stock sizes 1 to 12. As previously discussed and illustrated, each femoral prosthesis can be of a same design class PS and can include a medial condyle and a lateral condyle. The family of tibial prostheses 200 can have at least nine different stock sizes A to J. As shown in FIG. 10, the family of tibial bearing components 204 can be configured such that at least eleven stock sizes exist and that combinations of the at least nine different stock sizes of the family of tibial prostheses 200 are compatible for operable use (e.g. to facilitate a desired articulation similar to that of a natural knee) with the at least twelve different stock sizes of the family of femoral prostheses 202.


This overlapping sizing and the provision of many different compatible sizes can have benefits including providing for increased stability of the medial condyle of the femoral prosthesis. For example, by having a family of tibial bearing components that can include at least eleven different stock sizes and a family of femoral prostheses that can include at least twelve different stock sizes with thirty three different possible operable combinations.


Furthermore, having overlapping sizing and the provision of many different compatible sizes (alone and/or in addition to shaping the compartments to better conform with the condyles using aspects previously discussed) can provide for an increased contact area between the medial condyle of the femoral prosthesis and the medial compartment of the tibial bearing component. As a result, the femoral prosthesis can have greater stability with respect to the medial condyle.


A medial conformity between the femoral prosthesis and the tibial bearing component can be between about 1.05:1 and about 1.5:1 through the first angular extent (previously discussed in reference to FIG. 3A). Put another way, the medial compartment is configured to have between about a 1.05:1 congruence ratio and about a 1.5:1 congruence ratio with the medial condyle through the first angular extent. “Conformity,” (also referred to as “congruence” or “congruence ratio” in the context of knee prostheses, refers to the similarity of curvature between the convex femoral condyles and the correspondingly concave tibial articular compartments in the sagittal plane. Thus, the conformity ratio can comprise a ratio of the similarity between a sagittal radius of the medial tibial bearing compartment and a sagittal radius of the medial femoral condyle.



FIG. 11 shows articulation of the femoral prosthesis 12 with the tibial bearing component 14 through a range of motion between 0 degrees and 120 degrees flexion. Recall 0 degrees flexion comprises full extension as previously discussed and positive flexion corresponds to greater than zero degrees flexion of the knee joint. As indicated by arrows A in FIG. 11, an area of contact between the medial condyle and the medial compartment does not shift position during the range of motion between zero degrees flexion and substantially 100 degrees flexion. Furthermore, the area of contact (as indicated by arrow A) includes the medial dwell point MD of the tibial articular surface during the range of motion between zero degrees flexion and substantially 100 degrees flexion. Thus, the area of contact includes the medial dwell point MD of the tibial articular surface when the femoral prosthesis 12 is in full extension. Recall from prior discussion that the spine and cam can make initial contact when the range of motion reaches substantially 100 degrees flexion with the anterior-posterior slope of the tibial bearing component of five degrees, when such initial contact occurs the area of contact (indicated as arrow A) can begin to shift position and can move off the medial dwell point MD as shown in reference to the image where the femoral prosthesis has been articulated to 120 degrees flexion.


Additional Notes

The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.


As used herein the terms “substantially” or “about” means within two percent of a referenced value, within two degrees of the reference value, within 0.1 mm or less of the reference value, or the like, whatever, context best applies.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) can be used in combination with each other. Other examples can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above detailed description, various features can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed example. Thus, the following claims are hereby incorporated into the detailed description as examples or embodiments, with each claim standing on its own as a separate example, and it is contemplated that such examples can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. A posterior-stabilized femoral prosthesis for a knee arthroplasty comprising: medial and lateral condyles shaped to articulate with a tibial articular surface of a tibial bearing component through a range of motion, in which full extension corresponds to zero degrees flexion of a knee joint and positive flexion corresponds to greater than zero degrees flexion of the knee joint, wherein in a sagittal plane the medial and lateral condyles define medial and lateral multi-radius curves, respectively, and wherein the medial multi-radius curve includes a single common radius swept through a first angular extent to define a single arc; anda femoral cam and a recess positioned between the medial and lateral condyles, wherein the femoral cam is positioned posterior of the recess, wherein an area of contact between the medial condyle and the tibial articular surface includes a medial dwell point of the tibial articular surface when the femoral prosthesis is in full extension, wherein the area of contact between the medial condyle and the tibial articular surface does not shift position during the range of motion encompassing at least a majority of the single arc;wherein a medial compartment of the tibial articular surface is configured to have between about a 1.05:1 congruence ratio and about a 1.5:1 congruence ratio with the medial condyle through the first angular extent, the congruence ratio comprising a ratio of a similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.
  • 2. The prosthesis of claim 1, wherein the single arc extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive.
  • 3. The prosthesis of claim 2, wherein the area of contact between the medial condyle and the tibial articular surface does not shift position during the range of motion between zero degrees flexion and substantially 100 degrees flexion.
  • 4. The prosthesis of claim 1, wherein a posterior portion of the medial and lateral condyles have a thickness of 9 mm.
  • 5. The prosthesis of claim 1, further comprising the tibial bearing component defining the tibial articular surface, the tibial articular surface including: the medial compartment and a lateral compartment configured for articulation with the medial condyle and the lateral condyle of the femoral prosthesis, respectively; anda spine extending proximally from the articular surface and configured to be received in the recess at 0 degrees flexion, the spine spaced posteriorly from an anterior edge of a tibial bearing periphery, the spine disposed between the medial and lateral compartments;wherein the spine and cam make initial contact when the range of motion reaches 100 degrees flexion.
  • 6. The prosthesis of claim 1, wherein the medial compartment is configured to have the medial dwell point a distance between about 52% and about 60% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 7. The prosthesis of claim 1, wherein a lateral compartment of the tibial articular surface is configured to have a lateral dwell point a distance between about 59% and about 62% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 8. A system of posterior-stabilized knee prostheses for a knee arthroplasty, the system comprising: a tibial bearing component having a tibial articular surface with a medial compartment and a lateral compartment, wherein the tibial bearing component has a spine extending proximally from the tibial articular surface and positioned between the medial and lateral compartments, and wherein the medial compartment has a medial dwell point;a femoral prosthesis having a cam and medial and lateral condyles spaced to either side of the cam, wherein the medial condyle is configured for articulation with the medial compartment and lateral condyle is configured for articulation with the lateral compartment, and wherein femoral prosthesis is configured to articulate through a range of motion relative to the tibial bearing component, such range of motion includes a full extension that corresponds to zero degrees flexion of a knee joint and positive flexion that corresponds to greater than zero degrees flexion of the knee joint, and wherein an area of contact between the medial condyle and the medial compartment does not shift position during the range of motion between zero degrees flexion and substantially 100 degrees flexion and the area of contact includes the medial dwell point during the range of motion between zero degrees flexion and substantially 100 degrees flexion.
  • 9. The system of claim 8, wherein in a sagittal plane the medial and lateral condyles define medial and lateral multi-radius curves, respectively, and wherein the medial multi-radius curve includes a single common radius swept through a first angular extent to define a single arc length that extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive.
  • 10. The system of claim 8, wherein a posterior portion of the medial and lateral condyles have a thickness of 9 mm.
  • 11. The system of claim 8, wherein the spine and cam are both configured to make initial contact when the range of motion reaches 100 degrees flexion.
  • 12. The system of claim 8, wherein the medial compartment is configured to have the medial dwell point a distance between about 52% and about 60% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component, and wherein the lateral compartment is configured to have a lateral dwell point a distance between about 59% and about 62% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 13. The system of claim 8, wherein the medial compartment is configured to have between about a 1.05:1 congruence ratio and about a 1.5:1 congruence ratio with the medial condyle through a first angular extent, the congruence ratio comprising a ratio of similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.
  • 14. A system of posterior-stabilized knee prostheses for a knee arthroplasty, the system comprising: a tibial bearing component having a tibial articular surface with a medial compartment and a lateral compartment, wherein the tibial bearing component has a spine extending proximally from the tibial articular surface and positioned between the medial and lateral compartments, and wherein the medial compartment has a medial dwell point;a femoral prosthesis having a cam and medial and lateral condyles spaced to either side of the cam, wherein the medial condyle is configured for articulation with the medial compartment and lateral condyle is configured for articulation with the lateral compartment, and wherein femoral prosthesis is configured to articulate through a range of motion relative to the tibial bearing component, such range of motion includes a full extension that corresponds to zero degrees flexion of a knee joint and positive flexion that corresponds to greater than zero degrees flexion of the knee joint, wherein an area of contact between the medial condyle and the medial compartment includes the medial dwell point when the femoral prosthesis is in full extension, and wherein the spine and cam are both configured to make initial contact when the range of motion reaches substantially 100 degrees flexion;wherein in a sagittal plane the medial and lateral condyles define medial and lateral multi- radius curves, respectively, and wherein the medial multi-radius curve includes a single common radius swept through a first angular extent to define a single arc, wherein the area of contact between the medial condyle and the tibial articular surface does not shift position during the range of motion encompassing at least a majority of the single arc.
  • 15. The system of claim 14, wherein the area of contact between the medial condyle and the tibial articular surface does not shift during the range of motion between zero degrees flexion and substantially 100 degrees flexion and includes the medial dwell point during the range of motion between zero degrees flexion and substantially 100 degrees flexion.
  • 16. The system of claim 14, wherein the medial compartment is configured to have the medial dwell point a distance between about 52% and about 60% of a total anterior-posterior extent of the tibial bearing component as measured from an anterior most point to a posterior most point of the tibial bearing component.
  • 17. The system of claim 14, wherein a posterior portion of the medial and lateral condyles have a thickness of 9 mm.
  • 18. The system of claim 14, wherein the single arc extends from between substantially −20 degrees flexion to substantially 90 degrees flexion, inclusive.
  • 19. The system of claim 14, wherein the medial compartment is configured to have between about a 1.05:1 congruence ratio and about a 1.5:1 congruence ratio with the medial condyle through the first angular extent, the congruence ratio comprising a ratio of a similarity between a sagittal radius of the medial compartment and a sagittal radius of the medial condyle.
CLAIM OF PRIORITY

This application is a continuation of U.S. patent application Ser. No. 16/389,381, filed on Apr. 19, 2019, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/664,500, filed on Apr. 30, 2018, the benefit of priority of each of which is claimed hereby, and each of which is incorporated by reference herein in its entirety.

US Referenced Citations (526)
Number Name Date Kind
3774244 Walker Nov 1973 A
4016606 Murray et al. Apr 1977 A
4257129 Volz Mar 1981 A
4340978 Buechel et al. Jul 1982 A
4501266 McDaniel Feb 1985 A
4568348 Johnson et al. Feb 1986 A
4673408 Grobbelaar Jun 1987 A
4711639 Grundei Dec 1987 A
4714474 Brooks, Jr. et al. Dec 1987 A
4759767 Lacey Jul 1988 A
4769040 Wevers Sep 1988 A
4770661 Oh Sep 1988 A
4795468 Hodorek et al. Jan 1989 A
4822365 Walker et al. Apr 1989 A
4936853 Fabian et al. Jun 1990 A
4944756 Kenna Jul 1990 A
4944757 Martinez et al. Jul 1990 A
4950298 Gustilo et al. Aug 1990 A
4959071 Brown et al. Sep 1990 A
4963152 Hofmann et al. Oct 1990 A
5007933 Sidebotham et al. Apr 1991 A
5047057 Lawes Sep 1991 A
5047058 Roberts et al. Sep 1991 A
5059216 Winters Oct 1991 A
5061271 Van Zile Oct 1991 A
5071438 Jones et al. Dec 1991 A
5108442 Smith Apr 1992 A
5116375 Hofmann May 1992 A
5133758 Hollister Jul 1992 A
5137536 Koshino Aug 1992 A
5147405 Van Zile Sep 1992 A
5171283 Pappas et al. Dec 1992 A
5192328 Winters Mar 1993 A
5194066 Van Zile Mar 1993 A
5197488 Kovacevic Mar 1993 A
5219362 Tuke et al. Jun 1993 A
5226915 Bertin Jul 1993 A
5236461 Forte Aug 1993 A
5246459 Elias Sep 1993 A
5271737 Baldwin et al. Dec 1993 A
5275603 Ferrante et al. Jan 1994 A
5282861 Kaplan Feb 1994 A
5282868 Bahler Feb 1994 A
5282870 Moser et al. Feb 1994 A
5290313 Heldreth Mar 1994 A
5310480 Vidueira May 1994 A
5326361 Hollister Jul 1994 A
5344460 Turanyi et al. Sep 1994 A
5344461 Phlipot Sep 1994 A
5360016 Kovacevic Nov 1994 A
5364402 Mumme et al. Nov 1994 A
5370699 Hood et al. Dec 1994 A
5387239 Bianco et al. Feb 1995 A
5387240 Pottenger et al. Feb 1995 A
5395401 Bahler Mar 1995 A
5405396 Heldreth et al. Apr 1995 A
5413604 Hodge May 1995 A
5413605 Ashby et al. May 1995 A
5425775 Kovacevic et al. Jun 1995 A
5445642 McNulty et al. Aug 1995 A
5458637 Hayes Oct 1995 A
5470354 Hershberger et al. Nov 1995 A
5489311 Cipolletti Feb 1996 A
5507820 Pappas Apr 1996 A
5549688 Ries et al. Aug 1996 A
5556433 Gabriel et al. Sep 1996 A
5571194 Gabriel Nov 1996 A
5609639 Walker Mar 1997 A
5609641 Johnson et al. Mar 1997 A
5609643 Colleran et al. Mar 1997 A
5609645 Vinciguerra Mar 1997 A
5613970 Houston et al. Mar 1997 A
5656785 Trainor et al. Aug 1997 A
5658341 Delfosse Aug 1997 A
5658342 Draganich et al. Aug 1997 A
5658344 Hurlburt Aug 1997 A
5683470 Johnson et al. Nov 1997 A
5702463 Pothier et al. Dec 1997 A
5702464 Lackey et al. Dec 1997 A
5733292 Gustilo et al. Mar 1998 A
5755801 Walker et al. May 1998 A
5755802 Gerber May 1998 A
5776200 Johnson et al. Jul 1998 A
5782925 Collazo et al. Jul 1998 A
5824100 Kester et al. Oct 1998 A
5824102 Buscayret Oct 1998 A
5824103 Williams Oct 1998 A
5871539 Pappas Feb 1999 A
5871541 Gerber Feb 1999 A
5871543 Hofmann Feb 1999 A
5871545 Goodfellow et al. Feb 1999 A
5879394 Ashby et al. Mar 1999 A
5906643 Walker May 1999 A
5911723 Ashby et al. Jun 1999 A
5928286 Ashby et al. Jul 1999 A
5964808 Blaha et al. Oct 1999 A
5968099 Badorf et al. Oct 1999 A
5976147 LaSalle et al. Nov 1999 A
6004351 Tomita et al. Dec 1999 A
6004352 Buni Dec 1999 A
6010534 O'neil et al. Jan 2000 A
6013103 Kaufman et al. Jan 2000 A
6039764 Pottenger et al. Mar 2000 A
6068658 Insall et al. May 2000 A
6074425 Pappas Jun 2000 A
6080195 Colleran et al. Jun 2000 A
6090144 Letot et al. Jul 2000 A
6102954 Albrektsson et al. Aug 2000 A
6102955 Mendes et al. Aug 2000 A
6123728 Brosnahan et al. Sep 2000 A
6123729 Insall et al. Sep 2000 A
6126692 Robie et al. Oct 2000 A
6143034 Burrows Nov 2000 A
6197064 Haines et al. Mar 2001 B1
6203576 Afriat et al. Mar 2001 B1
6206927 Fell et al. Mar 2001 B1
6210443 Marceaux et al. Apr 2001 B1
6217618 Hileman Apr 2001 B1
RE37277 Baldwin et al. Jul 2001 E
6258127 Schmotzer Jul 2001 B1
6306172 O'Neil et al. Oct 2001 B1
6325828 Dennis et al. Dec 2001 B1
6379388 Ensign et al. Apr 2002 B1
6406497 Takei Jun 2002 B2
6413279 Metzger et al. Jul 2002 B1
6428577 Evans et al. Aug 2002 B1
6436145 Miller Aug 2002 B1
6485519 Meyers et al. Nov 2002 B2
6491726 Pappas Dec 2002 B2
6506215 Letot et al. Jan 2003 B1
6506216 McCue et al. Jan 2003 B1
6558426 Masini May 2003 B1
6607559 Ralph et al. Aug 2003 B2
6623526 Lloyd Sep 2003 B1
6632225 Sanford et al. Oct 2003 B2
6660039 Evans et al. Dec 2003 B1
6702821 Bonutti Mar 2004 B2
6709461 O'neil et al. Mar 2004 B2
6743258 Keller Jun 2004 B1
6755864 Brack et al. Jun 2004 B1
6770078 Bonutti Aug 2004 B2
6869448 Tuke et al. Mar 2005 B2
6916340 Metzger et al. Jul 2005 B2
6923832 Sharkey et al. Aug 2005 B1
6942670 Heldreth et al. Sep 2005 B2
6953479 Carson et al. Oct 2005 B2
6974481 Carson Dec 2005 B1
6986791 Metzger Jan 2006 B1
7025788 Metzger et al. Apr 2006 B2
7060074 Rosa et al. Jun 2006 B2
7081137 Servidio Jul 2006 B1
7083652 McCue et al. Aug 2006 B2
7153326 Metzger Dec 2006 B1
7160330 Axelson, Jr. et al. Jan 2007 B2
7189262 Hayes, Jr. et al. Mar 2007 B2
7261740 Tuttle Aug 2007 B2
7264635 Suguro Sep 2007 B2
7294149 Hozack et al. Nov 2007 B2
7309362 Yasuda et al. Dec 2007 B2
7309363 Dietz Dec 2007 B2
7326252 Otto et al. Feb 2008 B2
7351263 Afriat Apr 2008 B2
7364581 Michalowicz Apr 2008 B2
7412897 Crottet et al. Aug 2008 B2
7413577 Servidio Aug 2008 B1
7442196 Fisher et al. Oct 2008 B2
7445639 Metzger et al. Nov 2008 B2
7488330 Stad Feb 2009 B2
7497874 Metzger et al. Mar 2009 B1
7513912 Hayes, Jr. et al. Apr 2009 B2
7544211 Rochetin Jun 2009 B2
7547327 Collazo Jun 2009 B2
7575602 Amirouche et al. Aug 2009 B2
7578821 Fisher et al. Aug 2009 B2
7585328 Haas Sep 2009 B2
7587945 Crottet et al. Sep 2009 B2
7591854 Wasielewski Sep 2009 B2
7625407 Akizuki Dec 2009 B2
7628818 Hazebrouck et al. Dec 2009 B2
7632283 Heldreth Dec 2009 B2
7632314 Dietz Dec 2009 B2
7635390 Bonutti Dec 2009 B1
7678152 Suguro et al. Mar 2010 B2
7695519 Collazo Apr 2010 B2
7695520 Metzger et al. Apr 2010 B2
7731755 Wyss Jun 2010 B2
7776085 Bernero et al. Aug 2010 B2
7837691 Cordes et al. Nov 2010 B2
7850698 Straszheim-Morley et al. Dec 2010 B2
8012216 Metzger Sep 2011 B2
8065927 Crottet et al. Nov 2011 B2
8105386 Perrone, Jr. et al. Jan 2012 B2
8141437 Amirouche et al. Mar 2012 B2
8152853 Belcher Apr 2012 B2
8163028 Metzger et al. Apr 2012 B2
8187280 May et al. May 2012 B2
8197549 Amirouche et al. Jun 2012 B2
8211041 Fisher et al. Jul 2012 B2
8245583 Stein Aug 2012 B2
8268006 Meyers et al. Sep 2012 B2
8317870 Wagner et al. Nov 2012 B2
8328873 Metzger et al. Dec 2012 B2
8366782 Wright Feb 2013 B2
8491589 Fisher et al. Jul 2013 B2
8506571 Chana et al. Aug 2013 B2
RE44476 Meyers et al. Sep 2013 E
8568486 Wentorf et al. Oct 2013 B2
8574304 Wentorf et al. Nov 2013 B2
8591594 Parisi et al. Nov 2013 B2
8603101 Claypool et al. Dec 2013 B2
8613775 Wentorf et al. Dec 2013 B2
8617250 Metzger Dec 2013 B2
8628580 Sanford et al. Jan 2014 B2
8690954 Parisi et al. Apr 2014 B2
8740984 Hartdegen et al. Jun 2014 B2
8758444 Wentorf et al. Jun 2014 B2
8764838 Parisi et al. Jul 2014 B2
8764840 Sanford et al. Jul 2014 B2
8795282 Earl et al. Aug 2014 B2
8808387 Hawkins et al. Aug 2014 B2
8858643 Parisi et al. Oct 2014 B2
8932298 Colquhoun et al. Jan 2015 B2
8932365 Parisi et al. Jan 2015 B2
8979847 Belcher et al. Mar 2015 B2
8979936 White et al. Mar 2015 B2
8998997 Ries et al. Apr 2015 B2
9011459 Claypool et al. Apr 2015 B2
9072607 Parisi et al. Jul 2015 B2
9131945 Aram et al. Sep 2015 B2
9149206 Claypool et al. Oct 2015 B2
9173744 Donno et al. Nov 2015 B2
9186255 Parisi et al. Nov 2015 B2
9192480 Wentorf et al. Nov 2015 B2
9204970 Parisi et al. Dec 2015 B2
9283082 Sanford et al. Mar 2016 B2
9295557 Wentorf et al. Mar 2016 B2
9295558 Parisi et al. Mar 2016 B2
9308095 Parisi et al. Apr 2016 B2
9308096 Wentorf et al. Apr 2016 B2
9314343 Parisi et al. Apr 2016 B2
9381090 Wentorf et al. Jul 2016 B2
9427337 Claypool et al. Aug 2016 B2
9539116 Claypool et al. Jan 2017 B2
9592133 Toler et al. Mar 2017 B2
9597090 Claypool et al. Mar 2017 B2
9655728 Parisi et al. May 2017 B2
9655729 Parisi et al. May 2017 B2
9707089 Grey et al. Jul 2017 B2
9763794 Sanford et al. Sep 2017 B2
9763795 Parisi et al. Sep 2017 B2
9763796 Wentorf et al. Sep 2017 B2
9763807 Claypool et al. Sep 2017 B2
9788954 Parisi et al. Oct 2017 B2
9861490 Wentorf et al. Jan 2018 B2
9901331 Toler et al. Feb 2018 B2
9918844 Sanford et al. Mar 2018 B2
9925050 Parisi et al. Mar 2018 B2
9925052 Dai et al. Mar 2018 B2
10010330 Claypool et al. Jul 2018 B2
10092407 Faccioli et al. Oct 2018 B2
10188530 Claypool et al. Jan 2019 B2
10195041 Wentorf et al. Feb 2019 B2
10265181 Wentorf et al. Apr 2019 B2
10278827 Drury et al. May 2019 B2
10413415 Parisi et al. Sep 2019 B2
10470889 Wentorf et al. Nov 2019 B2
10500054 Croll Dec 2019 B2
10517735 Lloyd et al. Dec 2019 B2
10543099 Sanford et al. Jan 2020 B2
10575956 Dai et al. Mar 2020 B2
10675153 Byrd et al. Jun 2020 B2
10835380 Drury et al. Nov 2020 B2
10898337 Parisi et al. Jan 2021 B2
11051948 Arnold et al. Jul 2021 B2
11160659 Drury et al. Nov 2021 B2
11207198 Oh et al. Dec 2021 B2
11224519 Wentorf et al. Jan 2022 B2
11324598 Dai et al. May 2022 B2
11324599 Croll May 2022 B2
11426282 Yager Aug 2022 B2
11471288 Parisi et al. Oct 2022 B2
11547571 Byrd et al. Jan 2023 B2
20010047210 Wolf Nov 2001 A1
20020058997 O'connor et al. May 2002 A1
20020072802 O'Neil et al. Jun 2002 A1
20020103541 Meyers et al. Aug 2002 A1
20020120340 Metzger et al. Aug 2002 A1
20020161448 Hayes, Jr. et al. Oct 2002 A1
20030055509 Mccue et al. Mar 2003 A1
20030199985 Masini Oct 2003 A1
20040019382 Amirouche et al. Jan 2004 A1
20040019383 Beguec Jan 2004 A1
20040034432 Hughes et al. Feb 2004 A1
20040059340 Serra et al. Mar 2004 A1
20040064191 Wasielewski Apr 2004 A1
20040122441 Muratsu Jun 2004 A1
20040153066 Coon et al. Aug 2004 A1
20040162620 Wyss Aug 2004 A1
20040167537 Errico et al. Aug 2004 A1
20040186582 Yasuda et al. Sep 2004 A1
20040204765 Fenning et al. Oct 2004 A1
20040225368 Plumet et al. Nov 2004 A1
20040236429 Ensign et al. Nov 2004 A1
20040243244 Otto et al. Dec 2004 A1
20040267371 Hayes, Jr. et al. Dec 2004 A1
20050055102 Tornier et al. Mar 2005 A1
20050096747 Tuttle et al. May 2005 A1
20050143831 Justin et al. Jun 2005 A1
20050143832 Carson Jun 2005 A1
20050177170 Fisher et al. Aug 2005 A1
20050197710 Naegerl Sep 2005 A1
20050209701 Suguro et al. Sep 2005 A1
20050209702 Todd et al. Sep 2005 A1
20050246030 Yao Nov 2005 A1
20050267485 Cordes et al. Dec 2005 A1
20050267584 Burdulis, Jr. et al. Dec 2005 A1
20050278035 Wyss et al. Dec 2005 A1
20060004460 Engh et al. Jan 2006 A1
20060020343 Ek Jan 2006 A1
20060030945 Wright Feb 2006 A1
20060052782 Morgan et al. Mar 2006 A1
20060069436 Sutton et al. Mar 2006 A1
20060089653 Auger et al. Apr 2006 A1
20060111726 Felt et al. May 2006 A1
20060142869 Gross Jun 2006 A1
20060161259 Cheng et al. Jul 2006 A1
20060184176 Straszheim-Morley et al. Aug 2006 A1
20060189864 Paradis et al. Aug 2006 A1
20060190087 O'Connor Aug 2006 A1
20060195195 Burstein et al. Aug 2006 A1
20060224244 Thomas et al. Oct 2006 A1
20060265080 Mcminn Nov 2006 A1
20070010890 Collazo Jan 2007 A1
20070123992 Sanford May 2007 A1
20070129808 Justin et al. Jun 2007 A1
20070135924 Verhoogen Jun 2007 A1
20070135926 Walker Jun 2007 A1
20070185581 Akizuki et al. Aug 2007 A1
20070198022 Lang et al. Aug 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070234819 Amirouche et al. Oct 2007 A1
20070239165 Amirouche Oct 2007 A1
20080021566 Peters et al. Jan 2008 A1
20080051908 Angibaud et al. Feb 2008 A1
20080058947 Earl et al. Mar 2008 A1
20080058948 Biegun et al. Mar 2008 A1
20080091271 Bonitati et al. Apr 2008 A1
20080091272 Aram et al. Apr 2008 A1
20080091273 Hazebrouck Apr 2008 A1
20080103603 Hintermann May 2008 A1
20080114462 Guidera et al. May 2008 A1
20080119938 Oh May 2008 A1
20080119940 Otto et al. May 2008 A1
20080140212 Metzger et al. Jun 2008 A1
20080161918 Fankhauser et al. Jul 2008 A1
20080167722 Metzger et al. Jul 2008 A1
20080215156 Duggal et al. Sep 2008 A1
20080243258 Sancheti Oct 2008 A1
20080262624 White et al. Oct 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080288080 Sancheti Nov 2008 A1
20080300689 McKinnon et al. Dec 2008 A1
20080300690 Burstein et al. Dec 2008 A1
20090005708 Johanson et al. Jan 2009 A1
20090036992 Tsakonas Feb 2009 A1
20090043395 Hotokebuchi et al. Feb 2009 A1
20090062806 Scott et al. Mar 2009 A1
20090082873 Hazebrouck et al. Mar 2009 A1
20090088862 Thomas et al. Apr 2009 A1
20090125114 May et al. May 2009 A1
20090149963 Sekel Jun 2009 A1
20090149964 May et al. Jun 2009 A1
20090204221 Walker Aug 2009 A1
20090204222 Burstein et al. Aug 2009 A1
20090210066 Jasty Aug 2009 A1
20090222103 Fitz et al. Sep 2009 A1
20090259314 Linder-ganz et al. Oct 2009 A1
20090264894 Wasielewski Oct 2009 A1
20090265011 Mandell Oct 2009 A1
20090265013 Mandell Oct 2009 A1
20090287310 Fisher et al. Nov 2009 A1
20090306786 Samuelson Dec 2009 A1
20090306787 Crabtree et al. Dec 2009 A1
20090319047 Walker Dec 2009 A1
20090319048 Shah et al. Dec 2009 A1
20090319049 Shah et al. Dec 2009 A1
20090326663 Dun Dec 2009 A1
20090326665 Wyss et al. Dec 2009 A1
20090326666 Wyss et al. Dec 2009 A1
20090326668 Dun Dec 2009 A1
20100010494 Quirno Jan 2010 A1
20100016976 Siebel Jan 2010 A1
20100016977 Masini Jan 2010 A1
20100016978 Williams et al. Jan 2010 A1
20100016979 Wyss et al. Jan 2010 A1
20100036499 Pinskerova Feb 2010 A1
20100036500 Heldreth et al. Feb 2010 A1
20100063594 Hazebrouck et al. Mar 2010 A1
20100063595 Dietz Mar 2010 A1
20100076563 Otto et al. Mar 2010 A1
20100082111 Thomas Apr 2010 A1
20100100011 Roche Apr 2010 A1
20100100189 Metzger Apr 2010 A1
20100100191 May et al. Apr 2010 A1
20100125339 Earl et al. May 2010 A1
20100152858 Lu et al. Jun 2010 A1
20100191298 Earl et al. Jul 2010 A1
20100191341 Byrd Jul 2010 A1
20100198275 Chana et al. Aug 2010 A1
20100222890 Barnett et al. Sep 2010 A1
20100249660 Sherman et al. Sep 2010 A1
20100249789 Rock et al. Sep 2010 A1
20100262253 Cipolletti et al. Oct 2010 A1
20100286788 Komistek Nov 2010 A1
20100292804 Samuelson Nov 2010 A1
20100305708 Lang Dec 2010 A1
20100329530 Lang et al. Dec 2010 A1
20110022179 Andriacchi et al. Jan 2011 A1
20110029091 Bojarski et al. Feb 2011 A1
20110040387 Ries et al. Feb 2011 A1
20110066246 Ries et al. Mar 2011 A1
20110082558 Kim et al. Apr 2011 A1
20110082559 Hartdegen et al. Apr 2011 A1
20110087332 Bojarski et al. Apr 2011 A1
20110098824 Jukes et al. Apr 2011 A1
20110100011 Staffend May 2011 A1
20110125278 Bercovy et al. May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110153026 Heggendorn et al. Jun 2011 A1
20110190898 Lenz et al. Aug 2011 A1
20110202139 Metzger et al. Aug 2011 A1
20110251695 Lenz et al. Oct 2011 A1
20120022658 Wentorf Jan 2012 A1
20120022659 Wentorf Jan 2012 A1
20120022660 Wentorf Jan 2012 A1
20120035735 Sanford et al. Feb 2012 A1
20120035737 Sanford Feb 2012 A1
20120095563 Sanford et al. Apr 2012 A1
20120101585 Parisi et al. Apr 2012 A1
20120158152 Claypool et al. Jun 2012 A1
20120179069 Amirouche Jul 2012 A1
20120185054 Maloney et al. Jul 2012 A1
20120185055 Maloney et al. Jul 2012 A1
20120232429 Fischer et al. Sep 2012 A1
20120290088 Amirouche et al. Nov 2012 A1
20120296437 Wyss et al. Nov 2012 A1
20120310246 Belcher et al. Dec 2012 A1
20120310361 Zubok et al. Dec 2012 A1
20120323335 Parisi et al. Dec 2012 A1
20120323336 Parisi et al. Dec 2012 A1
20130013076 Fisher et al. Jan 2013 A1
20130024001 Wentorf et al. Jan 2013 A1
20130079671 Stein et al. Mar 2013 A1
20130096567 Fisher et al. Apr 2013 A1
20130102929 Haight et al. Apr 2013 A1
20130103038 Fischer et al. Apr 2013 A1
20130131816 Parisi et al. May 2013 A1
20130131817 Parisi et al. May 2013 A1
20130131818 Parisi et al. May 2013 A1
20130131819 Parisi et al. May 2013 A1
20130131820 Wentorf et al. May 2013 A1
20130173010 Irwin Jul 2013 A1
20130226305 Donno et al. Aug 2013 A1
20130253378 Claypool et al. Sep 2013 A1
20130261504 Claypool et al. Oct 2013 A1
20130261757 Claypool et al. Oct 2013 A1
20130261758 Claypool et al. Oct 2013 A1
20130345820 Maloney et al. Dec 2013 A1
20140025175 Wentorf et al. Jan 2014 A1
20140025176 Wentorf et al. Jan 2014 A1
20140025177 Wentorf et al. Jan 2014 A1
20140052268 Sanford et al. Feb 2014 A1
20140052269 Claypool et al. Feb 2014 A1
20140156015 Parisi et al. Jun 2014 A1
20140163687 Parisi et al. Jun 2014 A1
20140249641 Wentorf et al. Sep 2014 A1
20140257505 Parisi et al. Sep 2014 A1
20140257506 Sanford et al. Sep 2014 A1
20140296859 Claypool et al. Oct 2014 A1
20150005890 Parisi et al. Jan 2015 A1
20150025644 Heggendorn et al. Jan 2015 A1
20150066150 Dai et al. Mar 2015 A1
20150088140 Toler et al. Mar 2015 A1
20150190243 Claypool et al. Jul 2015 A1
20150282936 Parisi et al. Oct 2015 A1
20150320564 Parisi et al. Nov 2015 A1
20150359642 Claypool et al. Dec 2015 A1
20160030053 Yager et al. Feb 2016 A1
20160038294 Parisi et al. Feb 2016 A1
20160045322 Parisi et al. Feb 2016 A1
20160135959 Sanford et al. May 2016 A1
20160158019 Grey et al. Jun 2016 A1
20160184107 Parisi et al. Jun 2016 A1
20160287397 Wentorf et al. Oct 2016 A1
20160324647 Claypool et al. Nov 2016 A1
20170079801 Drury et al. Mar 2017 A1
20170143324 Toler et al. May 2017 A1
20170156736 Claypool et al. Jun 2017 A1
20170231773 Lu Aug 2017 A1
20170266011 Wentorf et al. Sep 2017 A1
20170281354 Soffiatti et al. Oct 2017 A1
20180000601 Sanford et al. Jan 2018 A1
20180000602 Wentorf et al. Jan 2018 A1
20180000612 Claypool et al. Jan 2018 A1
20180021143 Parisi et al. Jan 2018 A1
20180021144 Parisi et al. Jan 2018 A1
20180085225 Wentorf et al. Mar 2018 A1
20180161166 Dai et al. Jun 2018 A1
20180256346 Byrd et al. Sep 2018 A1
20180325684 Croll Nov 2018 A1
20190142594 Yager May 2019 A1
20190209333 Drury et al. Jul 2019 A1
20190328535 Drury et al. Oct 2019 A1
20190350718 Parisi et al. Nov 2019 A1
20200030106 Wentorf et al. Jan 2020 A1
20200060833 Arnold et al. Feb 2020 A1
20200069433 Croll Mar 2020 A1
20200113702 Sanford et al. Apr 2020 A1
20200146830 Dai et al. May 2020 A1
20200237518 Byrd et al. Jul 2020 A1
20210113340 Parisi et al. Apr 2021 A1
20220096243 Wentorf et al. Mar 2022 A1
20220233321 Croll Jul 2022 A1
20220241081 Garino Aug 2022 A1
20220346962 Yager Nov 2022 A1
20230113335 Byrd et al. Apr 2023 A1
Foreign Referenced Citations (230)
Number Date Country
2011343440 Apr 2014 AU
2011286306 Oct 2014 AU
2190029 Nov 1995 CA
2856070 Jul 2016 CA
687584 Jan 1997 CH
1087506 Jun 1994 CN
1174498 Feb 1998 CN
1179709 Apr 1998 CN
1440262 Sep 2003 CN
1549695 Nov 2004 CN
2768715 Apr 2006 CN
1780594 May 2006 CN
1874738 Dec 2006 CN
101214175 Jul 2008 CN
101222886 Jul 2008 CN
101288597 Oct 2008 CN
101347359 Jan 2009 CN
201175391 Jan 2009 CN
101361684 Feb 2009 CN
101401750 Apr 2009 CN
101426453 May 2009 CN
101522136 Sep 2009 CN
101646392 Feb 2010 CN
101658446 Mar 2010 CN
101683289 Mar 2010 CN
101711701 May 2010 CN
101795643 Aug 2010 CN
101835441 Sep 2010 CN
102018584 Apr 2011 CN
102048594 May 2011 CN
102058446 May 2011 CN
102058448 May 2011 CN
102917670 Feb 2013 CN
103118634 May 2013 CN
103118635 May 2013 CN
103118636 May 2013 CN
103370025 Oct 2013 CN
103379880 Oct 2013 CN
103732186 Apr 2014 CN
104039273 Sep 2014 CN
104066402 Sep 2014 CN
104093380 Oct 2014 CN
104135969 Nov 2014 CN
104203160 Dec 2014 CN
104321263 Jan 2015 CN
104379094 Feb 2015 CN
104736105 Jun 2015 CN
105055052 Nov 2015 CN
105167889 Dec 2015 CN
103118634 Aug 2016 CN
103118636 Aug 2016 CN
104093380 Aug 2016 CN
103370025 Nov 2016 CN
106073949 Nov 2016 CN
106214292 Dec 2016 CN
108135701 Jun 2018 CN
106073949 Dec 2018 CN
109310504 Feb 2019 CN
110022798 Jul 2019 CN
110402123 Nov 2019 CN
110636818 Dec 2019 CN
113317912 Aug 2021 CN
0021421 Jan 1981 EP
0303467 Feb 1989 EP
0327495 Aug 1989 EP
0340919 Nov 1989 EP
340919 Nov 1989 EP
0372811 Jun 1990 EP
0306744 Apr 1992 EP
0495340 Jul 1992 EP
0636353 Feb 1995 EP
0672397 Sep 1995 EP
0552950 Sep 1996 EP
0536457 Jan 1997 EP
0642328 Dec 1998 EP
0592750 Jan 1999 EP
0903125 Mar 1999 EP
0956836 Nov 1999 EP
0956836 Nov 1999 EP
1025818 Aug 2000 EP
1097679 May 2001 EP
0709074 Dec 2002 EP
1327424 Jul 2003 EP
1378216 Jan 2004 EP
1477143 Nov 2004 EP
1568336 Aug 2005 EP
1719478 Nov 2006 EP
1722721 Nov 2006 EP
1354571 Jun 2007 EP
1396240 Apr 2008 EP
1604623 Jun 2008 EP
1996122 Dec 2008 EP
0927009 Jan 2009 EP
2011455 Jan 2009 EP
1696835 Feb 2009 EP
1132063 Sep 2009 EP
1591082 Sep 2009 EP
2140838 Jan 2010 EP
2140839 Jan 2010 EP
2143403 Jan 2010 EP
2237177 Oct 2010 EP
1555962 Feb 2011 EP
2319460 May 2011 EP
2324799 May 2011 EP
2335654 Jun 2011 EP
2347733 Jul 2011 EP
0689808 Sep 2012 EP
2595573 May 2013 EP
2782525 Oct 2014 EP
2830543 Feb 2015 EP
2830544 Feb 2015 EP
2830544 Sep 2016 EP
2918235 Jan 2017 EP
3143964 Mar 2017 EP
2595574 May 2017 EP
3111894 Dec 2018 EP
2728782 Jul 1996 FR
2736819 Jan 1997 FR
2747914 Oct 1997 FR
2778332 Nov 1999 FR
2788964 Aug 2000 FR
2824260 Nov 2002 FR
2852819 Oct 2004 FR
2926719 Jul 2009 FR
225347 Dec 1924 GB
2253147 Sep 1992 GB
2345446 Jul 2000 GB
7145DELNP2014 Apr 2015 IN
61247449 Nov 1986 JP
62270153 Nov 1987 JP
06203576 Jul 1994 JP
09289998 Nov 1997 JP
09511668 Nov 1997 JP
2000000255 Jan 2000 JP
2000245758 Sep 2000 JP
2003516183 May 2003 JP
2004166802 Jun 2004 JP
2004254811 Sep 2004 JP
3734270 Jan 2006 JP
2007054488 Mar 2007 JP
2007509709 Apr 2007 JP
2007222616 Sep 2007 JP
2009082713 Apr 2009 JP
2009245619 Oct 2009 JP
2010022827 Feb 2010 JP
2010188051 Sep 2010 JP
2010240406 Oct 2010 JP
2010259808 Nov 2010 JP
2011092738 May 2011 JP
2012500667 Jan 2012 JP
2012531265 Dec 2012 JP
2015512307 Apr 2013 JP
2013535276 Sep 2013 JP
2013536005 Sep 2013 JP
2013536006 Sep 2013 JP
2013536007 Sep 2013 JP
2014505517 Mar 2014 JP
2014508554 Apr 2014 JP
2014522292 Sep 2014 JP
2014239900 Dec 2014 JP
2015502203 Jan 2015 JP
2015504333 Feb 2015 JP
2015504759 Feb 2015 JP
2015513966 May 2015 JP
2015231566 Dec 2015 JP
2016028729 Mar 2016 JP
5980341 Aug 2016 JP
2016195841 Nov 2016 JP
2017221732 Dec 2017 JP
2021142355 Sep 2021 JP
WO-9305729 Apr 1993 WO
WO-9409725 May 1994 WO
WO-9514444 Jun 1995 WO
WO-9514446 Jun 1995 WO
WO-9530389 Nov 1995 WO
WO-9535074 Dec 1995 WO
WO-9934755 Jul 1999 WO
WO-0141680 Jun 2001 WO
WO-200141680 Jun 2001 WO
WO-03099106 Dec 2003 WO
WO-2004058108 Jul 2004 WO
WO-2005037147 Apr 2005 WO
WO-2005051240 Jun 2005 WO
WO-2005122967 Dec 2005 WO
WO-2006058057 Jun 2006 WO
WO-2006092167 Sep 2006 WO
WO-2007108804 Sep 2007 WO
WO-2007109641 Sep 2007 WO
WO-2007119173 Oct 2007 WO
WO-2009029631 Mar 2009 WO
WO-2009088235 Jul 2009 WO
WO-2009088236 Jul 2009 WO
WO-2009088238 Jul 2009 WO
WO-2009105495 Aug 2009 WO
WO 2010001010 Jan 2010 WO
WO-2010008803 Jan 2010 WO
WO-2010011590 Jan 2010 WO
WO-2010022272 Feb 2010 WO
WO-2010023062 Mar 2010 WO
WO-2010045537 Apr 2010 WO
WO-2010075365 Jul 2010 WO
WO-2011043955 Apr 2011 WO
WO-2011063123 May 2011 WO
WO-2011071979 Jun 2011 WO
WO-2011072235 Jun 2011 WO
WO-2011110865 Sep 2011 WO
WO-2012004580 Jan 2012 WO
WO-2012018563 Feb 2012 WO
WO-2012018564 Feb 2012 WO
WO-2012018565 Feb 2012 WO
WO-2012018566 Feb 2012 WO
WO-2012018567 Feb 2012 WO
WO-2012020460 Feb 2012 WO
WO-2012082628 Jun 2012 WO
WO-2012083280 Jun 2012 WO
WO-2012112698 Aug 2012 WO
WO-2012173706 Dec 2012 WO
WO-2013003433 Jan 2013 WO
WO-2013013094 Jan 2013 WO
WO-2013074142 May 2013 WO
WO-2013074143 May 2013 WO
WO-2013074144 May 2013 WO
WO-2013074145 May 2013 WO
WO-2013077919 May 2013 WO
WO-2013115849 Aug 2013 WO
WO-2013148954 Oct 2013 WO
WO-2013148960 Oct 2013 WO
WO-2017053196 Mar 2017 WO
WO-2018165442 Sep 2018 WO
WO-2018208612 Nov 2018 WO
Non-Patent Literature Citations (864)
Entry
U.S. Appl. No. 17/866,151, filed Jul. 15, 2022, Implants for Adding Joint Inclination to a Knee Arthroplasty.
“U.S. Appl. No. 16/179,201, Supplemental Notice of Allowability dated Aug. 2, 2022”, 2 pgs.
“U.S. Appl. No. 16/530,423, Notice of Allowance dated Jun. 14, 2022”, 6 pgs.
“U.S. Appl. No. 16/530,423, Response filed Jun. 1, 2022 to Non Final Office Action dated Mar. 3, 2022”, 14 pgs.
“U.S. Appl. No. 16/849,394, Examiner Interview Summary dated Aug. 29, 2022”, 2 pgs.
“U.S. Appl. No. 16/849,394, Non Final Office Action dated Jun. 3, 2022”, 9 pgs.
“U.S. Appl. No. 16/849,394, Notice of Allowance dated Sep. 15, 2022”, 8 pgs.
“U.S. Appl. No. 16/849,394, Response filed Aug. 24, 2022 to Non Final Office Action dated Jun. 3, 2022”, 15 pgs.
“U.S. Appl. No. 17/717,898, Preliminary Amendment filed Apr. 29, 2022”, 7 pgs.
“U.S. Appl. No. 17/866,151, Preliminary Amendment filed Aug. 3, 2022”, 6 pgs.
“European Application Serial No. 21177256.1, Extended European Search Report dated May 17, 2022”, 9 pgs.
“Japanese Application Serial No. 2021-097369, Notification of Reasons for Rejection dated Jun. 14, 2022”, w/ English Translation, 11 pgs.
“U.S. Appl. No. 15/720,866, PTO Response to Rule 312 Communication dated Nov. 20, 2020”, 2 pgs.
“U.S. Appl. No. 16/179,201, Advisory Action dated Jun. 25, 2021”, 3 pgs.
“U.S. Appl. No. 16/179,201, Examiner Interview Summary dated Feb. 8, 2021”, 3 pgs.
“U.S. Appl. No. 16/179,201, Examiner Interview Summary dated Nov. 9, 2021”, 4 pgs.
“U.S. Appl. No. 16/179,201, Examiner Interview Summary dated Nov. 17, 2021”, 3 pgs.
“U.S. Appl. No. 16/179,201, Final Office Action dated Apr. 20, 2021”, 11 pgs.
“U.S. Appl. No. 16/179,201, Non Final Office Action dated Sep. 22, 2021”, 11 pgs.
“U.S. Appl. No. 16/179,201, Notice of Allowance dated Apr. 21, 2022”, 9 pgs.
“U.S. Appl. No. 16/179,201, Response filed Jan. 28, 2021 to Non Final Office Action dated Nov. 2, 2020”, 16 pgs.
“U.S. Appl. No. 16/179,201, Response filed Jun. 18, 2021 to Final Office Action dated Apr. 20, 2021”, 16 pgs.
“U.S. Appl. No. 16/179,201, Response filed Dec. 3, 2021 to Non Final Office Action dated Sep. 22, 2021”, 11 pgs.
“U.S. Appl. No. 16/179,201, Supplemental Response filed Feb. 19, 2021 to Non-Final Office Action dated Nov. 2, 2020”, 17 pgs.
“U.S. Appl. No. 16/352,287, Final Office Action dated May 25, 2021”, 8 pgs.
“U.S. Appl. No. 16/352,287, Non Final Office Action dated Dec. 10, 2020”, 12 pgs.
“U.S. Appl. No. 16/352,287, Notice of Allowance dated Jun. 30, 2021”, 7 pgs.
“U.S. Appl. No. 16/352,287, Response filed Feb. 22, 2021 to Non Final Office Action dated Dec. 10, 2020”, 14 pgs.
“U.S. Appl. No. 16/352,287, Response filed Jun. 18, 2021 to Final Office Action dated May 25, 2021”, 8 pgs.
“U.S. Appl. No. 16/530,423, Final Office Action dated Nov. 4, 2021”, 11 pgs.
“U.S. Appl. No. 16/530,423, Non Final Office Action dated Mar. 3, 2022”, 14 pgs.
“U.S. Appl. No. 16/530,423, Non Final Office Action dated May 17, 2021”, 10 pgs.
“U.S. Appl. No. 16/530,423, Response filed Feb. 4, 2022 to Final Office Action dated Nov. 4, 2021”, 15 pgs.
“U.S. Appl. No. 16/530,423, Response filed Aug. 11, 2021 to Non Final Office Action dated May 17, 2021”, 15 pgs.
“U.S. Appl. No. 16/596,194, Amendment Under 1.312 Filed Dec. 7, 2021”, 9 pgs.
“U.S. Appl. No. 16/596,194, Final Office Action dated May 20, 2021”, 21 pgs.
“U.S. Appl. No. 16/596,194, Non Final Office Action dated Jan. 22, 2021”, 19 pgs.
“U.S. Appl. No. 16/596,194, Notice of Allowance dated Sep. 9, 2021”, 10 pgs.
“U.S. Appl. No. 16/596,194, PTO Response to Rule 312 Communication dated Dec. 13, 2021”, 2 pgs.
“U.S. Appl. No. 16/596,194, Response filed Apr. 12, 2021 to Non Final Office Action dated Jan. 22, 2021”, 15 pgs.
“U.S. Appl. No. 16/596,194, Response filed Aug. 18, 2021 to Final Office Action dated May 20, 2021”, 15 pgs.
“U.S. Appl. No. 16/675,938, Non Final Office Action dated Sep. 16, 2021”, 5 pgs.
“U.S. Appl. No. 16/675,938, Notice of Allowance dated Jan. 12, 2022”, 8 pgs.
“U.S. Appl. No. 16/675,938, Response filed Dec. 3, 2021 to Non Final Office Action dated Sep. 16, 2021”, 8 pgs.
“U.S. Appl. No. 16/675,938, Supplemental Notice of Allowability dated Feb. 1, 2022”, 2 pgs.
“U.S. Appl. No. 16/715,092, Final Office Action dated Mar. 16, 2022”, 8 pgs.
“U.S. Appl. No. 16/715,092, Non Final Office Action dated Sep. 22, 2021”, 8 pgs.
“U.S. Appl. No. 16/715,092, Response filed Aug. 9, 2021 to Restriction Requirement dated Jun. 25, 2021”, 7 pgs.
“U.S. Appl. No. 16/715,092, Response filed Dec. 10, 2021 to Non Final Office Action dated Sep. 22, 2021”, 14 pgs.
“U.S. Appl. No. 16/715,092, Restriction Requirement dated Jun. 25, 2021”, 6 pgs.
“U.S. Appl. No. 16/743,746, Notice of Allowance dated Jan. 13, 2022”, 14 pgs.
“U.S. Appl. No. 16/743,746, Supplemental Notice of Allowability dated Jan. 27, 2022”, 2 pgs.
“U.S. Appl. No. 17/134,885, Preliminary Amendment filed Jan. 18, 2021”, 10 pgs.
“U.S. Appl. No. 17/545,728, Preliminary Amendment filed Jan. 7, 2022”, 10 pgs.
“Australian Application Serial No. 2020204019, First Examination Report dated Jun. 18, 2021”, 7 pgs.
“Australian Application Serial No. 2020204019, Response filed Jan. 11, 2022 to Subsequent Examiners Report dated Nov. 16, 2021”, 19 pgs.
“Australian Application Serial No. 2020204019, Response filed Aug. 19, 2021 to First Examination Report dated Jun. 18, 2021”, 3 pgs.
“Australian Application Serial No. 2020204019, Response filed Oct. 15, 2021 to Subsequent Examiners Report dated Sep. 2, 2021”, 22 pgs.
“Australian Application Serial No. 2020204019, Subsequent Examiners Report dated Sep. 2, 2021”, 4 pgs.
“Australian Application Serial No. 2020204019, Subsequent Examiners Report dated Nov. 16, 2021”, 3 pgs.
“Canadian Application Serial No. 3,063,415, Response filed Nov. 12, 2020 to Office Action dated Jul. 13, 2020”, 15 pgs.
“Chinese Application Serial No. 201880016775.4, Decision of Rejection dated Jul. 12, 2021”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201880016775.4, Office Action dated Jan. 22, 2021”, with English translation, 15 pages.
“Chinese Application Serial No. 201880031319.7, Office Action dated Nov. 18, 2020”, (W/ English Translation), 9 pgs.
“Chinese Application Serial No. 201880031319.7, Response filed Jan. 18, 2021 to Office Action dated Nov. 18, 2020”, (W/ English Claims), 16 pgs.
“European Application Serial No. 16189084.3, Communication Pursuant to Article 94(3) EPC dated Jul. 1, 2021”, 6 pgs.
“European Application Serial No. 16189084.3, Response filed Nov. 8, 2021 to Communication Pursuant to Article 94(3) EPC dated Jul. 1, 2021”, 61 pgs.
“European Application Serial No. 20175535.2, Extended European Search Report dated Aug. 18, 2021”, 16 pgs.
“European Application Serial No. 20175535.2, Partial European Search Report dated May 18, 2021”, 18 pgs.
“European Application Serial No. 20175535.2, Response Filed Mar. 15, 2022 to Extended European Search Report dated Aug. 18, 2021”, 31 pgs.
“European Application Serial No. 21178298.2, Extended European Search Report dated Mar. 1, 2022”, 9 pgs.
“Japanese Application Serial No. 2019-562605, Notification of Reasons for Refusal dated Nov. 10, 2020”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2019-562605, Response filed Feb. 9, 2021 to Notification of Reasons for Refusal dated Nov. 10, 2020”, (W/ English Claims), 19 pgs.
“Mexican Application Serial No. 2016/001734, Response filed Aug. 31, 2021 to Office Action dated Jun. 7, 2021”, (W/ English Translation of Claims), 29 pgs.
“U.S. Appl. No. 16/179,201, Non Final Office Action dated Nov. 2, 2020”, 15 pgs.
“U.S. Appl. No. 16/352,287, Response filed Oct. 12, 2020 to Restriction Requirement dated Aug. 17, 2020”, 8 pgs.
“Brazilian Application Serial No. BR1120130016736, Response filed Oct. 5, 2020 to Office Action dated Jun. 10, 2020”, w/ English claims, 91 pgs.
U.S. Appl. No. 17/545,728, filed Dec. 8, 2021, Asymmetric Tibial Components for a Knee Prosthesis.
U.S. Appl. No. 15/045,799 U.S. Pat. No. 9,707,089, filed Feb. 17, 2016, Tibial Baseplate With Asymmetric Placement of Fixation Structures.
U.S. Appl. No. 17/134,885, filed Dec. 28, 2020, Tibial Bearing Component for a Knee Prosthesis With Improved Articular Characteristics.
U.S. Appl. No. 17/717,898, filed Apr. 11, 2022, Femoral Prostheses With Upsizing and Downsizing Capabilities.
“U.S. Appl. No. 13/087,610, Non Final Office Action dated Feb. 26, 2013”, 7 pgs.
“U.S. Appl. No. 13/087,610, Notice of Allowance dated Jun. 28, 2013”, 6 pgs.
“U.S. Appl. No. 13/087,610, Notice of Allowance dated Oct. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/087,610, Response filed May 24, 2013 to Non Final Office Action dated Feb. 26, 2013”, 15 pgs.
“U.S. Appl. No. 13/189,324, Examiner Interview Summary dated Jan. 13, 2014”, 4 pgs.
“U.S. Appl. No. 13/189,324, Final Office Action dated Jul. 16, 2013”, 19 pgs.
“U.S. Appl. No. 13/189,324, Non Final Office Action dated Dec. 11, 2012”, 19 pgs.
“U.S. Appl. No. 13/189,324, Notice of Allowance dated Feb. 20, 2014”, 8 pgs.
“U.S. Appl. No. 13/189,324, PTO Response to 312 Amendment dated May 29, 2014”, 2 pgs.
“U.S. Appl. No. 13/189,324, Response filed Jan. 15, 2014 to Final Office Action dated Jul. 16, 2013”, 23 pgs.
“U.S. Appl. No. 13/189,324, Response filed Jun. 10, 2013 to Non Final Office Action dated Dec. 11, 2012”, 24 pgs.
“U.S. Appl. No. 13/189,328, Non Final Office Action dated Mar. 19, 2013”, 10 pgs.
“U.S. Appl. No. 13/189,328, Notice of Allowance dated Oct. 8, 2013”, 12 pgs.
“U.S. Appl. No. 13/189,328, PTO Response to 312 Amendment dated Dec. 13, 2013”, 2 pgs.
“U.S. Appl. No. 13/189,328, Response filed Jan. 10, 2013 to Restriction Requirement dated Dec. 10, 2012”, 9 pgs.
“U.S. Appl. No. 13/189,328, Response filed Jul. 18, 2013 to Non Final Office Action dated Mar. 19, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,328, Restriction Requirement dated Dec. 10, 2012”, 6 pgs.
“U.S. Appl. No. 13/189,336, Notice of Allowance dated Sep. 13, 2013”, 30 pgs.
“U.S. Appl. No. 13/189,336, PTO Response to 312 Amendment dated Nov. 25, 2013”, 2 pgs.
“U.S. Appl. No. 13/189,336, Response filed Apr. 15, 2013 to Restriction Requirement dated Jan. 30, 2013”, 21 pgs.
“U.S. Appl. No. 13/189,336, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 20 pgs.
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jan. 30, 2013”, 5 pgs.
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jun. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,338, Notice of Allowance dated Sep. 23, 2013”, 23 pgs.
“U.S. Appl. No. 13/189,338, Response filed Apr. 15, 2013 to Restriction Requirement dated Feb. 14, 2013”, 18 pgs.
“U.S. Appl. No. 13/189,338, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Feb. 14, 2013”, 5 pgs.
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Jun. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,339, Notice of Allowance dated Sep. 20, 2013”, 16 pgs.
“U.S. Appl. No. 13/189,339, Response filed Apr. 15, 2013 to Restriction Requirement dated Mar. 6, 2013”, 11 pgs.
“U.S. Appl. No. 13/189,339, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 10 pgs.
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Mar. 6, 2013”, 6 pgs.
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Jun. 17, 2013”, 7 pgs.
“U.S. Appl. No. 13/229,103, Applicant Interview Summary dated Sep. 23, 2013”, 2 pgs.
“U.S. Appl. No. 13/229,103, Examiner Interview Summary dated Sep. 13, 2013”, 3 pgs.
“U.S. Appl. No. 13/229,103, Non Final Office Action dated Apr. 1, 2013”, 18 pgs.
“U.S. Appl. No. 13/229,103, Notice of Allowance dated Sep. 18, 2013”, 9 pgs.
“U.S. Appl. No. 13/229,103, Response filed Jul. 1, 2013 to Non Final Office Action dated Apr. 1, 2013”, 19 pgs.
“U.S. Appl. No. 13/229,103, Supplemental Notice of Allowability dated Oct. 18, 2013”, 2 pgs.
“U.S. Appl. No. 13/459,037, Final Office Action dated Sep. 23, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,037, Non Final Office Action dated Apr. 23, 2013”, 10 pgs.
“U.S. Appl. No. 13/459,037, Notice of Allowance dated Jun. 13, 2014”, 9 pgs.
“U.S. Appl. No. 13/459,037, Preliminary Amendment filed Apr. 27, 2012”, 3 pgs.
“U.S. Appl. No. 13/459,037, Response filed Mar. 21, 2014 to Final Office Action dated Sep. 23, 2013”, 15 pgs.
“U.S. Appl. No. 13/459,037, Response filed Mar. 28, 2013 to Restriction Requirement dated Feb. 26, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,037, Response filed Jul. 23, 2013 to Non Final Office Action dated Apr. 23, 2013”, 19 pgs.
“U.S. Appl. No. 13/459,037, Restriction Requirement dated Feb. 26, 2013”, 6 pgs.
“U.S. Appl. No. 13/459,041, Non Final Office Action dated Jan. 15, 2014”, 16 pgs.
“U.S. Appl. No. 13/459,041, Non Final Office Action dated Sep. 9, 2014”, 14 pgs.
“U.S. Appl. No. 13/459,041, Notice of Allowance dated Apr. 2, 2015”, 10 pgs.
“U.S. Appl. No. 13/459,041, Preliminary Amendment dated Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,041, PTO Response to Rule 312 Communication dated Jun. 9, 2015”, 2 pgs.
“U.S. Appl. No. 13/459,041, Response filed May 15, 2014 to Non-Final Office Action dated Jan. 15, 2014”, 24 pgs.
“U.S. Appl. No. 13/459,041, Response filed Sep. 23, 2013 to Restriction Requirement dated Jul. 25, 2013”, 18 pgs.
“U.S. Appl. No. 13/459,041, Response filed Dec. 9, 2014 to Non-Final Office Action dated Sep. 9, 2014”, 23 pgs.
“U.S. Appl. No. 13/459,041, Restriction Requirement dated Jul. 25, 2013”, 9 pgs.
“U.S. Appl. No. 13/459,048, Non Final Office Action dated Jul. 11, 2013”, 6 pgs.
“U.S. Appl. No. 13/459,048, Notice of Allowance dated Nov. 26, 2013”, 10 pgs.
“U.S. Appl. No. 13/459,048, Preliminary Amendment filed Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,048, Response filed Nov. 11, 2013 to Non-Final Office Action dated Jul. 11, 2013”, 16 pgs.
“U.S. Appl. No. 13/459,056, Examiner Interview Summary dated Dec. 26, 2013”, 3 pgs.
“U.S. Appl. No. 13/459,056, Non Final Office Action dated Jul. 25, 2013”, 11 pgs.
“U.S. Appl. No. 13/459,056, Notice of Allowance dated Feb. 20, 2014”, 5 pgs.
“U.S. Appl. No. 13/459,056, Preliminary Amendment filed Apr. 27, 2012”, 7 pgs.
“U.S. Appl. No. 13/459,056, PTO Response to Rule 312 Communication dated May 22, 2014”, 2 pgs.
“U.S. Appl. No. 13/459,056, Response filed Jan. 24, 2014 to Non-Final office Action dated Jul. 25, 2013”, 27 pgs.
“U.S. Appl. No. 13/459,056, Response filed Apr. 8, 2013 to Restriction Requirement dated Mar. 6, 2013”, 15 pgs.
“U.S. Appl. No. 13/459,056, Restriction Requirement dated Mar. 6, 2013”, 6 pgs.
“U.S. Appl. No. 13/593,339, Non Final Office Action dated Oct. 4, 2013”, 7 pgs.
“U.S. Appl. No. 13/593,339, Notice of Allowance dated Feb. 14, 2014”, 9 pgs.
“U.S. Appl. No. 13/593,339, Preliminary Amendment filed Aug. 23, 2012”, 6 pgs.
“U.S. Appl. No. 13/593,339, Response filed Jan. 31, 2014 to Non-Final Office Action dated Oct. 4, 2013”, 19 pgs.
“U.S. Appl. No. 13/593,339, Response filed Aug. 30, 2013 to Restriction Requirement dated Aug. 1, 2013”, 14 pgs.
“U.S. Appl. No. 13/593,339, Restriction Requirement dated Aug. 1, 2013”, 5 pgs.
“U.S. Appl. No. 13/593,339, Supplemental Notice of Allowability dated Mar. 31, 2014”, 2 pgs.
“U.S. Appl. No. 13/594,543, Corrected Notice of Allowance dated Mar. 16, 2016”, 2 pgs.
“U.S. Appl. No. 13/594,543, Examiner Interview Summary dated Jan. 22, 2016”, 3 pgs.
“U.S. Appl. No. 13/594,543, Final Office Action dated Jul. 17, 2014”, 12 pgs.
“U.S. Appl. No. 13/594,543, Final Office Action dated Nov. 20, 2015”, 28 pgs.
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Jun. 19, 2015”, 30 pgs.
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Dec. 26, 2013”, 15 pgs.
“U.S. Appl. No. 13/594,543, Non-Final Office Action dated Jan. 9, 2015”, 23 pgs.
“U.S. Appl. No. 13/594,543, Notice of Allowance dated Mar. 1, 2016”, 9 pgs.
“U.S. Appl. No. 13/594,543, Preliminary Amendment filed Aug. 24, 2012”, 4 pgs.
“U.S. Appl. No. 13/594,543, Response filed Feb. 8, 2016 to Final Office Action dated Nov. 20, 2015”, 17 pgs.
“U.S. Appl. No. 13/594,543, Response filed Apr. 7, 2015 to Non-Final Office Action dated Jan. 9, 2015”, 27 pgs.
“U.S. Appl. No. 13/594,543, Response filed May 7, 2014 to Non-Final office Action dated Dec. 26, 2013”, 17 pgs.
“U.S. Appl. No. 13/594,543, Response filed Sep. 21, 2015 to Non-Final Office Action dated Jun. 19, 2015”, 25 pgs.
“U.S. Appl. No. 13/594,543, Response filed Oct. 11, 2013 to Restriction Requirement dated Sep. 12, 2013”, 8 pgs.
“U.S. Appl. No. 13/594,543, Response filed Dec. 17, 2014 to Final Office Action dated Jul. 17, 2014”, 15 pgs.
“U.S. Appl. No. 13/594,543, Restriction Requirement dated Sep. 12, 2013”, 5 pgs.
“U.S. Appl. No. 13/819,116, Advisory Action dated Jan. 5, 2016”, 3 pgs.
“U.S. Appl. No. 13/819,116, Corrected Notice of Allowance dated Oct. 21, 2016”, 2 pgs.
“U.S. Appl. No. 13/819,116, Examiner Interview Summary dated Apr. 18, 2016”, 11 pgs.
“U.S. Appl. No. 13/819,116, Final Office Action dated Jul. 26, 2016”, 6 pgs.
“U.S. Appl. No. 13/819,116, Final Office Action dated Oct. 21, 2015”, 15 pgs.
“U.S. Appl. No. 13/819,116, Non Final Office Action dated Feb. 17, 2016”, 15 pgs.
“U.S. Appl. No. 13/819,116, Non Final Office Action dated Jun. 2, 2015”, 14 pgs.
“U.S. Appl. No. 13/819,116, Notice of Allowance dated Sep. 29, 2016”, 5 pgs.
“U.S. Appl. No. 13/819,116, Preliminary Amendment filed Feb. 26, 2013”, 8 pgs.
“U.S. Appl. No. 13/819,116, Response filed Mar. 27, 2015 to Restriction Requirement dated Feb. 12, 2015”, 11 pgs.
“U.S. Appl. No. 13/819,116, Response filed Apr. 29, 2016 to Non Final Office Action dated Feb. 17, 2016”, 17 pgs.
“U.S. Appl. No. 13/819,116, Response filed Jul. 16, 2015 to Non Final Office Action dated Jun. 2, 2015”, 22 pgs.
“U.S. Appl. No. 13/819,116, Response filed Sep. 14, 2016 Final Office Action dated Jul. 26, 2016”, 10 pgs.
“U.S. Appl. No. 13/819,116, Response filed Dec. 15, 2015 to Final Office Action dated Oct. 21, 2015”, 16 pgs.
“U.S. Appl. No. 13/819,116, Restriction Requirement dated Feb. 12, 2015”, 7 pgs.
“U.S. Appl. No. 13/836,586, Express Abandonment filed May 30, 2014”, 1 pg.
“U.S. Appl. No. 13/836,665, Examiner Interview Summary dated Jul. 17, 2014”, 4 pgs.
“U.S. Appl. No. 13/836,665, Final Office Action dated Jul. 25, 2014”, 25 pgs.
“U.S. Appl. No. 13/836,665, Non Final Office Action dated Jan. 30, 2014”, 21 pgs.
“U.S. Appl. No. 13/836,665, Notice of Allowance dated Jun. 9, 2015”, 10 pgs.
“U.S. Appl. No. 13/836,665, Response filed Jan. 23, 2015 to Final Office Action dated Jul. 25, 2014”, 25 pgs.
“U.S. Appl. No. 13/836,665, Response filed May 30, 2014 to Non-Final Office Action dated Jan. 30, 2014”, 21 pgs.
“U.S. Appl. No. 13/837,294, Final Office Action dated Apr. 25, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Final Office Action dated Jun. 2, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Non Final Office Action dated Dec. 10, 2015”, 8 pgs.
“U.S. Appl. No. 13/837,294, Notice of Allowance dated Aug. 25, 2016”, 5 pgs.
“U.S. Appl. No. 13/837,294, Response filed Mar. 4, 2016 to Non Final Office Action dated Dec. 10, 2015”, 16 pgs.
“U.S. Appl. No. 13/837,294, Response filed Aug. 3, 2016 to Final Office Action dated Jun. 2, 2016”, 7 pgs.
“U.S. Appl. No. 13/837,294, Response filed Oct. 12, 2015 to Restriction Requirement dated Aug. 24, 2015”, 9 pgs.
“U.S. Appl. No. 13/837,294, Restriction Requirement dated Aug. 24, 2015”, 6 pgs.
“U.S. Appl. No. 13/837,774, Examiner Interview Summary dated Jul. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/837,774, Final Office Action dated Mar. 17, 2016”, 14 pgs.
“U.S. Appl. No. 13/837,774, Final Office Action dated Jul. 28, 2014”, 17 pgs.
“U.S. Appl. No. 13/837,774, Non Final Office Action dated Feb. 10, 2014”, 33 pgs.
“U.S. Appl. No. 13/837,774, Non Final Office Action dated Sep. 18, 2015”, 16 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jan. 28, 2015 to Final Office Action dated Jul. 28, 2014”, 16 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jun. 10, 2014 to Non-Final Office Action dated Feb. 20, 2014”, 29 pgs.
“U.S. Appl. No. 13/837,774, Response filed Jul. 7, 2015 to Restriction Requirement dated May 20, 2015”, 10 pgs.
“U.S. Appl. No. 13/837,774, Response filed Dec. 16, 2015 to Non Final Office Action dated Sep. 18, 2015”, 17 pgs.
“U.S. Appl. No. 13/837,774, Restriction Requirement dated May 20, 2015”, 6 pgs.
“U.S. Appl. No. 14/034,076, Appeal Brief Filed Apr. 18, 2016”, 21 pgs.
“U.S. Appl. No. 14/034,076, Final Office Action dated Dec. 21, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,076, Non Final Office Action dated Jun. 24, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,076, Notice of Allowance dated Oct. 28, 2016”, 7 pgs.
“U.S. Appl. No. 14/034,076, Response filed Nov. 16, 2015 to Non Final Office Action dated Jun. 24, 2015”, 13 pgs.
“U.S. Appl. No. 14/034,937, Appeal Brief Filed Sep. 9, 2015”, 41 pgs.
“U.S. Appl. No. 14/034,937, Appeal Decision mailed May 30, 2017”, 34 pgs.
“U.S. Appl. No. 14/034,937, Final Office Action dated Jun. 5, 2015”, 22 pgs.
“U.S. Appl. No. 14/034,937, Non Final Office Action dated Jan. 2, 2015”, 21 pgs.
“U.S. Appl. No. 14/034,937, Notice of Allowance dated Aug. 30, 2017”, 14 pgs.
“U.S. Appl. No. 14/034,937, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,937, PTO Response to Rule 312 Communication dated Oct. 10, 2017”, 2 pgs.
“U.S. Appl. No. 14/034,937, Response filed Mar. 30, 2015 to Non-Final Office Action”, 24 pgs.
“U.S. Appl. No. 14/034,937, Response filed Oct. 27, 2014 to Restriction Requirement dated Sep. 11, 2014”, 12 pgs.
“U.S. Appl. No. 14/034,937, Restriction Requirement dated Sep. 11, 2014”, 6 pgs.
“U.S. Appl. No. 14/034,937, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs.
“U.S. Appl. No. 14/034,944, Non Final Office Action dated Mar. 3, 2015”, 16 pgs.
“U.S. Appl. No. 14/034,944, Notice of Allowance dated Aug. 28, 2015”, 7 pgs.
“U.S. Appl. No. 14/034,944, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,944, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 3, 2015”, 15 pgs.
“U.S. Appl. No. 14/034,944, Response filed Dec. 15, 2014 to Restriction Requirement dated Oct. 14, 2014”, 12 pgs.
“U.S. Appl. No. 14/034,944, Restriction Requirement dated Oct. 14, 2014”, 6 pgs.
“U.S. Appl. No. 14/034,944, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs.
“U.S. Appl. No. 14/034,954, Advisory Action dated Aug. 25, 2015”, 3 pgs.
“U.S. Appl. No. 14/034,954, Final Office Action dated Jun. 1, 2015”, 26 pgs.
“U.S. Appl. No. 14/034,954, Non Final Office Action dated Dec. 19, 2014”, 25 pgs.
“U.S. Appl. No. 14/034,954, Notice of Allowance dated Nov. 20, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,954, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,954, Response filed Mar. 17, 2015 to Non Final Office Action dated Dec. 19, 2014”, 21 pgs.
“U.S. Appl. No. 14/034,954, Response filed Aug. 3, 2015 to Final Office Action dated Jun. 1, 2015”, 19 pgs.
“U.S. Appl. No. 14/034,954, Response filed Aug. 31, 2015 to Advisory Action dated Aug. 25, 2015”, 21 pgs.
“U.S. Appl. No. 14/034,954, Response filed Oct. 27, 2014 to Restriction Requirement dated Aug. 25, 2014”, 11 pgs.
“U.S. Appl. No. 14/034,954, Restriction Requirement dated Aug. 25, 2014”, 7 pgs.
“U.S. Appl. No. 14/034,954, Supplemental Preliminary Amendment filed Oct. 25, 2013”, 8 pgs.
“U.S. Appl. No. 14/034,963, Final Office Action dated Apr. 13, 2015”, 22 pgs.
“U.S. Appl. No. 14/034,963, Final Office Action dated Oct. 13, 2015”, 11 pgs.
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Jul. 1, 2015”, 15 pgs.
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Nov. 21, 2014”, 19 pgs.
“U.S. Appl. No. 14/034,963, Notice of Allowance dated Dec. 18, 2015”, 5 pgs.
“U.S. Appl. No. 14/034,963, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs.
“U.S. Appl. No. 14/034,963, Response filed Mar. 20, 2015 to Non-Final Office Action dated Nov. 21, 2014”, 20 pgs.
“U.S. Appl. No. 14/034,963, Response filed Jun. 19, 2015 to Final Office Action dated Apr. 13, 2015”, 17 pgs.
“U.S. Appl. No. 14/034,963, Response filed Sep. 30, 2015 to Non Final Office Action dated Jul. 1, 2015”, 14 pgs.
“U.S. Appl. No. 14/034,963, Response filed Nov. 20, 2015 to Final Office Action dated Oct. 13, 2015”, 12 pgs.
“U.S. Appl. No. 14/063,032, Non Final Office Action dated Jun. 20, 2014”, 6 pgs.
“U.S. Appl. No. 14/063,032, Notice of Allowance dated Dec. 19, 2014”, 6 pgs.
“U.S. Appl. No. 14/063,032, Preliminary Amendment filed Oct. 25, 2013”, 3 pgs.
“U.S. Appl. No. 14/063,032, Response filed Oct. 20, 2014 to Non-Final Office Action dated Jun. 20, 2014”, 9 pgs.
“U.S. Appl. No. 14/063,593, Advisory Action dated Aug. 19, 2016”, 3 pgs.
“U.S. Appl. No. 14/063,593, Final Office Action dated Jun. 9, 2016”, 10 pgs.
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Jan. 25, 2016”, 9 pgs.
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Nov. 30, 2016”, 12 pgs.
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 2, 2017”, 5 pgs.
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 25, 2017”, 5 pgs.
“U.S. Appl. No. 14/063,593, Preliminary Amendment filed Oct. 25, 2013”, 3 pgs.
“U.S. Appl. No. 14/063,593, Response filed Jan. 4, 2016 to Restriction Requirement dated Nov. 6, 2015”, 6 pgs.
“U.S. Appl. No. 14/063,593, Response filed Feb. 24, 2017 to Non Final Office Action dated Nov. 30, 2016”, 17 pgs.
“U.S. Appl. No. 14/063,593, Response filed Apr. 20, 2016 to Non Final Office Action dated Jan. 25, 2016”, 17 pgs.
“U.S. Appl. No. 14/063,593, Response filed Aug. 11, 2016 to Final Office Action dated Jun. 9, 2016”, 10 pgs.
“U.S. Appl. No. 14/063,593, Restriction Requirement dated Nov. 6, 2015”, 6 pgs.
“U.S. Appl. No. 14/181,033, Non Final Office Action dated May 1, 2015”, 5 pgs.
“U.S. Appl. No. 14/181,033, Notice of Allowance dated Jul. 17, 2015”, 10 pgs.
“U.S. Appl. No. 14/181,033, Response filed Jun. 22, 2015 to Non-Final Office Action dated May 1, 2015”, 11 pgs.
“U.S. Appl. No. 14/278,805, Notice of Allowance dated Dec. 1, 2015”, 8 pgs.
“U.S. Appl. No. 14/278,805, Supplemental Notice of Allowability dated Jan. 21, 2016”, 2 pgs.
“U.S. Appl. No. 14/284,028, Non Final Office Action dated Jul. 7, 2015”, 17 pgs.
“U.S. Appl. No. 14/284,028, Notice of Allowance dated Nov. 6, 2015”, 5 pgs.
“U.S. Appl. No. 14/284,028, Response filed Oct. 6, 2015 to Non Final Office Action dated Jul. 7, 2015”, 15 pgs.
“U.S. Appl. No. 14/284,028, Supplemental Notice of Allowability dated Feb. 26, 2016”, 5 pgs.
“U.S. Appl. No. 14/284,028, Supplemental Preliminary Amendment filed Jul. 8, 2014”, 13 pgs.
“U.S. Appl. No. 14/284,144, Final Office Action dated Aug. 7, 2015”, 13 pgs.
“U.S. Appl. No. 14/284,144, Non Final Office Action dated Mar. 25, 2015”, 26 pgs.
“U.S. Appl. No. 14/284,144, Notice of Allowance dated Oct. 29, 2015”, 8 pgs.
“U.S. Appl. No. 14/284,144, Preliminary Amendment filed May 21, 2014”, 3 pgs.
“U.S. Appl. No. 14/284,144, Response filed Oct. 9, 2015 to Final Office Action dated Aug. 7, 2015”, 13 pgs.
“U.S. Appl. No. 14/284,144, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 25, 2015”, 22 pgs.
“U.S. Appl. No. 14/284,144, Supplemental Preliminary Amendment filed Jul. 3, 2014”, 10 pgs.
“U.S. Appl. No. 14/304,009, Notice of Allowance dated Nov. 16, 2016”, 7 pgs.
“U.S. Appl. No. 14/304,009, Preliminary Amendment Filed Jul. 31, 2014”, 7 pgs.
“U.S. Appl. No. 14/471,440, Notice of Allowance dated Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/471,440, Response filed Aug. 16, 2017 to Restriction Requirement dated Jun. 30, 2017”, 8 pgs.
“U.S. Appl. No. 14/471,440, Restriction Requirement dated Jun. 30, 2017”, 6 pgs.
“U.S. Appl. No. 14/490,153, Final Office Action dated Apr. 15, 2015”, 18 pgs.
“U.S. Appl. No. 14/490,153, Non Final Office Action dated Nov. 12, 2014”, 9 pgs.
“U.S. Appl. No. 14/490,153, Notice of Allowance dated Aug. 14, 2015”, 10 pgs.
“U.S. Appl. No. 14/490,153, Preliminary Amendment filed Sep. 18, 2014”, 3 pgs.
“U.S. Appl. No. 14/490,153, Response filed Feb. 18, 2015 to Non-Final Office Action dated Nov. 12, 2014”, 14 pgs.
“U.S. Appl. No. 14/490,153, Response filed Jul. 7, 2015 to Final Office Action dated Apr. 15, 2015”, 14 pgs.
“U.S. Appl. No. 14/660,217, Corrected Notice of Allowance dated May 26, 2016”, 3 pgs.
“U.S. Appl. No. 14/660,217, Non Final Office Action dated Dec. 17, 2015”, 8 pgs.
“U.S. Appl. No. 14/660,217, Notice of Allowance dated Apr. 26, 2016”, 5 pgs.
“U.S. Appl. No. 14/660,217, Preliminary Amendment filed Mar. 18, 2015”, 9 pgs.
“U.S. Appl. No. 14/660,217, Response filed Mar. 23, 2016 to Non Final Office Action dated Dec. 17, 2015”, 14 pgs.
“U.S. Appl. No. 14/740,690, Non Final Office Action dated Dec. 7, 2016”, 19 pgs.
“U.S. Appl. No. 14/740,690, Notice of Allowability dated Aug. 29, 2017”, 2 pgs.
“U.S. Appl. No. 14/740,690, Notice of Allowance dated Jun. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/740,690, Response filed Mar. 3, 2017 to Non Final Office Action dated Dec. 7, 2016”, 14 pgs.
“U.S. Appl. No. 14/791,952, Corrected Notice of Allowance dated Jul. 21, 2017”, 2 pgs.
“U.S. Appl. No. 14/791,952, Final Office Action dated Mar. 31, 2017”, 8 pgs.
“U.S. Appl. No. 14/791,952, Final Office Action dated Sep. 1, 2016”, 17 pgs.
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Apr. 21, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Dec. 29, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Notice of Allowance dated May 30, 2017”, 7 pgs.
“U.S. Appl. No. 14/791,952, Preliminary Amendment filed Jul. 7, 2015”, 7 pgs.
“U.S. Appl. No. 14/791,952, Response filed Mar. 20, 2017 to Non Final Office Action dated Dec. 29, 2016”, 12 pgs.
“U.S. Appl. No. 14/791,952, Response filed May 17, 2017-to Final Office Action dated Mar. 31, 2017”, 10 pgs.
“U.S. Appl. No. 14/791,952, Response filed Jul. 15, 2016 to Non Final Office Action dated Apr. 21, 2016”, 18 pgs.
“U.S. Appl. No. 14/791,952, Response filed Nov. 21, 2016 to Final Office Action dated Sep. 1, 2016”, 15 pgs.
“U.S. Appl. No. 14/833,385, Examiner Interview Summary dated Dec. 27, 2017”, 3 pgs.
“U.S. Appl. No. 14/833,385, Final Office Action dated Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 14/833,385, Non Final Office Action dated Jun. 19, 2017”, 10 pgs.
“U.S. Appl. No. 14/833,385, Preliminary Amendment filed Aug. 25, 2015”, 6 pgs.
“U.S. Appl. No. 14/833,385, Response filed May 12, 2017 to Restriction Requirement dated Mar. 17, 2017”, 8 pgs.
“U.S. Appl. No. 14/833,385, Response filed Sep. 18, 2017 to Non Final Office Action dated Jun. 19, 2017”, 14 pgs.
“U.S. Appl. No. 14/833,385, Restriction Requirement dated Mar. 17, 2017”, 6 pgs.
“U.S. Appl. No. 14/918,721, Final Office Action dated Oct. 20, 2016”, 5 pgs.
“U.S. Appl. No. 14/918,721, Non Final Office Action dated Jun. 16, 2016”, 6 pgs.
“U.S. Appl. No. 14/918,721, Notice of Allowance dated Feb. 1, 2017”, 9 pgs.
“U.S. Appl. No. 14/918,721, Preliminary Amendment filed Oct. 23, 2015”, 8 pgs.
“U.S. Appl. No. 14/918,721, PTO Response to Rule 312 Communication dated Mar. 17, 2017”, 2 pgs.
“U.S. Appl. No. 14/918,721, Response filed Sep. 12, 2016 to Non Final Office Action dated Jun. 16, 2016”, 12 pgs.
“U.S. Appl. No. 14/918,721, Response filed Dec. 13, 2016 to Final Office Action dated Oct. 20, 2016”, 9 pgs.
“U.S. Appl. No. 14/926,281, Non Final Office Action dated Jun. 21, 2017”, 17 pgs.
“U.S. Appl. No. 14/926,281, Notice of Allowance dated Nov. 16, 2017”, 9 pgs.
“U.S. Appl. No. 14/926,281, Preliminary Amendment filed Oct. 30, 2015”, 8 pgs.
“U.S. Appl. No. 14/926,281, Response filed Sep. 18, 2017 to Non Final Office Action dated Jun. 21, 2017”, 11 pgs.
“U.S. Appl. No. 15/003,091, Preliminary Amendment filed Jan. 22, 2016”, 12 pgs.
“U.S. Appl. No. 15/003,091, Non Final Office Action dated Jun. 20, 2017”, 14 pgs.
“U.S. Appl. No. 15/003,091, Notice of Allowance dated Nov. 6, 2017”, 8 pgs.
“U.S. Appl. No. 15/003,091, PTO Response to Rule 312 Communication dated Jan. 23, 2018”, 2 pgs.
“U.S. Appl. No. 15/003,091, Response filed Sep. 20, 2017 to Non Final Office Action dated Jun. 20, 2017”, 17 pgs.
“U.S. Appl. No. 15/045,799, Non Final Office Action dated Nov. 1, 2016”, 8 pgs.
“U.S. Appl. No. 15/045,799, Notice of Allowance dated Mar. 10, 2017”, 10 pgs.
“U.S. Appl. No. 15/045,799, Preliminary Amendment filed Feb. 18, 2016”, 9 pgs.
“U.S. Appl. No. 15/045,799, PTO Response to Rule 312 Communication dated Apr, 18, 2017”, 2 pgs.
“U.S. Appl. No. 15/045,799, Response filed Feb. 1, 2017 to Non Final Office Action dated Nov. 1, 2016”, 15 pgs.
“U.S. Appl. No. 15/062,252, Preliminary Amendment filed Mar. 9, 2016”, 8 pgs.
“U.S. Appl. No. 15/062,262, Non Final Office Action dated Jul. 22, 2016”, 12 pgs.
“U.S. Appl. No. 15/062,262, Notice of Allowance dated Jan. 31, 2017”, 5 pgs.
“U.S. Appl. No. 15/062,262, PTO Response to Rule 312 Communication dated Mar. 7, 2017”, 2 pgs.
“U.S. Appl. No. 15/062,262, Response filed Oct. 24, 2016 to Non Final Office Action dated Jul. 22, 2016”, 13 pgs.
“U.S. Appl. No. 15/177,734, Non Final Office Action dated Feb. 10, 2017”, 21 pgs.
“U.S. Appl. No. 15/177,734, Notice of Allowance dated May 17, 2017”, 7 pgs.
“U.S. Appl. No. 15/177,734, Preliminary Amendment filed Jun. 22, 2016”, 8 pgs.
“U.S. Appl. No. 15/177,734, Response filed Apr. 19, 2017 to Non Final Office Action dated Feb. 10, 2017”, 22 pgs.
“U.S. Appl. No. 15/211,812, Non Final Office Action dated Jan. 27, 2017”, 5 pgs.
“U.S. Appl. No. 15/211,812, Notice of Allowance dated May 31, 2017”, 5 pgs.
“U.S. Appl. No. 15/211,812, Preliminary Amendment filed Sep. 8, 2016”, 8 pgs.
“U.S. Appl. No. 15/211,812, Response filed Apr. 19, 2017 to Non Final Office Action dated Jan. 27, 2017”, 9 pgs.
“U.S. Appl. No. 15/267,793, Non Final Office Action dated Jun. 14, 2018”, 12 pgs.
“U.S. Appl. No. 15/267,793, Notice of Allowability dated Jan. 17, 2019”, 2 pgs.
“U.S. Appl. No. 15/267,793, Notice of Allowance dated Dec. 21, 2018”, 5 pgs.
“U.S. Appl. No. 15/267,793, Response Filed Apr. 11, 2018 to Restriction Requirement dated Feb. 16, 2018”, 8 pgs.
“U.S. Appl. No. 15/267,793, Response filed Aug. 22, 2018 Non Final Office Action dated Jun. 14, 2018”, 16 pgs.
“U.S. Appl. No. 15/267,793, Restriction Requirement dated Feb. 16, 2018”, 7 pgs.
“U.S. Appl. No. 15/424,328, Non Final Office Action dated Jun. 23, 2017”, 5 pgs.
“U.S. Appl. No. 15/424,328, Notice of Allowance dated Oct. 16, 2017”, 6 pgs.
“U.S. Appl. No. 15/424,328, Preliminary Amendment filed Feb. 28, 2017”, 10 pgs.
“U.S. Appl. No. 15/424,328, Response filed Sep. 20, 2017 to Non Final Office Action dated Jun. 23, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Final Office Action dated Dec. 15, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Non Final Office Action dated Jul. 26, 2017”, 10 pgs.
“U.S. Appl. No. 15/435,620, Notice of Allowance dated Mar. 13, 2018”, 5 pgs.
“U.S. Appl. No. 15/435,620, Preliminary Amendment filed Mar. 20, 2017”, 7 pgs.
“U.S. Appl. No. 15/435,620, Response filed Feb. 12, 2018 to Final Office Action dated Dec. 15, 2017”, 9 pgs.
“U.S. Appl. No. 15/435,620, Response filed Oct. 25, 2017 to Non Final Office Action dated Jul. 26, 2017”, 13 pgs.
“U.S. Appl. No. 15/616,561, Non Final Office Action dated Aug. 9, 2018”, 8 pgs.
“U.S. Appl. No. 15/616,561, Notice of Allowability dated Feb. 12, 2019”, 2 pgs.
“U.S. Appl. No. 15/616,561, Notice of Allowance dated Dec. 10, 2018”, 7 pgs.
“U.S. Appl. No. 15/616,561, Preliminary Amendment filed Jun. 8, 2017”, 7 pgs.
“U.S. Appl. No. 15/616,561, Response filed Nov. 8, 2018 to Non Final Office Action dated Aug. 9, 2018”, 11 pgs.
“U.S. Appl. No. 15/703,678, Non Final Office Action dated Apr. 8, 2019”, 11 pgs.
“U.S. Appl. No. 15/703,678, Notice of Allowance dated Sep. 17, 2019”, 7 pgs.
“U.S. Appl. No. 15/703,678, Preliminary Amendment filed Sep. 28, 2017”, 9 pgs.
“U.S. Appl. No. 15/703,678, Response Filed Jan. 3, 2019 to Restriction Requirement dated Nov. 5, 2018”, 8 pgs.
“U.S. Appl. No. 15/703,678, Response filed Jul. 3, 2019 to Non-Final Office Action dated Apr. 8, 2019”, 20 pgs.
“U.S. Appl. No. 15/703,678, Restriction Requirement dated Nov. 5, 2018”, 6 pgs.
“U.S. Appl. No. 15/703,692, Corrected Notice of Allowability dated Jul. 8, 2019”, 2 pgs.
“U.S. Appl. No. 15/703,692, Non Final Office Action dated Jan. 14, 2019”, 11 pgs.
“U.S. Appl. No. 15/703,692, Notice of Allowance dated May 7, 2019”, 5 pgs.
“U.S. Appl. No. 15/703,692, Preliminary Amendment filed Sep. 28, 2017”, 9 pgs.
“U.S. Appl. No. 15/703,692, Response filed Apr. 4, 2019 to Non Final Office Action dated Jan. 14, 2019”, 11 pgs.
“U.S. Appl. No. 15/703,698, Corrected Notice of Allowability dated Dec. 18, 2018”, 2 pgs.
“U.S. Appl. No. 15/703,698, Non Final Office Action dated Apr. 6, 2018”, 7 pgs.
“U.S. Appl. No. 15/703,698, Notice of Allowance dated Sep. 12, 2018”, 5 pgs.
“U.S. Appl. No. 15/703,698, Preliminary Amendment filed Sep. 28, 2017”, 8 pgs.
“U.S. Appl. No. 15/703,698, Response filed Jul. 6, 2018 to Non Final Office Action dated Apr. 6, 2018”, 10 pgs.
“U.S. Appl. No. 15/703,713, Non Final Office Action dated Mar. 27, 2018”, 29 pgs.
“U.S. Appl. No. 15/703,713, Notice of Allowance dated Sep. 25, 2018”, 11 pgs.
“U.S. Appl. No. 15/703,713, Response Filed Jun. 15, 2018 to Non-Final Office Action dated Mar. 27, 2018”, 16 pgs.
“U.S. Appl. No. 15/703,713, Preliminary Amendment filed Sep. 28, 2017”, 7 pgs.
“U.S. Appl. No. 15/720,866, Final Office Action dated Feb. 28, 2020”, 10 pgs.
“U.S. Appl. No. 15/720,866, Non Final Office Action dated Sep. 9, 2019”, 12 pgs.
“U.S. Appl. No. 15/720,866, Notice of Allowance dated Sep. 23, 2020”, 7 pgs.
“U.S. Appl. No. 15/720,866, Response filed Jan. 9, 2020 to Non Final Office Action dated Sep. 9, 2019”, 11 pgs.
“U.S. Appl. No. 15/720,866, Response filed May 27, 2020 to Final Office Action dated Feb. 28, 2020”, 13 pgs.
“U.S. Appl. No. 15/720,866, Response filed Jul. 10, 2019 to Restriction Requirement dated May 14, 2019”, 10 pgs.
“U.S. Appl. No. 15/720,866, Response filed Nov. 13, 2017 to Non Final Office Action dated Sep. 14, 2017”, 10 pgs.
“U.S. Appl. No. 15/720,866, Restriction Requirement dated May 14, 2019”, 7 pgs.
“U.S. Appl. No. 15/720,866, Preliminary Amendment filed Nov. 13, 2017”, 9 pgs.
“U.S. Appl. No. 15/827,654, Examiner Interview Summary dated Apr. 26, 2019”, 4 pgs.
“U.S. Appl. No. 15/827,654, Final Office Action dated Feb. 19, 2019”, 19 pgs.
“U.S. Appl. No. 15/827,654, Non Final Office Action dated Sep. 7, 2018”, 21 pgs.
“U.S. Appl. No. 15/827,654, Notice of Allowance dated Jul. 8, 2019”, 8 pgs.
“U.S. Appl. No. 15/827,654, Preliminary Amendment filed Dec. 22, 2017”, 11 pgs.
“U.S. Appl. No. 15/827,654, Response Filed May 20, 2019 to Final Office Action dated Feb. 19, 2019”, 17 pgs.
“U.S. Appl. No. 15/827,654, Response filed Jun. 6, 2018 to Restriction Requirement dated Apr. 6, 2018”, 11 pgs.
“U.S. Appl. No. 15/827,654, Response filed to Non Final Office Action dated Sep. 7, 2018”, 24 pgs.
“U.S. Appl. No. 15/827,654, Restriction Requirement dated Apr. 6, 2018”, 6 pgs.
“U.S. Appl. No. 15/890,735, Notice of Allowance dated Oct. 29, 2019”, 11 pgs.
“U.S. Appl. No. 15/915,886, Non Final Office Action dated Aug. 2, 2019”, 9 pgs.
“U.S. Appl. No. 15/915,886, Notice of Allowance dated Jan. 16, 2020”, 9 pgs.
“U.S. Appl. No. 15/915,886, PTO Response to Rule 312 Communication dated May 8, 2020”, 2 pgs.
“U.S. Appl. No. 15/915,886, Response Filed Nov. 4, 2019 to Non-Final Office Action dated Aug. 2, 2019”, 8 pgs.
“U.S. Appl. No. 15/971,743, Notice of Allowance dated Aug. 6, 2019”, 8 pgs.
“U.S. Appl. No. 16/179,201, Response filed Oct. 5, 2020 to Restriction Requirement dated Aug. 7, 2020”, 9 pgs.
“U.S. Appl. No. 16/179,201, Restriction Requirement dated Aug. 7, 2020”, 10 pgs.
“U.S. Appl. No. 16/352,287, Restriction Requirement dated Aug. 17, 2020”, 6 pgs.
“U.S. Appl. No. 16/389,381, Non Final Office Action dated Mar. 30, 2020”, 9 pgs.
“U.S. Appl. No. 16/389,381, Notice of Allowance dated Jul. 16, 2020”, 5 pgs.
“U.S. Appl. No. 16/389,381, Response filed Jun. 19, 2020 to Non Final Office Action dated Mar. 30, 2020”, 9 pgs.
“U.S. Appl. No. 16/530,423, Preliminary Amendment filed Aug. 28, 2019”, 7 pgs.
“U.S. Appl. No. 16/596,194, Preliminary Amendment Filed Nov. 14, 2019”, 8 pgs.
“U.S. Appl. No. 16/675,938, Preliminary Amendment filed Jan. 22, 2020”, 7 pgs.
“U.S. Appl. No. 16/715,092, Preliminary Amendment filed Mar. 19, 2020”, 10 pgs.
“U.S. Appl. No. 16/743,746, Preliminary Amendment filed Mar. 19, 2020”, 8 pgs.
“U.S. Appl. No. 16/849,394, Preliminary Amendment filed Jun. 3, 2020”, 7 pgs.
“Australian Application Serial No. 2011286306, First Examiner Report dated Jun. 19, 2013”, 4 pgs.
“Australian Application Serial No. 2011286306, Response filed Jun. 3, 2014 to First Examiner Report dated Jun. 19, 2013”, 16 pgs.
“Australian Application Serial No. 2011286307, First Examiner Report dated Oct. 17, 2013”, 2 pgs.
“Australian Application Serial No. 2011286307, Response filed May 21, 2014 to First Examiner Report dated Oct. 17, 2013”, 16 pgs.
“Australian Application Serial No. 2011286308, First Examiner Report dated Jun. 21, 2013”, 4 pgs.
“Australian Application Serial No. 2011286308, Response filed Jun. 6, 2014 First Examiner Report dated Jun. 21, 2013”, 19 pgs.
“Australian Application Serial No. 2011286309, First Examiner Report dated Jun. 21, 2013”, 3 pgs.
“Australian Application Serial No. 2011286309, Response filed Jun. 10, 2014 to First Examiner Report dated Jun. 21, 2013”, 4 pgs.
“Australian Application Serial No. 2011343440, First Examiner Report dated Feb. 17, 2014”, 3 pgs.
“Australian Application Serial No. 2011343440, Response filed Mar. 21, 2014 to Office Action dated Feb. 17, 2014”, 1 pg.
“Australian Application Serial No. 2012271243, Office Action dated Apr. 1, 2015”, 2 pgs.
“Australian Application Serial No. 2012271243, Response filed Apr. 8, 2015 to Office Action dated Apr. 1, 2015”, 4 pgs.
“Australian Application Serial No. 2012271243, Response filed Apr. 15, 2015 to Office Action dated Apr. 13, 2015”, 1 pg.
“Australian Application Serial No. 2012271243, Subsequent Examiners Report dated Apr. 13, 2015”, 2 pgs.
“Australian Application Serial No. 2012341026, First Examiner Report dated Jul. 14, 2014”, 2 pgs.
“Australian Application Serial No. 2012341026, Response filed Nov. 21, 2014 to First Examiner Report dated Jul. 14, 2014”, 1 pg.
“Australian Application Serial No. 2012341026, Statement of Proposed Amendment filed Jun. 18, 2014”, 25 pgs.
“Australian Application Serial No. 2012368262, First Examiner Report dated Nov. 2, 2016”, 4 pgs.
“Australian Application Serial No. 2012368262, Response filed Jan. 17, 2017 to Office Action dated Nov. 2, 2016”, 21 pgs.
“Australian Application Serial No. 2012368262, Response filed May 15, 2017 to Subsequent Examiners Report dated Mar. 16, 2017”, 2 pgs.
“Australian Application Serial No. 2012368262, Subsequent Examiners Report dated Mar. 16, 2017”, 3 pgs.
“Australian Application Serial No. 2013238046, First Examiner Report dated Nov. 26, 2015”, pgs.
“Australian Application Serial No. 2013238046, Response filed Feb. 2, 2016 to First Examiner Report dated Nov. 26, 2015”, 1 pg.
“Australian Application Serial No. 2013238054, First Examiner Report dated Oct. 17, 2016”, 4 pgs.
“Australian Application Serial No. 2013238054, Response filed Jan. 18, 2017 to First Examiner Report dated Oct. 17, 2016”, 9 pgs.
“Australian Application Serial No. 2014250709, First Examiner Report dated Dec. 21, 2015”, 3 pgs.
“Australian Application Serial No. 2014250709, Response filed May 4, 2016 to First Examiner Report dated Dec. 21, 2015”, 12 pgs.
“Australian Application Serial No. 2014250709, Subsequent Examiners Report dated May 31, 2016”, 6 pgs.
“Australian Application Serial No. 2014250710, First Examiner Report dated Dec. 11, 2015”, 7 pgs.
“Australian Application Serial No. 2014250710, Response filed Mar. 22, 2016 to First Examiner Report dated Dec. 11, 2015”, 18 pgs.
“Australian Application Serial No. 2014250710, Response filed May 4, 2016 to Subsequent Examiners Report dated Mar. 23, 2016”, 15 pgs.
“Australian Application Serial No. 2014250710, Subsequent Examiners Report dated Mar. 23, 2016”, 3 pgs.
“Australian Application Serial No. 2014250711, First Examiner Report dated Feb. 12, 2016”, 7 pgs.
“Australian Application Serial No. 2014250711, Response filed Apr. 27, 2016 to First Examiner Report dated Feb. 12, 2016”, 32 pgs.
“Australian Application Serial No. 2015201511, First Examination Report dated Apr. 18, 2016”, 2 pgs.
“Australian Application Serial No. 2015201511, Response filed Jun. 30, 2016 to First Examiner Report dated Apr. 18, 2016”, 12 pgs.
“Australian Application Serial No. 2015238820, First Examination Report dated May 30, 2017”, 13 pgs.
“Australian Application Serial No. 2015238820, Response filed Jul. 12, 2017 to First Examination Report dated May 30, 2017”, 12 pgs.
“Australian Application Serial No. 2016225911, First Examiners Report dated Jun. 2, 2017”, 3 pgs.
“Australian Application Serial No. 2016225911, Response filed Aug. 22, 2017 to First Examiners Report dated Jun. 2, 2017”, 18 pgs.
“Australian Application Serial No. 2017235987, First Examination Report dated Nov. 1, 2018”, 4 pgs.
“Australian Application Serial No. 2017251736, First Examiners Report dated Oct. 31, 2017”, 2 pgs.
“Australian Application Serial No. 2018266322, First Examination Report dated Dec. 19, 2019”, 2 pgs.
“Bi-Cruciate Stabilized Knee System”, Design Rationale, Smith & Nephew Journal, (2006), 20 pgs.
“Brazil Application Serial No. BR1120130016698, Office Action dated Aug. 27, 2019”, (W/ English Translation), 8 pages.
“Brazil Application Serial No. BR1120130016698, Response filed Dec. 9, 2019 to Office Action dated Aug. 27, 2019”, w/ English Claims, 22 pgs.
“Brazil Application Serial No. BR1120130016736, Office Action dated Aug. 27, 2019”, (with English translation), 8 pages.
“Brazil Application Serial No. BR1120130016736, Response filed Dec. 9, 2019 to Office Action dated Aug. 27, 2019”, w/ English Claims, 25 pgs.
“Canadian Application Serial No. 2,806,321, Office Action dated Jan. 15, 2018”, 3 pgs.
“Canadian Application Serial No. 2,806,321, Response filed Jan. 22, 2018 to Office Action dated Jan. 15, 2018”, 7 pgs.
“Canadian Application Serial No. 2,806,321, Response filed Dec. 6, 2017 to Office Action dated Jun. 15, 2017”, 12 pgs.
“Canadian Application Serial No. 2,806,325, Office Action dated Mar. 14, 2016”, 4 pgs.
“Canadian Application Serial No. 2,806,325, Response filed Sep. 14, 2016 to Office Action dated Mar. 14, 2016”, 17 pgs.
“Canadian Application Serial No. 2,806,326, Examiner's Rule 30(2) Requisition dated Sep. 20, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Office Action dated Feb. 8, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Office Action dated Jun. 19, 2017”, 3 pgs.
“Canadian Application Serial No. 2,806,326, Response Filed Mar. 20, 2019 to Examiner's Rule 30(2) Requisition dated Sep. 20, 2018”, 4 pgs.
“Canadian Application Serial No. 2,806,326, Response filed Jul. 20, 2018 to Office Action dated Feb. 8, 2018”, 12 pgs.
“Canadian Application Serial No. 2,821,927, Office Action dated Jan. 25, 2018”, 6 pgs.
“Canadian Application Serial No. 2,821,927, Response filed Jul. 18, 2018 to Office Action dated Jan. 25, 2018”, 10 pgs.
“Canadian Application Serial No. 2,821,927, Voluntary Amendment dated Jun. 14, 2013”, 7 pgs.
“Canadian Application Serial No. 2,824,527, Office Action dated Mar. 17, 2014”, 2 pgs.
“Canadian Application Serial No. 2,824,527, Response filed Sep. 17, 2014 to Office Action dated Mar. 17, 2014”, 14 pgs.
“Canadian Application Serial No. 2,856,070, Preliminary Amendment filed May 25, 2015”, 27 pgs.
“Canadian Application Serial No. 2,856,571 Response filed Jan. 22, 2015 to Office Action dated Jul. 22, 2014”, 24 pgs.
“Canadian Application Serial No. 2,856,571, Office Action dated Jul. 22, 2014”, 2 pgs.
“Canadian Application Serial No. 2,863,375, Office Action dated Apr. 20, 2018”, 3 pgs.
“Canadian Application Serial No. 2,863,375, Response filed Oct. 22, 2018 Office Action dated Apr. 20, 2018”, 12 pgs.
“Canadian Application Serial No. 2,868,825, Office Action dated Dec. 27, 2018”, 3 pgs.
“Canadian Application Serial No. 2,956,119, Examiner's Rule 30(2) Requisition dated Sep. 27, 2018”, 4 pgs.
“Canadian Application Serial No. 2,956,119, Office Action dated Jan. 22, 2018”, 3 pgs.
“Canadian Application Serial No. 2,956,119, Response Filed Mar. 27, 2019 to Examiner's Rule 30(2) Requisition dated Sep. 27, 2018”, 7 pgs.
“Canadian Application Serial No. 2,989,184, Office Action dated Oct. 1, 2018”, 4 pgs.
“Canadian Application Serial No. 2,989,184, Response filed Apr. 1, 2019 to Office Action dated Oct. 1, 2018”, 10 pgs.
“Canadian Application Serial No. 3,063,415, Office Action dated Jul. 13, 2020”, 3 pgs.
“Canadian Application Serial No. 2,806,321, Office Action dated Jun. 15, 2017”, 3 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Feb. 14, 2016”, (W/ English Translation), 17 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Mar. 29, 2015”, (W/ English Translation), 6 pgs.
“Chinese Application Serial No. 201180045673.3, Office Action dated Aug. 12, 2015”, (W/ English Translation), 7 pgs.
“Chinese Application Serial No. 201180045673.3, Response filed Jun. 19, 2015 to Office Action dated Mar. 29, 2015”, (W/ English translation of claims), 11 pgs.
“Chinese Application Serial No. 201180045673.3, Response filed Oct. 27, 2015 to Office Action dated Aug. 12, 2015”, (W/ English translation of claims), 9 pgs.
“Chinese Application Serial No. 201180045681.8, Office Action dated Jan. 22, 2015”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201180045681.8, Response filed May 14, 2015 to Office Action dated Jan. 22, 2015”, W/ English Claims, 17 pgs.
“Chinese Application Serial No. 201180045683.7, Office Action dated Mar. 9, 2015”, (W/ English Translation), 6 pgs.
“Chinese Application Serial No. 201180045683.7, Response filed Jul. 14, 2015 to Office Action dated Mar. 9, 2015”, (W/ English translation of claims), 30 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Jan. 5, 2015”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Feb. 2, 2016”, w/English Translation, 11 pgs.
“Chinese Application Serial No. 201180045689.4, Office Action dated Aug. 5, 2015”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201180045689.4, Response filed May 1, 2015 to Office Action dated Jan. 5, 2015”, W/ English Claims, 13 pgs.
“Chinese Application Serial No. 201180067430.X, Office Action dated Aug. 28, 2014”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201180067430.X, Response filed Jan. 4, 2015 to Office Action dated Sep. 26, 2014”, (W/ English Translation), 14 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Mar. 2, 2015”, (W/ English Translation), 18 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Jun. 1, 2016”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201180067757.7, Office Action dated Nov. 16, 2015”, (W/ English Translation), 17 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Jan. 27, 2016 to Office Action dated Nov. 16, 2015”, (W/ English Translation of Claims), 12 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Jul. 10, 2015 to Office Action dated Mar. 2, 2015”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201180067757.7, Response filed Aug. 11, 2016 to Office Action dated Jun. 1, 2016”, (W/ English Translation Of Claims), 9 pgs.
“Chinese Application Serial No. 201180067757.7, Voluntary Amendment dated Feb. 14, 2014”, (W/ English Translation of Claims), 8 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated Feb. 1, 2016”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated May 20, 2015”, (W/ English Translation), 15 pgs.
“Chinese Application Serial No. 201280067473.2, Office Action dated Nov. 20, 2015”, W/ English Translation of Claims, 7 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Apr. 7, 2016 to Office Action dated Feb. 1, 2016”, (W/ English translation of claims), 11 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Sep. 7, 2015 to Office Action dated May 20, 2015”, (W/ English translation of claims), 12 pgs.
“Chinese Application Serial No. 201280067473.2, Response filed Dec. 4, 2015 to Office Action dated Nov. 20, 2015”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201280067481.7, Office Action dated Sep. 30, 2015”, (W/ English Translation), 7 pgs.
“Chinese Application Serial No. 201280071940.9, Office Action dated Jul. 22, 2015”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201280071940.9, Preliminary Amendment filed Mar. 23, 2015”, W/ English Claims, 11 pgs.
“Chinese Application Serial No. 201380028572.4, Office Action dated Aug. 13, 2015”, (W/ English Translation), 16 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Jun. 27, 2016”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Nov. 4, 2015”, (W/ English Translation), 16 pgs.
“Chinese Application Serial No. 201380028683.5, Office Action dated Dec. 30, 2016”, (W/ English Translation), 4 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Feb. 8, 2017 to Office Action dated Dec. 30, 2016”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Mar. 18, 2016 to Office Action dated Nov. 4, 2015”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201380028683.5, Response filed Sep. 6, 2016 to Office Action dated Jun. 27, 2016”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated May 24, 2017”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated Aug. 30, 2016”, (W/ English Translation), 14 pgs.
“Chinese Application Serial No. 201510394094.X, Office Action dated Nov. 3, 2017”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jan. 16, 2017 to Office Action dated Aug. 30, 2016”, (W/ English Translation of Claims), 11 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jan. 18, 2018 to Office Action dated Nov. 3, 2017”, (W/ English Claims), 10 pgs.
“Chinese Application Serial No. 201510394094.X, Response filed Jul. 10, 2017 to Office Action dated May 24, 2017”, (W/ English Translation), 10 pgs.
“Chinese Application Serial No. 201510640436.1, Office Action dated Sep. 28, 2016”, (W/ English Translation), 13 pgs.
“Chinese Application Serial No. 201510640436.1, Response filed Feb. 16, 2017 to Office Action dated Sep. 28, 2016”, (W/ English Translation), 18 pgs.
“Chinese Application Serial No. 201610634595.5, Office Action dated Apr. 20, 2018”, (W/ English Translation), 8 pgs.
“Chinese Application Serial No. 201610634595.5, Office Action dated Jun. 21, 2017”, w/English Translation, 9 pgs.
“Chinese Application Serial No. 201610634595.5, Response filed Jun. 4, 2018 to Office Action dated Apr. 20, 2018”, (W/ English Translation of Claims), 8 pgs.
“Chinese Application Serial No. 201610634595.5, Response filed Nov. 3, 2017 to Office Action dated Jun. 21, 2017”, w/English Claims, 8 pgs.
“Chinese Application Serial No. 201610685172.6, Office Action dated Apr. 10, 2017”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201610685172.6, Office Action dated Sep. 28, 2017”, (W/ English Translation), 9 pgs.
“Chinese Application Serial No. 201610685172.6, Response filed Dec. 13, 2017 to Office Action dated Sep. 28, 2017”, (W/ English Claims), 13 pgs.
“Chinese Application Serial No. 201680061268.3, Office Action dated Apr. 24, 2019”, (W/ English Translation), 11 pgs.
“Chinese Application Serial No. 201680061268.3, Response filed Aug. 21, 2019 to Office Action dated Apr. 24, 2019”, (W/ English Claims), 8 pgs.
“Chinese Application Serial No. 201880031319.7, Office Action dated May 15, 2020”, (W/ English Translation), 12 pgs.
“Chinese Application Serial No. 201880031319.7, Response filed Jul. 22, 2020 to Office Action dated May 15, 2020”, (W/ English Claims), 10 pgs.
“Complete Knee Solution Surgical Technique for the CR-Flex Fixed Bearing Knee”, Zimmer Nexgen, (2003), 22 pgs.
“Euorpean Application Serial No. 18726670.5, Response to Communication pursuant to Rules 161(1) and 162 EPC filed Jul. 20, 2020”, 9 pgs.
“European Application Serial No. 11738918.9, Examination Notification Art. 94(3) dated Oct. 23, 2014”, 5 pgs.
“European Application Serial No. 11738918.9, Preliminary Amendment dated Sep. 24, 2013”, 11 pgs.
“European Application Serial No. 11738918.9, Response filed Mar. 2, 2015 to Examination Notification Art. 94(3) dated Oct. 23, 2014”, 14 pgs.
“European Application Serial No. 11738919.7, Examination Notification Art. 94(3) dated Jul. 7, 2014”, 4 pgs.
“European Application Serial No. 11738919.7, Preliminary Amendment filed Nov. 4, 2013”, 25 pgs.
“European Application Serial No. 11738919.7, Response filed Nov. 13, 2014 to Examination Notification Art. 94(3) dated Jul. 7, 2014”, 14 pgs.
“European Application Serial No. 11738920.5, Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 4 pgs.
“European Application Serial No. 11738920.5, Preliminary Amendment dated Sep. 24, 2013”, 9 pgs.
“European Application Serial No. 11738920.5, Response filed Jul. 25, 2016 to Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 6 pgs.
“European Application Serial No. 11738920.5, Response filed Sep. 24, 2013 to Communication pursuant to Rules 161(2) and 162 EPC dated Mar. 15, 2013”, 22 pgs.
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 3 pgs.
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 4 pgs.
“European Application Serial No. 11758060.5, Preliminary Amendment filed Nov. 4, 2013”, 15 pgs.
“European Application Serial No. 11758060.5, Response filed Apr. 21, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 16 pgs.
“European Application Serial No. 11758060.5, Response filed Nov. 15, 2016 to Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 23 pgs.
“European Application Serial No. 11802835.6, Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2017”, 4 pgs.
“European Application Serial No. 11802835.6, Response filed Apr. 23, 2018 to Office Action dated Dec. 11, 2017”, 16 pgs.
“European Application Serial No. 11808493.8, Communication Pursuant to Article 94(3) EPC dated Dec. 7, 2015”, 4 pgs.
“European Application Serial No. 11808493.8, Examination Notification Art. 94(3) dated Feb. 20, 2015”, 6 pgs.
“European Application Serial No. 11808493.8, Response filed Feb. 26, 2014 to Communication pursuant to Rules 161(1) and 162 EPC dated Aug. 16, 2013”, 14 pgs.
“European Application Serial No. 11808493.8, Response filed Apr. 18, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 7, 2015”, 15 pgs.
“European Application Serial No. 11808493.8, Response filed Jul. 2, 2015 to Examination Notification Art. 94(3) dated Feb. 20, 2015”, 13 pgs.
“European Application Serial No. 11815029.1, Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 4 pgs.
“European Application Serial No. 11815029.1, Extended European Search Report dated Dec. 10, 2013”, 8 pgs.
“European Application Serial No. 11815029.1, Response filed Apr. 10, 2017 to Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 22 pgs.
“European Application Serial No. 11815029.1, Response filed Jul. 21, 2014 Extended European Search Report dated Dec. 10, 2013”, 15 pgs.
“European Application Serial No. 12718882.9, Communication Pursuant to Article 94(3) EPC dated Dec. 1, 2015”, 11 pgs.
“European Application Serial No. 12718882.9, Response filed Feb. 10, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 11 pgs.
“European Application Serial No. 12718882.9, Response filed Apr. 11, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 1, 2015”, 12 pgs.
“European Application Serial No. 12718883.7, Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 4 pgs.
“European Application Serial No. 12718883.7, Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 2 pgs.
“European Application Serial No. 12718883.7, Intention to Grant dated May 20, 2016”, 5 pgs.
“European Application Serial No. 12718883.7, Response filed Feb. 10, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 31, 2014”, 16 pgs.
“European Application Serial No. 12718883.7, Response filed Apr. 12, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 30 pgs.
“European Application Serial No. 12719236.7 Response filed Feb. 9, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 30, 2014”, 10 pgs.
“European Application Serial No. 12719236.7, Decision to Grant dated Feb. 18, 2016”, 3 pgs.
“European Application Serial No. 12719236.7, Office Action dated Aug. 27, 2015”, 7 pgs.
“European Application Serial No. 12720352.9 Response filed Feb. 9, 2015 to Communication Pursuant to Rules 161(1) and 162 EPC dated Jul. 30, 2014”, 10 pgs.
“European Application Serial No. 12756058.9, Communication Pursuant to Article 94(3) EPC dated Feb. 18, 2019”, 4 pgs.
“European Application Serial No. 12756058.9, Office Action dated Jan. 17, 2017”, 5 Pgs.
“European Application Serial No. 12756058.9, Preliminary Amendment filed Apr. 20, 2015”, 12 pgs.
“European Application Serial No. 12756058.9, Response filed May 26, 2017 to Office Action dated Jan. 17, 2017”, 16 pgs.
“European Application Serial No. 12756058.9, Response filed Jun. 28, 2019 to Communication Pursuant to Article 94(3) EPC dated Feb. 18, 2019”, 21 pgs.
“European Application Serial No. 12756869.9 Response filed Feb. 10, 2015 to Communication Pursuant to Rule 161(1) and 162 EPC dated Jul. 31, 2014”, 14 pgs.
“European Application Serial No. 12756869.9, Examination Notification Art. 94(3) dated Jul. 2, 2015”, 4 pgs.
“European Application Serial No. 12756869.9, Response filed Nov. 12, 2015 to Examination Notification Art. 94(3) dated Jul. 2, 2015”, 28 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2015”, 4 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Nov. 17, 2016”, 4 pgs.
“European Application Serial No. 13716636.9, Communication Pursuant to Article 94(3) EPC dated Jun. 6, 2016”, 5 pgs.
“European Application Serial No. 13716636.9, Communication pursuant to Rules 161(1) and 162 EPC dated Dec. 12, 2014”, 2 pgs.
“European Application Serial No. 13716636.9, Response filed Mar. 24, 2016 to Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2015”, 18 pgs.
“European Application Serial No. 13716636.9, Response filed Mar. 27, 2017 to Communication Pursuant to Article 94(3) EPC dated Nov. 17, 2016”, 15 pgs.
“European Application Serial No. 13716636.9, Response filed Jun. 22, 2015 to Communication pursuant to Rules 161(1) and 162 EPC dated Dec. 12, 2014”, 10 pgs.
“European Application Serial No. 13716636.9, Response filed Oct. 17, 2016 to Communication Pursuant to Article 94(3) EPC dated Jun. 6, 2016”, 5 pgs.
“European Application Serial No. 14190180.1, Extended European Search Report dated Sep. 24, 2015”, 8 pgs.
“European Application Serial No. 15160934.4, Communication Pursuant to Article 94(3) EPC dated Apr. 26, 2018”, 5 pgs.
“European Application Serial No. 15160934.4, Extended European Search Report dated Jun. 1, 2016”, 8 pgs.
“European Application Serial No. 15160934.4, Response filed Aug. 30, 2018 to Communication Pursuant to Article 94(3) EPC dated Apr. 26, 2018”, 63 pgs.
“European Application Serial No. 15160934.4, Response filed Dec. 21, 2016 to Extended European Search Report dated Jun. 1, 2016”, 5 pgs.
“European Application Serial No. 15174394.5, Extended European Search Report dated Mar. 21, 2016”, 8 pgs.
“European Application Serial No. 15174394.5, Response filed Nov. 18, 2016 to Extended European Search Report dated Mar. 21, 2016”, 12 pgs.
“European Application Serial No. 15191781.2, Communication Pursuant to Article 94(3) EPC dated Jan. 8, 2018”, 4 pgs.
“European Application Serial No. 15191781.2, Extended European Search Report dated Mar. 1, 2017”, 8 pgs.
“European Application Serial No. 15191781.2, Response filed May 17, 2018 to Communication Pursuant to Article 94(3) EPC dated Jan. 8, 2018”, 58 pgs.
“European Application Serial No. 15191781.2, Response filed Sep. 28, 2017 to Extended European Search Report dated Mar. 1, 2017”, 14pgs.
“European Application Serial No. 16156228.5, Extended European Search Report dated May 11, 2017”, 5 pgs.
“European Application Serial No. 16183635.8, Extended European Search Report dated Jun. 30, 2017”, 9 pgs.
“European Application Serial No. 16183635.8, Response filed Mar. 27, 2018 to Extended European Search Report dated Jun. 30, 2017”, 8 pgs.
“European Application Serial No. 16189084.3, Extended European Search Report dated Oct. 9, 2017”, 9 pgs.
“European Application Serial No. 16189084.3, Response filed May 10, 2018 to Extended European Search Report dated Oct. 9, 2017”, 20 pgs.
“European Application Serial No. 16770657.1, Communication Pursuant to Article 94(3) EPC dated May 20, 2019”, 3 pgs.
“European Application Serial No. 16770657.1, Response filed Sep. 30, 2019 to Communication Pursuant to Article 94(3) EPC dated May 20, 2019”, 26 pgs.
“European Application Serial No. 16770657.1, Response filed Nov. 26, 2018 to Office Action dated May 14, 2018”, 17 pgs.
“European Application Serial No. 17157909.7, Extended European Search Report dated Jul. 17, 2018”, 7 pgs.
“European Application Serial No. 17157909.7, Response Filed Feb. 15, 2019 to Extended European Search Report dated Jul. 17, 2018”, 37 pgs.
“European Application Serial No. 17163432.2, Extended European Search Report dated May 14, 2018”, 6 pgs.
“European Application Serial No. 17163440.5, Extended European Search Report dated Jan. 3, 2019”, 16 pgs.
“European Application Serial No. 17163440.5, Partial European Search Report dated Jul. 23, 2018”, 15 pgs.
“European Application Serial No. 17163440.5, Response filed Jul. 22, 2019 to Extended European Search Report dated Jan. 3, 2019”, 14 pgs.
“European Application Serial No. 17168095.2, Extended European Search Report dated Jun. 8, 2018”, 8 pgs.
“European Application Serial No. 17168095.2, Response Filed Jan. 17, 2019 Extended European Search Report dated Jun. 8, 2018”, 29 pgs.
“European Application Serial No. 17168308.9, Extended European Search Report dated Jun. 13, 2018”, 8 pgs.
“European Application Serial No. 17168308.9, Response Filed Jan. 17, 2019 to Extended European Search Report dated Jun. 13, 2018”, 24 pgs.
“European Application Serial No. 18206326.3, Extended European Search Report dated Apr. 15, 2019”, 10 pgs.
“European Application Serial No. 18206326.3, Response filed Nov. 22, 2019 to Extended European Search Report dated Apr. 15, 2019”, 15 pgs.
“European Application Serial No. 18711801.3, Response to Communication pursuant to Rules 161(1) and 162 EPC filed May 7, 2020”, 14 pgs.
“European Application Serial No. 19171990.5, Extended European Search Report dated Oct. 16, 2019”, 8 pgs.
“European Application Serial No. 19171990.5, Response filed May 13, 2020 to Extended European Search Report dated Oct. 16, 2019”, 31 pgs.
“Gender Solutions Natural Knee Flex System: Because Men and Women are Different”, Zimmer, Inc., (2007, 2009), 6 pg.
“Gender Solutions Natural Knee Flex System: Surgical Technique”, (2007, 2008, 2009), 36 pgs.
“Gender Solutions Natural-Knee Flex System”, Zimmer, Inc., (2007, 2009), 6 pgs.
“Indian Application Serial No. 1544/DELNP/2013, Office Action dated May 21, 2019”, (W/ English Translation), 10 pgs.
“Indian Application Serial No. 1544/DELNP/2013, Response filed Nov. 18, 2019 to Office Action dated May 21, 2019”, (W/ English Translation), 34 pgs.
“Indian Application Serial No. 1545/DELNP/2013, Office Action dated Dec. 9, 2019”, (with English translation), 8 pages.
“Indian Application Serial No. 1545/DELNP/2013, Response filed Jun. 9, 2020 to Office Action dated Dec. 9, 2019”, (W/ English Claims), 78 pgs.
“International Application Serial No. PCT/US2011/045077, International Preliminary Report on Patentability dated Jul. 5, 2012”, 23 pgs.
“International Application Serial No. PCT/US2011/045077, International Search Report and Written Opinion dated Jan. 9, 2012”, 15 pgs.
“International Application Serial No. PCT/US2011/045078, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/045078, International Search Report and Written Opinion dated Jan. 9, 2012”, 14 pgs.
“International Application Serial No. PCT/US2011/045080, International Preliminary Report on Patentability dated Feb. 7, 2013”, 13 pgs.
“International Application Serial No. PCT/US2011/045080, International Search Report dated Jan. 9, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/045080, Written Opinion dated Jan. 9, 2012”, 11 pgs.
“International Application Serial No. PCT/US2011/045082, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/045082, International Search Report dated Jan. 9, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/045082, Written Opinion dated Jan. 9, 2012”, 10 pgs.
“International Application Serial No. PCT/US2011/045083, International Preliminary Report on Patentability dated Feb. 7, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/045083, International Search Report dated Dec. 7, 2011”, 2 pgs.
“International Application Serial No. PCT/US2011/045083, Written Opinion dated Dec. 7, 2011”, 6 pgs.
“International Application Serial No. PCT/US2011/051021, International Preliminary Report on Patentability dated Mar. 21, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/051021, International Search Report dated Nov. 23, 2011”, 12 pgs.
“International Application Serial No. PCT/US2011/051021, Written Opinion dated Nov. 23, 2011”, 7 pgs.
“International Application Serial No. PCT/US2011/064435, International Preliminary Report on Patentability dated Jun. 27, 2013”, 9 pgs.
“International Application Serial No. PCT/US2011/064435, Search Report dated Jun. 21, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/064435, Written Opinion dated Jun. 21, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/065683, International Preliminary Report on Patentability dated Jun. 27, 2013”, 11 pgs.
“International Application Serial No. PCT/US2011/065683, International Search Report dated Apr. 24, 2012”, 12 pgs.
“International Application Serial No. PCT/US2011/065683, Written Opinion dated Apr. 24, 2012”, 10 pgs.
“International Application Serial No. PCT/US2012/035679, International Preliminary Report on Patentability dated May 30, 2014”, 8 pgs.
“International Application Serial No. PCT/US2012/035679, International Search Report dated Jun. 8, 2012”, 4 pgs.
“International Application Serial No. PCT/US2012/035679, Written Opinion dated Jun. 8, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/035680, International Preliminary Report on Patentability dated May 30, 2014”, 13 pgs.
“International Application Serial No. PCT/US2012/035680, Search Report dated Oct. 9, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/035680, Written Opinion dated Oct. 9, 2012”, 11 pgs.
“International Application Serial No. PCT/US2012/035683, International Preliminary Report on Patentability dated May 30, 2014”, 9 pgs.
“International Application Serial No. PCT/US2012/035683, International Search Report and Written Opinion dated Jun. 5, 2012”, 12 pgs.
“International Application Serial No. PCT/US2012/035684, International Preliminary Report on Patentability dated May 30, 2014”, 14 pgs.
“International Application Serial No. PCT/US2012/035684, International Search Report dated Aug. 8, 2012”, 9 pgs.
“International Application Serial No. PCT/US2012/035684, Written Opinion dated Jun. 8, 2012”, 12 pgs.
“International Application Serial No. PCT/US2012/052132, International Preliminary Report on Patentability dated Jun. 5, 2014”, 12 pgs.
“International Application Serial No. PCT/US2012/052132, International Search Report dated Jan. 10, 2013”, 5 pgs.
“International Application Serial No. PCT/US2012/052132, Invitation to Pay Additional Fees and Partial Search Report dated Nov. 15, 2012”, 7 pgs.
“International Application Serial No. PCT/US2012/052132, Written Opinion dated Jan. 10, 2013”, 10 pgs.
“International Application Serial No. PCT/US2012/052340, International Preliminary Report on Patentability dated Aug. 14, 2014”, 8 pgs.
“International Application Serial No. PCT/US2012/052340, Search Report dated Oct. 12, 2012”, 4 pgs.
“International Application Serial No. PCT/US2012/052340, Written Opinion dated Oct. 12, 2012”, 6 pgs.
“International Application Serial No. PCT/US2013/034286, International Preliminary Report on Patentability dated Oct. 9, 2014”, 8 pgs.
“International Application Serial No. PCT/US2013/034286, International Search Report dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034286, Written Opinion dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034293, International Preliminary Report on Patentability dated Oct. 9, 2014”, 9 pgs.
“International Application Serial No. PCT/US2013/034293, International Search Report dated Jun. 25, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/034293, Written Opinion dated Jun. 25, 2013”, 7 pgs.
“International Application Serial No. PCT/US2016/052163, International Preliminary Report on Patentability dated Apr. 5, 2018”, 10 pgs.
“International Application Serial No. PCT/US2016/052163, International Search Report dated Jan. 20, 2017”, 7 pgs.
“International Application Serial No. PCT/US2016/052163, Invitation to Pay Add'l Fees and Partial Search Report dated Nov. 7, 2016”, 7 pgs.
“International Application Serial No. PCT/US2016/052163, Written Opinion dated Jaun. 20, 2017”, 8 pgs.
“International Application Serial No. PCT/US2018/021571, International Preliminary Report on Patentability dated Sep. 19, 2019”, 8 pgs.
“International Application Serial No. PCT/US2018/021571, International Search Report dated Jun. 7, 2018”, 6 pgs.
“International Application Serial No. PCT/US2018/021571, Written Opinion dated Jun. 7, 2018”, 6 pgs.
“International Application Serial No. PCT/US2018/031177, International Preliminary Report on Patentability dated Nov. 21, 2019”, 8 pgs.
“International Application Serial No. PCT/US2018/031177, International Search Report dated Jul. 31, 2018”, 6 pgs.
“International Application Serial No. PCT/US2018/031177, Written Opinion dated Jul. 31, 2018”, 6 pgs.
“Intramedullary Instrumentation Surgical Technique for the NexGen Cruciate Retaining & Legacy Posterior Stabilized Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5973-102, Rev. 1, (1995, 1997, 1998), 36 pgs.
“Japanese Application Serial No. 2015-162707, Office Action dated Jun. 28, 2016”, (W/ English Translation), 8 pgs.
“Japanese Application Serial No. 2013-521854, Notice of Reason for Rejection dated Sep. 16, 2014”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2013-521854, Response filed Dec. 16, 2014 to Notice of Reason for Rejection dated Sep. 16, 2014”, W/ English Claims, 11 pgs.
“Japanese Application Serial No. 2013-521855, Amendment filed Jul. 22, 2014”, (W/ English Translation), 20 pgs.
“Japanese Application Serial No. 2013-521855, Office Action dated Mar. 24, 2015”, W/ English Translation, 8 pgs.
“Japanese Application Serial No. 2013-521856, Notice of Allowance dated Jan. 5, 2016”, w/English Translation, 6 pgs.
“Japanese Application Serial No. 2013-521856, Office Action dated Sep. 1, 2015”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2013-521856, Response filed Dec. 1, 2015 to Office Action dated Sep. 1, 2015”, w/English Translation, 9 pgs.
“Japanese Application Serial No. 2013-521857, Notice of Allowance dated Feb. 9, 2016”, w/English Translation, 6 pgs.
“Japanese Application Serial No. 2013-521857, Notice of Reasons for Rejection dated Aug. 18, 2015”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2013-521857, Preliminary Amendment filed May 18, 2014” (W/ English translation of claims), 9 pgs.
“Japanese Application Serial No. 2013-521857, Response filed Jan. 25, 2016 to Notice of Reasons for Rejection dated Aug. 18, 2015”, (W/ English Translation), 17 pgs.
“Japanese Application Serial No. 2013-544655, Office Action dated Mar. 8, 2016”, (W/ English Translation), 8 pgs.
“Japanese Application Serial No. 2013-544655, Office Action dated Sep. 29, 2015”, (W/ English Translation), 7 pgs.
“Japanese Application Serial No. 2013-544655, Response filed Jan. 4, 2016 to Office Action dated Sep. 29, 2015”, (English Translation of Claims), 14 pgs.
“Japanese Application Serial No. 2013-544655, Response filed Jul. 14, 2016 to Office Action dated Mar. 8, 2016”, (w/ English Translation of Claims), 13 pgs.
“Japanese Application Serial No. 2013-544858, Request for Examination filed Feb. 4, 2014”, (With English Translation), 14 pgs.
“Japanese Application Serial No. 2014-121515, Notice of Reasons for Rejection dated Jan. 5, 2016”, (W/ English Translation), 9 pgs.
“Japanese Application Serial No. 2014-121515, Office Action dated Jun. 2, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-121515, Response filed May 11, 2016 to Notice of Reasons for Rejection dated Jan. 5, 2016”, (W/ English Translation Of Claims), 11 pgs.
“Japanese Application Serial No. 2014-121515, Response filed Aug. 20, 2015 to Office Action dated Jun. 2, 2015”, (W/ English Translation Of Claims), 6 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated May 31, 2016”, (W/ English Translation Of Claims), 6 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated Jun. 30, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-542297, Office Action dated Nov. 24, 2015”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Feb. 23, 2016 to Office Action dated Nov. 24, 2015”, (W/ English Translation Of Claims), 15 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Jun. 8, 2016 to Office Action dated May 31, 2016”, (W/ English Translation Of Claims), 14 pgs.
“Japanese Application Serial No. 2014-542297, Response filed Sep. 28, 2015 to Office Action dated Jun. 30, 2015”, (W/ English Translation Of Claims), 16 pgs.
“Japanese Application Serial No. 2014-542301, Office Action dated May 12, 2015”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2014-542301, Response filed Aug. 10, 2015 to Office Action dated May 12, 2015”, (W/ English translation of claims), 21 pgs.
“Japanese Application Serial No. 2014-554709, Office Action dated Jul. 5, 2016”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2014-554709, Preliminary Amendment filed Jul. 29, 2015”, (W/ English translation of claims), 8 pgs.
“Japanese Application Serial No. 2014-554709, Response filed Dec. 19, 2016 to Office Action dated Jul. 5, 2016”, (W/ English Translation of Claims), 11 pgs.
“Japanese Application Serial No. 2015-162707, Office Action dated Nov. 29, 2016”, (W/ English Translation), 3 pgs.
“Japanese Application Serial No. 2015-162707, Response filed Jan. 26, 2017 to Office Action dated Nov. 27, 2016”, (W/ English Translation), 16 pgs.
“Japanese Application Serial No. 2015-199496, Office Action dated Sep. 6, 2016”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2015-199496, Response filed Dec. 5, 2016 to Office Action dated Sep. 6, 2016”, (W/ English Translation of Claims), 9 pgs.
“Japanese Application Serial No. 2015-503563, Office Action dated Dec. 20, 2016”, (W/ English Translation), 10 pgs.
“Japanese Application Serial No. 2015-503563, Response Filed Mar. 13, 2017 to Office Action dated Dec. 20, 2016”, (W/ English Translation), 9 pgs.
“Japanese Application Serial No. 2016-145390, Office Action dated Apr. 25, 2017”, (W/ English Translation), 5 pgs.
“Japanese Application Serial No. 2016-145390, Response filed Jul. 3, 2017 to Office Action dated Apr. 25, 2017”, (W/ English Translation of Claims), 16 pgs.
“Japanese Application Serial No. 2017-161246, Office Action dated May 15, 2018”, (W/ English Translation), 6 pgs.
“Japanese Application Serial No. 2019-562605, Notification of Reasons for Refusal dated Jun. 16, 2020”, (W/ English Translation), 7 pgs.
“Japanese Application Serial No. 2019-562605, Response filed Sep. 15, 2020 to Notification of Reasons for Refusal dated Jun. 16, 2020”, (W/ English Claims), 15 pgs.
“Journey II XR, Bi-Cruciate Retaining Knee System”, Smith & Nephew, Surgical Technique, (2015), 40 pgs.
“Legacy Implant Options”, Nexgen Complete Knee Solution, (2002), 8 pgs.
“LPS-Flex Fixed Bearing Knee: Surgical Technique”, Zimmer, Inc., (2004, 2007, 2008), 16 pgs.
“Mexican Application Serial No. MX/a/2013/000988, Office Action dated Mar. 18, 2015”, w/English Claims, 17 pgs.
“Mexican Application Serial No. MX/a/2013/000988, Response filed Jun. 1, 2015 to Office Action dated Mar. 18, 2015”, (W/ English Translation), 12 pgs.
“Mexican Application Serial No. MX/A/2013/000988, Office Action dated Jun. 5, 2015”, w/ summary in English, 6 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Final Office Action dated Feb. 4, 2016”, w/ summary in English, 4 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Office Action dated Feb. 19, 2015”, (W/ English Translation), 4 pgs.
“Mexican Application Serial No. MX/A/2013/000990, Response filed Apr. 29, 2015 to Office Action dated Feb. 19, 2015”, W/ English Claims, 18 pgs.
“MIS Minimally Invasive Solution, The M/G Unicompartmental Knee Minimally Invasive Surgical Technique”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5791-02, (Aug. 14, 2008), 27 pgs.
“Multi-Reference 4-in-1 Femoral Instrumentation Surgical Technique for NexGen Cruciate Retaining & NexGen Legacy Posterior Stabilized Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5973-402 Rev. 1, (1998, 2000), 18 pgs.
“Natural-Knee II Primary System Surgical Technique”, Zimmer, Inc., (2005), 48 pgs.
“Nexgen Complete Knee Solution”, Extramedullary/Intramedullary Tibial Resector: Surgical Technique, Zimmer, Inc. 97-5997-002-00 Rev. 2, (2000, 2008, 2009), 28 pgs.
“Nexgen Complete Knee Solution”, Extramedullary/Intramedullary Tibial Resector: Surgical Technique, Zimmer, Inc. 97-5997-02 Rev 1, (2000), 26 pgs.
“Nexgen Complete Knee Solution for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer Surgical Technique, 97-5964-102-00, (2004, 2007), 12 pgs.
“NexGen Complete Knee Solution, Intramedullary Instrumentation Surgical Technique for the NexGen Cruciate Retaining & Legacy Posterior Stabilized Knee”, Zimmer, Inc., (1995, 1997, 1998), 1-33.
“NexGen Implant Options Surgeon-Specific”, Zimmer Inc., (2000), 16 pgs.
“NexGen LPS Fixed Knee: Surgical Technique”, Zimmer Inc., (2002, 2008), 44 pgs.
“NexGen LPS-Flex Mobile and LPS-Mobile Bearing Knees”, Zimmer, Inc., (2007, 2008), 4 pgs.
“NexGen Trabecular Metal Modular Plates”, Zimmer Inc., (2007), 19 pgs.
“Persona “Medial Congruent Articular Surface” System Overview”, Zimmer, Inc., (2015), 6 pgs.
“Persona “The Personalized Knee System””, Medial Congruent Sales Training, Zimmer, Inc., (Jul. 2015), 53 pgs.
“Persona “The Personalized Knee System” Medial Congruent Advanced Bearings”, Zimmer, Inc., (2015), 2 pgs.
“Persona “The Personalized Knee System” Medial Congruent Articular Surface Design Rationale”, Zimmer, Inc., (2015), 20 pgs.
“Persona “The Personalized Knee System” Persona Medial Congruent”, Mar. 24-28, 2015 at the American Academy of Orthopaedic Surgeons (AAOS) Annual Meeting., (Mar. 2015), 1 pg.
“Persona “The Personalized Knee System” Surgical Technique”, Zimmer, Inc., (2015), 72 pgs.
“Persona Medial Congruent Articular Surface”, Sales Training, Zimmer Biomet, (Jan. 2016), 71 pgs.
“PFC Sigma Knee System with Rotating Platform Technical/ Monograph”, Depuy PFC Sigma RP, 0611-29-050 (Rev. 3), (1999), 70 pgs.
“Primary/Revision Surgical Technique for NexGen Rotating Hinge Knee (RHK)”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5880-02, (2002), 116 pgs.
“Revision Instrumentation Surgical Technique for Legacy Knee Constrained Condylar Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5994-202, (2001), 61 pgs.
“Russian Application Serial No. 2013106942, Office Action dated Apr. 16, 2015”, W/ English Translation, 5 pgs.
“Russian Application Serial No. 2013106942, Response filed Jul. 15, 2015 Office Action dated Apr. 16, 2015”, (W/ English translation of claims), 146 pgs.
“Russian Application Serial No. 2013106943, Office Action dated Jul. 1, 2015”, (W/ English Translation), 6 pgs.
“Russian Application Serial No. 2013106943, Office Action dated Dec. 28, 2015”, w/ partial English Translation, 6 pgs.
“Russian Application Serial No. 2013106943, Response filed Apr. 28, 2016 to Office Action dated Dec. 28, 2015”, (W/ English translation of claims), 19 pgs.
“Russian Application Serial No. 2013106943, Response filed Oct. 30, 2015 to Office Action dated Jul. 1, 2015”, (W/ English translation of claims), 21 pgs.
“South African Application Serial No. 2013/01327, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs.
“South African Application Serial No. 2013/01328, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs.
“Surgical Technique for Cruciate Retaining Knees and Revision Instrumentation Surgical Technique for Cruciate Retaining Augmentable Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5970-202, (2002), 130 pgs.
“Surgical Technique for the CR-Flex Fixed Bearing Knee”, NexGen Complete Knee Solution, Zimmer, Inc., (2003), 22 pgs.
“Surgical Technique for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5964-02, Rev. 1, (2000, 2002), 15 pgs.
“Surgical Technique for the Legacy Posterior Stabilized Knees”, Zimmer, Inc. Nexgen Complete Knee Solution, 97-5996-02, (2002), 43 pgs.
“Surgical Technique—Nexgen Complete Knee Solution for the Legacy Knee LPS-Flex Fixed Bearing Knee”, Zimmer, Inc., (2004, 2007), 12 pgs.
“The Zimmer Institute Surgical Technique MIS Quad-Sparing Surgical Technique for Total Knee Arthroplasty”, NExGen Complete Knee Solution, (2004), 55 pgs.
“Tibial Baseplate: Pocket Guide (United States Version)”, Zimmer, Inc.,, (2009), 17 pgs.
“Trabecular Metal Monoblock Tibial Components”, Zimmer, Inc., (2007), 4 pgs.
“Trabecular Metal Monoblock Tibial Components Surgical Technique Addendum”, Nexgen Zimmer, Inc., (2005, 2007), 12 pgs.
“Trabecular Metal Tibial Tray: Surgical Technique”, NexGen Zimmer, Inc., (2007, 2009), 16 pgs.
“Turkish Application Serial No. 11808493.8, Working Requirements mailed Feb. 17, 2020”, 3 pgs.
“Turkish Application Serial No. 12718882.9, Working Requirements mailed Feb. 13, 2020”, 3 pgs.
“Vanguard® ID Total Knee, Surgical Technique”, Zimmer Biomet; 0682.1-GLBL-en-REV0317, (2017), 36 pgs.
“Zimmer MIS Intramedullary Instrumentation Surgical Technique For NexGen Cruciate Retaining & NexGen Legacy Posterior Stabilized Knees”, printed 2005, 2009, Zimmer, Inc., (2009), 45 pgs.
“Zimmer Nexgen Cruciate Retaining (CR) and Legacy Knee Posterior Stabilized (LPS) Trabecular Metal Monoblock Tibias”, Zimmer, Inc Surgical Technique Addendum, 97-7253-34, Rev. 3, (2004), 11 pgs.
“Zimmer NexGen CR-Flex and LPS-Flex Knees Surgical Technique with posterior Referencing Instrumentation.”, Zimmer Inc., (2010, 2011), 48 pgs.
“Zimmer NexGen LCCK Surgical Technique for use with LCCK 4-in-1 Instrumentation”, Zimmer, Inc.; copyright 2009, 2010, 2011, (May 2011), 52 pgs.
“Zimmer NexGen MIS Modular Tibial Plate and Keel Cemented Surgical Technique”, Zimmer Inc., (2006, 2011), 26 pgs.
“Zimmer NexGen MIS Tibial Component”, Brochure-97-5950-001-00 7.5mm, (2005, 2006). 8 pgs.
“Zimmer NexGen MIS Tibial Component Cemented Surgical Technique”, Zimmer, Inc, #97-5950-002-00 Rev.1 1.5ML, (2005), 14 pgs.
“Zimmer NexGen MIS Tibial Component Cemented Surgical Technique”, Zimmer Inc., (2005, 2006, 2008, 2009, 2010), 16 pgs.
“Zimmer NexGen Trabecular Metal Augments—Abbreviated Surgical Technique”, Zimmer, Inc., (2004, 2006), 6 pgs.
“Zimmer NexGen Trabecular Metal Augments Surgical Technique for LCCK & Rotating Hing Knee Trabecular Metal Augments”, Zimmer, Inc. 97-5448-02, Rev. 1, (2004), 6 pgs.
“Zimmer NexGen Trabecular Metal Primary Patella Surgical Technique”, Zimmer. Inc., 97-7255-112-00, (2005), 10 pgs.
“Zimmer NexGen Trabecular Metal Tibial Tray”, Surgical Technique, Zimmer, Inc., (2007, 2009), 16 pgs.
“Zimmer Patient Specific Instruments”, Surgical Techniques for NexGen Complete Knee Solution Zimmer, Inc., (2010), 16 pgs.
Annayappa, Ramesh, “Tibial Prosthesis”, U.S. Appl. No. 13/189,328, filed Jul. 22, 2011, 82 pgs.
Annayappa, Ramesh, et al., “Tibial Prosthesis”, U.S. Appl. No. 13/189,324, filed Jul. 22, 2011, 50 pgs.
Bellemans, Johan, et al., “Is Neutral Mechanical Alignment Normal for All Patients?”, Clinical Orthopaedics and Related Research; DOI 10.1007/s11999-011-1936-5, (Jun. 9, 2011), 9 pgs.
Ding, M., et al., “Age-related variations in the microstructure of human tibial cancellous bone”, Journal of Orthopaedic Research, 20(3), (2002), 615-621.
Ding, M., et al., “Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis”, Journal of Bone & Joint Surgery (British), 85-B(6), (Aug. 2003), 906-912.
Doyle, et al., “Comparative Analysis of Human Trabecular Bone and Polyurethane Foam”, Purdue University., 1 pg.
Dunbar, M. J., et al., “Fixation of a Trabecular Metal Knee Arthroplasty Component: A Prospective Randomized Study”, The Journal of Bone & Joint Surgery (American), vol. 91-A(7), (Jul. 2009), 1578-1586.
Edwards, Andrew, et al., “The Attachments of the Fiber Bundles of the Posterior Cruciate ligament: An Anatomic Study”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 23, No. 3, (Mar. 2008), 284-290.
Freeman, M.A.R., et al., “The Movement of the Knee Studied by Magnetic Resonance Imaging”, Advanced Bearings—Clinical Orthopedics & Related Research 2003, (2003), 1 pg.
Hofmann, Aaron A, et al., “Posterior Stabilization in Total Knee Arthroplasty with Use of an Ultracongruent Polyethylene”, The Journal of Arthroplasty vol. 15, No. 5, (2000), 576-583.
Hutt, Jonathan, et al., “Functional joint line obliquity after kinematic total knee arthroplasty”, International Orthopaedics; DOI 10.1007/s00264-015-2733-7, (Mar. 21, 2015), 6 pgs.
Hvid, Ivan, et al., “Trabecular bone Strength Patterns at the Proximal Tibial Epiphysis”, Journal of Orthopaedic Research, vol. 3, No. 4, (1985), 464-472.
Klostermann, et al., “Distribution of bone mineral density with age and gender in the proximal tibia”, Clinical Biomechanics 19, 376-376.
Lorenz, Stephan, et al., “Radiological evaluation of the anterolateral and posteromedial bundle insertion sites of the posterior cruciate ligament”, Knee Surg Sports Traumatol Arthosc, vol. 17, (2009), 683-690.
Moorman, Claude, et al., “Tibial Insertion of the Posterior Cruciate Ligament: A Sagittal Plane Analysis Using Gross, Histologic, and Radiographic Methods”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 24, No. 3, (Mar. 2008), 269-275.
Parisi, Raymond C, “Motion Facilitating Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/229,103, filed Sep. 9, 2011, 46 pgs.
Partovi, Hamid, “Flow-Through Latch and Edge-Triggered Flip-Flop Hybrid Elements”, Proceedings of the IEEE International Solid-State Circuits Conference, Digest of Technical Papers and Slide Supplement, NexGen Inc., Milpitas, CA, (1996), 40 pgs.
Siggelkow, Elk, et al., “Impact of Tibia Bearing Surface and Femoral Component Design on Flexion Kinematics During Lunge”, Mar. 28-31, 2015 at the Orthopaedic Research Society (ORS) Annual Meeting (Poster #1645), (Mar. 2015), 1 pg.
Siggelkow, Elk, et al., “Impact of Tibia Bearing Surface Design on Deep Knee Bend Kinematics”, Mar. 24-28, 2015 at the AAOS Conference (Poster #P142), (Mar. 2015), 1 pg.
Stilling, et al., “Superior fixation of pegged trabecular metal over screw-fixed pegged porous titanium fiber mesh”, Acta Orthopaedica., (2011), 177-186.
Victor, Jan M. K., et al., “Constitutional Varus Does Not Affect Joint Line Orientation in the Coronal Plane”, Joint Line Orientation in the Coronal Plane; 472; DOI 10.1007/s11999-013-2898-6, (Jun. 4, 2013), pp. 98-104.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,338, filed Jul. 22, 2011, 58 pgs.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,339, filed Jul. 22, 2011, 52 pgs.
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,336, filed Jul. 22, 2011, 60 pgs.
“U.S. Appl. No. 18/081,481, Preliminary Amendment filed Jan. 11, 2023”, 6 pgs.
“U.S. Appl. No. 18/228,322, Preliminary Amendment filed Aug. 16, 2023”, 6 pgs.
“European Application Serial No. 18726670.5, Communication Pursuant to Article 94(3) EPC dated Dec. 15, 2022”, 5 pgs.
“European Application Serial No. 18726670.5, Response filed Apr. 25, 2023 to Communication Pursuant to Article 94(3) EPC dated Dec. 15, 2022”, 35 pgs.
“European Application Serial No. 21177256.1, Communication Pursuant to Article 94(3) EPC dated Jun. 7, 2023”, 4 pgs.
“European Application Serial No. 21177256.1, Response filed Dec. 21, 2022 to Extended European Search Report dated May 17, 2022”, 35 pgs.
“European Application Serial No. 21178298.2, Response filed Dec. 21, 2022 to Extended European Search Report dated Mar. 1, 2022”, 23 pgs.
“Japanese Application Serial No. 2021-097369, Response filed Sep. 12, 2022 to Notification of Reasons for Rejection dated Jun. 14, 2022”, w/ English claims, 17 pgs.
Related Publications (1)
Number Date Country
20210022875 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
62664500 Apr 2018 US
Continuations (1)
Number Date Country
Parent 16389381 Apr 2019 US
Child 17068435 US