Endres, G.F. and J. Epstein, “Synthesis of Some Hydroxamic Acids. Reactivity with Isopropyl Methylphosphonofluoridate (GB)”, J. Org. Chem., 24: 1497-1501 (1959). |
Abstract for Accession No. 1966-26456F/196800 from, World Patent Index Database. |
Hozumi, et al., “Induction of Erythroid Differentiation in Murine Erythroleukemia Cells by N-Substituted Polymethylene Diamides,” Int. J. Cancer, 23:119-122 (1979). |
Marks, P.A., et al., “Polar/apolar Chemical Inducers of Differentiation of Transformed Cells: Strategies to Improve Therapeutic Potential,” Proc. Natl. Acad. Sci., 86:6358-6362 (1989). |
Chun, J.G., et al., “Hexamethylene Bisacetamide: A Polar-Planar Compound Entering Clinical Trials as a Differentiating Agent,” Cancer Treatment Reports, 70(8): 991-996 (1986). |
Reuben, R.C., et al., “Inducers of Erythroleukemic Differentiation,” J. Biolog. Chem., 253:4214-4218 (1978). |
Tanaka, M., et al., “Induction of Erythroid Differentiation in Murine Virus Infected Erythroleukemia Cells By Highly Polar Compounds,” Proc. Natl. Acad. Sci., 72(3):1003-1006 (1975). |
Fibach, E., et al., “Effect of Hexamethylene Bisacetamide on the Commitment to Differentiation of Murine Erythroleukemia Cells,” Cancer Research, 37:440-444 (1977). |
Melloni, E., et al., “Vincristine-resistant Erythroleukemia Cell Line Has Markedly Increased Sensitivity to Hexamethylenebisacetamide-Induced Differentiation.” Chem. Abs., 1988, 109, Abstract No. 47737e. (From Proc. Natl. Acad. Sci. USA, 85(11):3835-3839, 1988). |
Haces, A., et al., “Chemical Differentiating Agents. Differentiation of HL-60 Cells by Hexamethylenebis[acetamind] Angalogues,” J. Med. Chem., 30:405-409 (1987). |
Das, M.K., et al., “Synthesis of Some Dihydroxamic Acid Siderophores”, Chem. Abs., 1984, 101, Abstract No. 54665t. (From J. Chem Eng. Data, 1984, 29(3):345-348, 1984. |
Brown, D.A., et al., “A Facile Synthesis of Aliphatic Dihydroxamic Acids of General Formula RONR1-CO-(CH2)n-CO-NR1OR,” Chem. Abs., 1986, 105, Abstract No. 78501v. (From Synth. Commun., 15(13):1159-1164, 1985). |
Hynes, J.B., “Hydroxylamine Derivatives as Potential Antimalarial Agents. 1. Hydroxamic Acids1.” J. Med. Chem., 13(6):1235-1237 (1970). |
Tabernero, E., et al., “Antitrypanosomal (T. Venezuelense) and Antimycotic Effect of Various Hydroxamic Acids,” Chem. Abs., 1983, 98, Abstract No. 191329v. (From Acta. Cient. Venez., 32(5):411-416, 1981). |
Morrison, R. T., and Boyd, R.N., “Conversion of Amines Into Substituted Amides.” In Organic Chemistry (3rd ed.), Allyn and Bacon, Inc., Boston, p. 755 (1973). |
Weitl, F.L., and Raymond, K.N., “Lipophilic Enterobactin Analogues Terminally N-Alkylated Spermine/Spermidine Catecholcarboxamides,” J. Org. Chem., 46:5234-5237 (1981). |
Paolini, J.P., et al., “N4,N4′-Decamethylenebis-4-aminopyridine and N9,N9′-Decamethylenebis-9-aminoacridine,” J. Med. Chem., 12(4):701 (1969). |
Cleaver, C.S., and Pratt, B.C., “Synthesis of 2,2′-Bis-[5(4H)-oxazolones],” J. Amer. Chem. Soc., 77:1544 (1955). |
Breslow, R., et al., “Potent Cytodifferentiating Agents Related to Hexamethylenebisacetamide,” Proc. Natl. Acad. Sci. USA, 88:5542-5546 (1991). |
Brown, D.A., “Design of Metal Chelates With Biological Activity. 5. Complexation Behavior of Dihydroxamic Acids with Metal Ions,” American Chemical Society, 3729-3796 (1986). |
Chugai Pharmaceutical Co., Ltd., “Benzenehydroxycarboxamides as Fumigant Insecticide Base Materials.” (From 5-Agrochemicals, 1984, 101, Abstract No. 124925d). |
Mueller, G., et al., “Coordination Chemistry of Microbial Iron Transport Compounds. 31. The Mechanism and Specificity of Iron Transport in Rhodotorula Pilimanae Probed by Synthetic Analogs of Rhodotorulic Acid.” (From Chem. Abs., 1985, 103, Abstract No. 192908s. |
Prabhakar, Y.S., et al., “Quantitative Correlations of Biological Activities of Dactinomycin Analogs and Methotrexate Derivatives with Van Der Waals Volume,” Birla Institute of Technology and Science, Pilani (India), pp. 1030-1033. |
Linfield, W.M., et al., “Antibacterially Active Substituted Anilides of Carboxylic and Sulfonic Acids,” J. Med. Chem., 26:1741-1746 (1983). |
Devlin, J.P., et al., “Studies Concerning the Antibiotic Actinonin. Part VI. Synthesis of Structural Analogues of Actinonin by Dicyclohexylcarbodi-imide Coupling Reactions,” J. Chem. Soc. Perkins Trans. 1(9):848-851 (1975). |
Hirom, P.C., et al., “Bile and Urine as Complementary Pathways for the Excretion of Foreign Organic Compounds,” Xenobiotica, 6(1):55-64 (1976). |
Hirom, P.C., et al., “Molecular Weight and Chemical Structure as Factors in the Biliary Excretion of Sulphonamides in the Rat,” Xenobiotica, 2(3):205-214 (1972). |
Hill, J.W., and Carothers, W.H., “Studies of Polymerization and Ring Formation. XIX. Many-Membered Cyclic Anhydrides,” J. Am. Chem. Soc., 55:5023-5031 (1933). |
Lion, C., et al., “Synthese Dans La Chimie Des Phenanthridines. II. Preparation D'Une Nouvelle Serie D'ω-(Phenanthridinyl-6) Alcanoates De Methyle Ou D'Ethyle,” Bull. Soc. Chim. Belg., 98(8):567-573 (1989). |
Lion, C., et al., “Synthese Dans La Chimie Des Phenanthridines. III. Preparation De Quelques Modeles D'Acides ω-(Diamino -3,8 Phenanthridinyl-6) Carboxyliques,” Bull. Soc. Chim. Belg., 99(3):171-181 (1990). |
Wojcik, A., and, Adkins, H., “Catalytic Hydrogenation of Amides to Amines,” J. Amer. Chem. Soc., 56:2419 (1932). |
Abstract for Accession No. 1984-214010/198435 from, World Patent Index Database. |
Abstract for Accession No. 1985-231331/198538 from Derwent Info Ltd. |